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Abstract

This paper examines the strategic interactions of two large regions making choices
about greenhouse gas emissions in the face of rising global temperatures. Optimal de-
cisions are modelled in a fully dynamic, closed loop Stackelberg pollution game. Global
average temperature is modelled as a mean reverting stochastic process. A numerical
solution of a coupled system of HJB equations is implemented. We explore the impact
of temperature volatility and regional asymmetries on emissions, contrasting the out-
comes from the Stackelberg game with the choices made by a social planner. When
players are identical, a classic tragedy of the commons is demonstrated in which play-
ers in the game choose higher carbon emissions and have lower utility as compared to
the outcome with a social planner. Over certain values of state variables, the tragedy
of the commons is shown to be exacerbated by increased temperature volatility and
regional asymmetries in climate damages. Asymmetries in environmental preferences
can, under certain conditions, result in a green paradox whereby green sentiments in
one region cause the other region to increase emissions. Interestingly, we also find that
a contrary “green bandwagon” effect is possible. At high levels of the carbon stock,
green preferences in one region can cause the other region to reduce emissions.
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1 Introduction

Climate change caused by human activity represents a particularly intractable tragedy of the

commons, which can only be addressed by cooperative actions of individual decision makers

at both national and regional levels. The likely success of cooperative actions is hampered

by the large incentives for free riding by decision makers who may delay making deep cuts

in carbon emissions in hopes that others will do the “heavy lifting”. Further complicating

the problem are the enormous uncertainties inherent in predicting climate responses to the

buildup in atmospheric carbon stocks and resulting impacts on human welfare, including

the prospects for adaptation and mitigation. These large uncertainties and the need for

cooperative global action have been used by some as justification for delaying aggressive

unilateral policy actions. And yet, many nations and sub-national jurisdictions have acted

on their own to adopt policies to reduce carbon emissions even without national agreements

or legislation in place. As a prominent example, since the Trump administration has reneged

on the Paris Climate Accord, several states have vowed to go it alone and continue with

aggressive climate policies. Other examples of jurisdictions taking unilateral carbon pricing

initiatives are given in Kossey et al. (2015).

The observation that national or regional governments implement environmental regu-

lations sooner or more aggressively than required by international agreements or national

legislation has been studied by various researchers.1 Local circumstances, including voter

preferences, local damages from emissions, and strategic considerations regarding the ac-

tions of other jurisdictions, may play a role. A nation or region may be motivated to act

ahead of others if it experiences relatively more severe local damages from emissions. Dif-

ferences in environmental preferences may prompt some jurisdictions to take early action

(Bednar-Friedl 2012). California and British Columbia (a province in Canada), both early

adopters of carbon pricing, appear to have residents who are more environmentally aware,

implying these governments acted in accordance with the preferences of a large segment of

their voters. A survey of stakeholders involved in the introduction of the B.C. carbon tax

1 Urpelainen (2009) and Williams (2012) examine the puzzle at a sub-regional level.

2



concluded that a number of factors were at work. These factors include: (i) a high priority

given to environmental stewardship by B.C. residents and (ii) the fact that several other

regional jurisdictions appeared to be poised in 2008 to take climate change more seriously

(Clean Energy Canada 2015). Governments may choose environmental policies strategically

to gain a competitive advantage or to shift emissions to other regions (Barcena-Ruiz 2006).

This paper examines the strategic interactions of decision makers responding to climate

change, focusing on three central features of the problem: uncertainty, the incentive for

free riding, and asymmetric characteristics of decision makers. We develop a model of a

differential Stackelberg game involving two regions. Each region is a large emitter of green

house gases which benefits from its own emissions, but also faces costs from the impact

on global temperature of the cumulative emissions of both players. The modelling of the

linkage between carbon emissions and global temperature is based on the assumptions of the

well-known DICE model (Nordhaus & Sztorc 2013). To capture uncertainty, average global

temperature is modelled as a stochastic process. We allow for differing damages of climate

change for each region as well as differing preferences for reducing green house gas emissions.

We explore the impact of these features on the optimal choice of emissions for each player

and contrast with the choices made by a social planner.

It is well known that for differential games with closed loop strategies, only special classes

of models result in well-posed mathematical problems for which it is possible to characterize

Nash equilibria.2 These include linear-quadratic games where the feedback controls depend

linearly on the state variable, as well as certain forms of stochastic differential games where

the state evolves according to an Ito process. This paper analyzes a stochastic differential

game which we solve using numerical techniques. We make no prior assumption about the

existence of a Nash equilibrium. Our approach is to discretize time to approximate the

dynamic game as a series of one-shot games (which occur at discrete points in time) and

solve for a Stackelberg equilibrium for each of these one-shot games. At each point in the

state space, we can check if a Nash equilibrium is possible, or if the Stackelberg solution also

represents a Nash equilibrium (See 4.2.2).

2Bressan (2011) provides an excellent overview of the mathematical theory of differential games.
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There is a significant prior literature which examines the tragedy of the commons caused

by polluting emissions in a differential game setting. The relevant differential game literature

is reviewed in Section 2, but we note here two papers most closely related to our paper in their

focus on asymmetry of players’ utilities. Both employ economic models in a deterministic

setting. Zagonari (1998) analyzes cooperative and non-cooperative games when the two

players (countries) differ in the utility derived from a consumption good, the disutility caused

by the pollution stock, and their concern for future generations as reflected in their discount

rate. For the non-cooperative game, Zagonari examines the conditions under which the

steady state stock of pollution might be less than under the cooperative game. Interestingly,

Zagonari finds equilibria for which the steady state pollution stock is lower than in the

cooperative game. In particular, this result holds if the country with stronger environmental

preferences (the “eco-country”) has sufficiently large disutility from pollution and either a

relatively strong concern for future generations or relatively small utility from consumption

goods.

Wirl (2011) also examines whether differences in environmental sentiments can mitigate

the tragedy of the commons associated with a problem such as global warming. The author

characterizes a multi-player game with green and brown players. Green players are distin-

guished from brown players by a penalty term in their objective function which depends

on the extent to which their emissions exceed the social optimum. Wirl finds the presence

of green players introduces discontinuous strategies with some interesting features. In the

examples chosen, the effect of green players on total emissions is modest, as their actions

increase the free riding of brown players. Wirl notes the possibility of a type of green paradox

in which the increasing numbers of green players causes increased emissions, because brown

players increase their emissions and more than offset the impact of green players’ decisions.

Our paper contributes to this literature is several ways. We develop a more general model

which includes uncertainty and closed loop strategies in a dynamic setting. The numerical

results highlight the important influence of uncertainty in future temperature on optimal

emissions choices and the carbon stock. We study the effect of asymmetry in damages and
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environmental preferences on emissions choices and utility, contrasting the non-cooperative

outcome with the outcome assuming a central planner empowered to make choices. Finally,

we makes a contribution in terms of the numerical methodology for solving a Stackelberg

game under uncertainty with path dependent variables. We describe the method used to

determine the closed loop optimal Stackelberg solution (which always exists) and then show

how to determine if a Nash equilibrium exists. Our numerical solution procedure involves

use of a finite difference discretization of the system of HJB equations. In contrast to much

of the previous literature, the choice of damage function can be arbitrary function of state

variables.

To preview our results, we highlight the crucial role of the damage function which specifies

the harm from rising temperature, as has been noted by others (Weitzman 2012, Pindyck

2013). Very little reduction in carbon emissions occurs in the Stackelberg game or with

the central planner using a conventional quadratic damage function. Exponentially increas-

ing damages better reflect the catastrophic nature of damages anticipated if average global

temperature should increase beyond 3◦C above preindustrial levels. We also find that tem-

perature uncertainty plays a key role. With a larger temperature volatility, optimal emissions

are reduced for the players in the game as well as for the social planner. The social planner’s

response is relatively greater compared to the game for key values of the state variables

(carbon stock and temperature) implying the benefit of cooperative action as demonstrated

by a social planner increases at higher volatility. Asymmetric costs are also found to have

an important effect on strategic interactions of players. Higher damage experienced by one

player causes the other player to increase emissions over certain values of the state variables.

This again implies that the advantage provided by a social planner is greater under asym-

metric costs. Finally, we observe that an increase in green preferences by one player has

an impact on the optimal actions of the other player, but the direction of that effect varies

depending on the current temperature and stock of atmospheric carbon. We identify both a

green paradox and a green bandwagon effect.

The remainder of the paper proceeds as follows. In Section 2, we provide a more detailed
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literature review. The formulation of the climate change decision problem is described in

Section 3. Section 4 provides a detailed description of the dynamic programming solution.

Section 5 describes the detailed modelling assumptions and parameter values. Numerical

results are described in Section 6, while Section 7 provides concluding comments.

2 Literature

This paper contributes to the literature on differential games dealing with trans-boundary

pollution problems as well as to the developing literature on accounting for uncertainty in

optimal policies to address climate change.

Economic models of climate change have long been criticized for arbitrary assumptions

regarding functional forms and key parameter values as well as unsatisfactory treatment of

key uncertainties including the possibility of catastrophic events.3 Of course, this is not

surprising given the intractable nature of the climate change problem. Policies to address

climate change have been extensively studied using the DICE (Dynamic Integrated Model of

Climate and the Economy) model, a deterministic model developed in the 1990s, which has

been revised and updated several times since then (Nordhaus 2013). Initially uncertainty was

addressed through sensitivities or Monte Carlo analysis, but there has since been a significant

research effort to address uncertainty using more robust methodologies. We mention only a

sample of that literature. Kelly & Kolstad (1999) and Leach (2007) embed a model of learning

into the DICE model to examine active learning by a social planner about key climate

change parameters. More recent papers which incorporate stochastic components into one

or more state variables in the DICE model include Crost & Traeger (2014), Ackerman et al.

(2013) and Traeger (2014). Lemoine & Traeger (2014) extend the work of Traeger (2014)

by incorporating the possibility of sudden shifts in system dynamics once parameters cross

certain thresholds. Policy makers learn about the thresholds by observing the evolution

of the climate system over time. Hambel et al. (2017) present a stochastic equilibrium

model for optimal carbon emissions with key state variables, including carbon concentration,

3SeePindyck (2013) for a harsh critique.
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temperature and GDP, modelled as stochastic differential equations. Chesney et al. (2017)

examine optimal climate polices using a model in which global temperature is stochastic and

assuming there is a known temperature threshold which will result in disastrous consequences

if it is exceeded for a sustained period of time.

This previous work considers uncertainty in models with a single decision maker, ab-

stracting from the strategic interactions of multiple decision makers which is a key feature

of policy making for climate change. Differential game models have been used extensively

to examine strategic interactions between players who benefit individually from polluting

emissions but are also harmed by the cumulative emissions of all players. The literature ad-

dresses the strategic interactions of decision makers over time in deterministic and stochastic

settings. Key assumptions, such as the information known to each player, determine whether

the game can be described by a closed form mathematical solution.4 For example, open loop

strategies, which depend solely on time, result when players know only the initial state of

the system. Nash and Stackelberg equilibria for open loop strategies are well understood.

In contrast, when players can directly observe the state of the system at every instant in

time, feedback strategies (also called closed-loop or Markovian strategies) which depend on

the state of the system may be employed. The resulting value functions satisfy a system of

highly non-linear HJB partial differential equations. From the theory of partial differential

equations it is known that if the system is non-stochastic, it should be hyperbolic in order

for it to be well posed, in that it admits a unique solution depending continuously on the

initial data (Bressan & Shen 2004). Our system of HJB equations is degenerate parabolic,

which further complicates matters.

In games with feedback strategies only special classes of models are known to result

in well-posed mathematical problems. These include zero-sum games, as well as linear-

quadratic games. Linear-quadratic games have been used extensively in the economics liter-

ature to study pollution games, and some relevant papers, which admit closed form solutions,

are detailed below. In this class of games, utility is a quadratic function of the state variable,

4See Bressan (2011) for a discussion of the challenges of finding appropriate mathematical models which
result in closed form solutions.
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while the state variable is linear in the control. Robust game models are also found with

Nash feedback equilibria for stochastic differential games where the state evolves according

to an Ito process such as

dx = f(t, x, u1, u2)dt+ σ(t, x)dZ (1)

where x represents the state variable, t is time, u1 and u2 represent the controls of players 1

and 2, f and σ are known functions, and dZ is the increment of a Wiener process. As noted

by Bressan (2011), for this case the value functions can be found by solving a Cauchy problem

for a system of parabolic equations. The Cauchy problem is well posed if the diffusion tensor

σ has full rank. In our case, the diffusion tensor is not of full rank (i.e. the system of PDEs

is degenerate), hence we cannot expect that a Nash equilibrium will always exist. Additional

discussion of the complexities of solving problems involving differential games can be found

in Salo & Tahvonen (2001), Ludkovski & Sircar (2015), Harris et al. (2010), Cacace et al.

(2013), Amarala (2015), and Ledvina & Sircar (2011).

Long (2010) and Dockner et al. (2000) provide surveys of the sizable literature addressing

strategic interactions in the optimal control of pollution or natural resource exploitation using

games, much of it in a deterministic setting. This literature focuses on the questions: (i) are

players are better off with cooperative behaviour and (ii) how do the steady state levels of

pollution compare under cooperative versus non-cooperative games.

Examples of dynamic differential pollution games in a non-stochastic setting include

Dockner & Long (1993), Zagonari (1998), Wirl (2011), and List & Mason (2001). Under

certain conditions, analytical closed-form solutions are found for linear and non-linear closed-

loop strategies.

A few papers derive analytical solutions to differential pollution models in stochastic

settings. Xepapadeas (1998) models global warming policy as a stochastic dynamic game

in which damage is linear in the pollution stock and uncertainty in damage is described by

geometric Brownian motion. An analytical solution is derived assuming exclusively linear

strategies.
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Wirl (2008) considers a dynamic pollution game with n symmetric players and differ-

entiates between the cases of reversible and irreversible emissions. He characterizes the

accumulation of pollution as an Ito process. The case of irreversible emissions requires

a non-negativity constraint such that an explicit analytical solution is no longer possible.

However, Wirl is able to analyze Nash equilibria under continuous Markov strategies using

value matching and smooth pasting when optimal emissions are positive or zero. Wirl char-

acterizes feasible stopping thresholds for the pollution stock at which emissions will cease.

The author notes that multiple Nash equilibria cannot be ruled out. As expected, an increase

in uncertainty reduces optimal emissions and this effect is more pronounced when emissions

are irreversible. In the non-cooperative game, the stock of pollution grows in an unlimited

fashion as the number of players increases. This contrasts with the cooperative game in

which optimal emissions and pollution levels decline as the number of players increases.

Finally, Nkuiya (2015) analyzes a pollution control game with n symmetric players when

there is a risk of sudden jump in damages or a catastrophe at an unknown future date.

The switch from the low damage to high damage state is modelled as a Poisson process.

This allows the stochastic differential game to be transformed into a deterministic game

which admits an analytic solution. He distinguishes two cases: one in which damages may

jump to a level such that all economic activity ceases (doomsday scenario) and the other

in which damages jump to a higher level, but economic activity continues (non-doomsday

scenario). For the non-doomsday scenario, linear strategies, and an exogenous hazard rate,

an increase in the hazard rate causes players to reduce emissions. In the doomsday case

under linear strategies, an increase in the hazard rate adds to the effective discount rate and

causes players to increase emissions. These results do not necessarily hold if the probability

of jumping to the doomsday state depends endogenously on players’ emission decisions, nor

if players commit to non-linear strategies, even when the jump probability is exogenous.

There is a developing literature on the numerical solution of dynamic games in the con-

text of non-renewable resource markets. Some earlier papers developed models where two

or more players extract from a common stock of resource. Examples include van der Ploeg
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(1987) and Dockner et al. (1996). Salo & Tahvonen (2001) were among the first to explore

oligopolistic natural resource markets in a differential Cournot game using closed loop strate-

gies. Prior to that, the focus had been on open-loop strategies, because of their tractability.

Of course, in general, open loop strategies are sub-optimal compared to closed loop strategies.

Salo & Tahvonen (2001) developed an analytical solution of affine-quadratic specifications

and demonstrated a numerical method for other functional forms using a Markov chain

approximation.

Harris et al. (2010) study the extraction of an exhaustible resource as an N-player contin-

uous time Cournot game when players have heterogeneous costs. They note that existence,

uniqueness and regularity of value functions are not well understood and that numerical solu-

tions represent a major challenge. Harris et al. (2010) present an asymptotic approximation

for a low exhaustible case (i.e. small cost of the alternate technology) and a numerical solu-

tion given a restriction on the cost of the alternate technology. Ludkovski & Sircar (2012)

extend the work of Harris et al. (2010) by adding exploration to the model. Ludkovski &

Yang (2015) includes both exploration and stochastic demand.

3 Problem Formulation

This section provides an overview of the climate change decision model. Details of functional

forms and parameter values are provided in Section 5. A summary of variable names is given

in Table 1. We model the optimal timing and stringency of environmental regulations (in

terms of the reduction of greenhouse gas emissions) as a stochastic optimal control problem.

We consider two cases: a Stackelberg game and a social planner. The players in the Stack-

elberg game are two regions, each contributing to the atmospheric stock of greenhouse gases

- which, for simplicity, we will refer to as the carbon stock. These regions may be thought

of as single nations or groups of nations acting together, but each is a major contributor

to the global carbon stock. Each region seeks to maximize discounted expected utility by

making emission choices taking into account the optimal actions of the other region. The

social planner chooses emission levels in each region so as to maximize the expected sum of
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Table 1: List of Model Variables

Variable Description

Ep(t) Emissions in region p

Ēp benchmark emissions for player p

e1, e2 Particular realizations of Ep(t)

ω, ω2 any control choice by players 1 and 2

S(t) Stock of pollution at time t, a state variable

s A realization of S(t)

S̄ preindustrial level of carbon

ρ(X,S, t) Rate of natural removal of the pollution stock

σ temperature volatility

η(t) speed of mean reversion in temperature equation

X(t) Average global temperature, a state variable

x A realization of X(t)

X̄ long run equilibrium level of temperature, ◦C above pre-industrial levels

Bp(Ep, t) Damages from pollution

Cp(X, t) Damages from pollution

gp(t) Emissions reduction in region p relative to a target

θp Willingness to pay in region p for emissions reduction from a target

Ap(gp(t)) Green reward benefits from emissions reductions

πp Flow of net benefits to region p

r Discount rate

utilities from both regions.

Regions emit carbon in order to generate income. For simplicity we assume that there is

a one to one relation between emissions and regional income. The two regions are indexed

by p = 1, 2 and Ep refers to carbon emissions from region p. The stock of atmospheric

carbon, S, is augmented by the emissions of each player and is reduced by a natural cycle

whereby carbon is removed from the atmosphere and absorbed into other carbon sinks. The

removal of carbon from the atmosphere can be described by decay function, ρ(X,S, t), which

in theory may depend on the average surface temperature, X, the stock of carbon, S(t), and
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time, t. ρ(X,S, t) is referred to as the removal rate. For simplicity, as described in Section

5, we will later drop the dependence on X and S, assuming that ρ is a function only of time.

However, our solution technique can easily accommodate more general functional forms for

ρ. The evolution of the carbon stock over time is described by the deterministic differential

equation:

dS(t)

dt
= E1 + E2 + (S̄ − S(t))ρ(X,S, t); S(0) = s0 S ∈ [smin, smax] . (2)

S̄ is the pre-industrial equilibrium level of atmospheric carbon.

The mean global increase in temperature above the pre-industrial level, denoted by X,

is described by an Ornstein Uhlenbeck process:

dX(t) = η(t)

[
X̄(S, t)−X(t)

]
dt+ σdZ. (3)

where η(t) represents the speed of mean reversion and is a deterministic function of time.

X̄ represents the long run mean of global average temperature which depends on the stock

of carbon and time. σ is the volatility parameter, assumed to be constant. The detailed

specification of these functions and parameters is given in Section 5. dZ is the increment of

a standard Weiner process, intended to capture the volatility in the earth’s temperature due

to random effects.

The net benefits from carbon emissions are represented as a general function πp:

πp = πp(E1, E2, X, S, t) (4)

More specifically, π is composed of the benefits from emissions, Bp(Ep, t), the damages from

increasing temperature, Cp(X, t), and a green reward that results from reducing emissions

relative to a given target or baseline level, Ap(gp(t)):

πp = Bp(Ep, t)− Cp(X, t) + Ap(gp(t)) p = 1, 2; (5)
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where gp(t) refers to emissions reduction. The detailed specification of benefits, damages,

and the green reward is left to Section 5

It is assumed that the control (choice of emissions) is adjusted at discrete decision times

denoted by:

T = {t0 = 0 < t1 < ...tm... < tM = T}. (6)

Let t−m and t+m denote instants just before and after tm, with t−m = tm − ε and t+m = tm + ε,

ε→ 0+, and where T is the time horizon of interest.

e+
1 (E1, E2, X, S, tm) and e+

2 (E1, E2, X, S, tm) denote the controls implemented by the play-

ers 1 and 2 respectively, which are contained within the set of admissible controls: e+
1 ∈ Z1

and e+
2 ∈ Z2. We can specify a control set which contains the optimal controls for all tm.

K =
{

(e+
1 , e

+
2 )t0=0, (e+

1 , e
+
2 )t1=1, ... , (e

+
1 , e

+
2 )tM=T

}
. (7)

In this paper we will consider three possibilities for selection of the controls (e+
1 , e

+
2 ) at

t ∈ T : Stackelberg, Nash, and social planner. We delay the precise specification of how

these controls are determined until Section 4.2.

Regardless of the control strategy, the value function for player p, Vp(e1, e2, x, s, t) is

defined as:

Vp(e1, e2, x, s, t) = EK
[∫ T

t′=t

e−rt
′
πp(E1(t′), E2(t′), X(t′), S(t′)) dt′ + e−r(T−t)V (0, 0, X(T ), S(T ), T )∣∣∣E1(t) = e1, E2(t) = e2, X(t) = x, S(t) = s

]
, (8)

where EK [·] is the expectation under control set K. Note that lower case letters e1, e2, x, s

have been used to denote realizations of the state variables E1, E2, X, S. The value in the

final time period, T , is assumed to be the present value of a perpetual stream of expected

net benefits at given carbon stock, S, and temperature levels, X, with emissions set to zero.

This is reflected in the term V (0, 0, x, s, T ) and is described in Section 4.1 as a boundary

condition.
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4 Dynamic Programming Solution

Using dynamic programming, we solve the problem represented by Equation (8) backwards

in time, breaking the solution phases up into two components for t ∈ (t−m, t
+
m) and (t+m, t

−
m+1).

In the interval (t−m, t
+
m), we determine the optimal controls, while in the interval (t+m, t

−
m+1),

we solve a system of PDEs. As a visual aid, Equation (9) shows the noted time intervals

going forward in time,

t−m → t+m → t−m+1 → t+m+1 . (9)

4.1 Advancing the solution from t−m+1 → t+m

The solution proceeds going backward in time from t−m+1 → t+m. Define the differential

operator, L for player p, in Equation (10). The arguments in the Vp function, as well as in

η and ρ, have been suppressed when there is no ambiguity.

LVp ≡
(σ)2

2

∂2Vp
∂x2

+ η(X̄ − x)
∂Vp
∂x

+ [(e1 + e2) + ρ(S̄ − s)]∂Vp
∂s
− rVp; p = 1, 2 . (10)

where r is the discount rate. Then using standard techniques (Dixit & Pindyck 1994), the

equation satisfied by the value function, Vp is expressed as:

∂Vp
∂t

+ πp(e1, e2, x, s, t) + LVp = 0, p = 1, 2 . (11)

The domain of Equation (11) is (e1, e2, x, s, t) ∈ Ω∞, where Ω∞ ≡ Z1 × Z2 × [x0,∞] ×

[S̄,∞]× [0,∞]. x0 would be zero degrees Kelvin in our units. For computational purposes,

we truncate the domain Ω∞ to Ω, where Ω ≡ Z1×Z2× [xmin, xmax]× [S̄, smax]× [0, T ]. T , S̄,

smax, Z1, Z2, xmin, and xmax are specified based on reasonable values for the climate change

problem, and are given in Section 5.

Remark 1 (Admissible sets Z1, Z2). We will assume in the following that Z1, Z2 are compact

discrete sets, which would be the only realistic situation.

Boundary conditions for the PDEs are specified below.

14



• As x→ xmax, it is assumed that ∂2Vp
∂x2
→ 0. This boundary condition is commonly used

in the literature and implies that the impact of volatility at very high temperature

levels is unimportant relative to the size of the damages. Assuming that xmax > X̄,

Equation (11) has outgoing characteristics with Vxx = 0 at x = xmax and hence no

other boundary conditions are required.

• As x→ xmin, where xmin is below the pre-industrial temperature, the effect of volatility

is small compared to the drift term. Hence we set σ = 0 at x = xmin. Assuming

xmin < X̄ then Equation (11) has outgoing characteristics at x = xmin and no other

boundary conditions are required. Note that we will show that πp ≥ 0 at x = xmin.

• As s→ smax, it is assumed that emissions do not increase s beyond the limit of smax.

smax is set to be a large enough value so that there is no impact on utility or optimal

emission choices for s levels of interest. We have verified this in our computational

experiments. This amounts to dropping the term ∂VP
∂S

(e1 + e2) from Equation (10).

This can be justified by noting that if smax � S̄ then ρ(S̄ − S) >> (e1 + e2) for

reasonable values of e1 and e2.

• As s → S̄, no extra boundary condition is needed as we assume e1, e2 ≥ 0 hence the

Equation has outgoing characteristics at s = S̄.

• At t = T , it is assumed that Vp is equal to the present value of the infinite stream of

benefits associated with a given temperature when emissions are set to zero. Essentially,

it is assumed that we receive the costs associated with that temperature in perpetuity

and T is large enough that we assume the world has decarbonized.

More details of the numerical solution of the system of PDEs are provided in Appendix

A.
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4.2 Advancing the solution from t+m → t−m

Going backward in time, the optimal control, is determined between t+m → t−m. We consider

three possibilities for selection of the controls (e+
1 , e

+
2 ) at t ∈ T : Stackelberg, Nash, and

social planner. We include the Nash case for reference only. We remind the reader that our

controls are assumed to be feedback, i.e. a function of state. However, to avoid notational

clutter in the following, we will fix (e1, e2, s, x, tm), so that, if there is no ambiguity, we will

write (e+
1 , e

+
2 ) which will be understood to mean (e+

1 (e1, e2, s, x, tm), e+
2 (e1, e2, s, x, tm)).

4.2.1 Stackelberg Game

In the case of a Stackelberg game, suppose that, in forward time, player 1 goes first, and

then player 2. Conceptually, we can then think of the time intervals (in forward time) as

(t−m, tm], (tm, t
+
m). Player 1 chooses control e+

1 in (t−m, tm], then player 2 chooses control e+
2 in

(tm, t
+
m).

We suppose at t+m, we have the value functions V1(e1, e2, s, x, t
+
m) and V2(e1, e2, s, x, t

+
m).

Definition 1 (Response set of player 2). The best response set of player 2, R2(ω1, e1, e2, s, x, tm)

is defined to be the best response of player 2 to a control ω1 of player 1.

R2(ω1, e1, e2, s, x, tm) = argmax
ω′2∈Z2

V2(ω1, ω
′
2, s, x, t

+
m) ; ω1 ∈ Z1 . (12)

Remark 2 (Tie breaking). We break ties by (i) staying at the current emission level if

possible, or (ii) choosing the lowest emission level. Rule (i) has priority over rule (ii). Note

that rule (i) corresponds to an infinitesimal switching cost and rule (ii) to an infinitesimal

green reward (see Section 5.3.3). Consequently there are no ties after applying either of these

rules.

Similarly, we define the best response set of player 1.
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Definition 2 (Response set of player 1). The best response set of player 1, R1(ω2, e1, e2, s, x, tm)

is defined to be the best response of player 1 to a control ω2 of player 2.

R1(ω2, e1, e2, s, x, tm) = argmax
ω′1∈Z1

V1(ω′1, ω2, s, x, t
+
m) ; ω2 ∈ Z2 . (13)

Again, to avoid notational clutter, we will fix (e1, e2, s, x, tm) so that we can write without

ambiguity R1(ω2) = R1(ω2, e1, e2, s, x, tm) and R2(ω1) = R2(ω1, e1, e2, s, x, tm).

Remark 3 (Dependence on states e1, e2). In Equations (12) and (13) the tie breaking rule

induces dependence on the initial state, e1, e2.

Definition 3 (Stackelberg Game: Player 1 first). The optimal controls (e+
1 , e

+
2 ) assuming

player 1 goes first are given by

e+
1 = argmax

ω′1∈Z1

V1(ω′1, R2(ω′1), s, x, t+m) ,

e+
2 = R2(e+

1 ) . (14)

Since we use dynamic programming, we determine the optimal controls using the follow-

ing Algorithm.

Stackelberg Control: Player 1 first

Input: V1(e1, e2, s, x, t
+
m), V2(e1, e2, s, x, t

+
m).

Step 1: Compute the best response set for player 2 assuming player 1 chooses control ω1

first, ∀ω1 ∈ Z1, using Equation (12), giving R2(ω1).

Step 2: Determine an optimal pair (e+
1 , e

+
2 ) using Equation (14).

Determine solution at t−m

V1(e1, e2, s, x, t
−
m) = V1(e+

1 (·), e+
2 (·), s, x, t+m) ;

V2(e1, e2, s, x, t
−
m) = V2(e+

1 (·), e+
2 (·), s, x, t+m) ; . (15)
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Output: V1(e1, e2, s, x, t
−
m), V2(e1, e2, s, x, t

−
m)

4.2.2 Nash Equilibrium

We again fix (e1, e2, s, x, tm), so that we understand that e+
p = e+

p (e1, e2, s, x, tm), Rp(ω) =

Rp(ω, e1, e2.s, x, tm).

Definition 4 (Nash Equilibrium). Given the best response sets R2(ω1), R1(ω2) defined in

Equations (12)-(13), then the pair (e+
1 , e

+
2 ) is a Nash equilibrium point if and only if

e+
1 = R1(e+

2 ) ; e+
2 = R2(e+

1 ) . (16)

From Definition 3 of a Stackelberg game, if player 1 goes first, we have the optimal pair

(ê+
1 , ê

+
2 )

ê+
1 = argmax

ω′1∈Z1

V1(ω′1, R2(ω′1), s, x, t+m) ,

ê+
2 = R2(ê+

1 ) . (17)

Similarly, we have the pair (ē+
1 , ē

+
2 ) if player 2 goes first

ē+
2 = argmax

ω′2∈Z2

V2(R1(ω′2), ω′2, s, x, t
+
m) ,

ē+
1 = R1(ē+

2 ) . (18)

Suppose (ê+
1 , ê

+
2 ) = (ē+

1 , ē
+
2 ). Consequently, we have (e+

1 , e
+
2 ) = (ê+

1 , ê
+
2 ) = (ē+

1 , ē
+
2 ) and we

replace the ê+
p by e+

p and ēp
+ by ep

+ in Equations (17) - (18) giving

e+
1 = argmax

ω′1∈Z1

V1(ω′1, R2(ω′1), s, x, t+m) ,

e+
2 = argmax

ω′2∈Z2

V2(R1(ω′2), ω′2, s, x, t
+
m) ,

e+
1 = R1(e+

2 ) ; e+
2 = R2(e+

1 ) , (19)
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which is a Nash equilibrium from Definition 4. We can summarize this result in the following

Proposition 1 (Sufficient condition for a Nash Equilibrium). A Nash equilibrium exists at

a point (e1, e2, s, x, tm) if (ê+
1 , ê

+
2 ) = (ē+

1 , ē
+
2 ).

Remark 4 (Checking for a Nash equilibrium). A necessary and sufficient condition for

a Nash Equilibrium is given by condition (16). However a sufficient condition for a Nash

equilibrium in the Stackelberg game is that the optimal control of either player is independent

of who goes first.

In our numerical experiments we find Nash equilibria exist only at some points (not

all) over the state space. This is, of course, not surprising since the system of PDEs is

degenerate. Insley & Forsyth (2018) examine this issue, along with other possible games,

such as leader-leader, follower-follower games, and interleaved games.

4.2.3 Social Planner

For the social planner case, we have that an optimal pair (e+
1 , e

+
2 ) is given by

(e+
1 , e

+
2 ) = argmax

ω1∈Z1
ω2∈Z2

{
V1(ω1, ω2, s, x, t

+
m) + V2(ω1, ω2, s, x, t

+
m)

}
. (20)

and as a result

V1(e1, e2, s, x, t
−
m) = V1(e+

1 , e
+
2 , s, x, t

+
m) ; V2(e1, e2, s, x, t

−
m) = V2(e+

1 , e
+
2 , s, x, t

+
m) . (21)

Ties are broken by minimizing |V1(e+
1 , e

+
2 , s, x, t

+
m)− V2(e+

1 , e
+
2 , s, x, t

+
m)|. In other words, the

social planner picks the emissions choices which give the most equal distribution of welfare

across the two players.
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5 Detailed model specification and parameter values

This section describes the functional forms and parameter values used in the numerical

application. Assumed parameter values are summarized in Table 2.

5.1 Carbon stock details

The evolution of the carbon stock is described in Equation (2). In Integrated Assessment

Models, there is typically a detailed specification of the exchange of carbon emissions between

the various carbon reservoirs: the atmosphere, the terrestrial biosphere and different ocean

layers (Nordhaus 2013, Lemoine & Traeger 2014, Traeger 2014, Golosov et al. 2014). In

Equation (2) the removal function is given as ρ(X,S, T ). In our numerical application, we

use a simplified specification, based on Traeger (2014), to avoid the creation of additional

path dependent variables which increases computational complexity. We denote the rate

at which carbon is removed from the atmosphere by ρ(t) and assume it is a deterministic

function of time which approximates the removal rates in the DICE 2016 model.

ρ(t) = ρ̄+ (ρ0 − ρ̄)e−ρ
∗t

ρ0 is the initial removal rate per year of atmospheric carbon, ρ̄ is a long run equilibrium rate

of removal, and ρ∗ is the rate of change in the removal rate. Specific parameter assumptions

for this Equation are given in Table 2. The resulting removal rate starts at 0.01 per year

and falls to 0.0003 per year within 100 years.

The pre-industrial equilibrium level of carbon, S̄ in Equation (2), is assumed to be 588

gigatonnes (GT) based on estimates used in the DICE (2016)5 model for the year 1750. The

allowable range of carbon stock is given by smin = 588 and smax = 10000. smax is set well

5The 2013 version of the DICE model is described in Nordhaus & Sztorc (2013). GAMS
and Excel versions for the updated 2016 version are available from William Nordhaus’s website:
http://www.econ.yale.edu/ nordhaus/homepage/.
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Table 2: Base Case Parameter Values

Parameter Description Equation Assigned Value

Reference

S̄ Pre-industrial atmospheric carbon stock (2) 588 GT carbon

smin Minimum carbon stock (2) 588 GT carbon

smax Maximum carbon stock (2) 10000 GT carbon

ρ̄, ρ0, ρ∗ Parameters for carbon removal equation (22) 0.0003, 0.01, 0.01

φ1, φ2, φ3 Parameters of temperature equation (22) 0.02, 1.1817, 0.088

φ4 Forcings at CO2 doubling (24) 3.681

FEX(0) Parameters from forcing equation (24) 0.5

FEX(100) 1

α1, α2 Ratio of the deep ocean to surface temp, 0.008, 0.0021

α(t) = α1 + α2 × t, (22)

t is time in years with 2015 set as year 0

σ Temperature volatility (22) 0.1

xmin, xmax Upper and lower limits on average temperature, ◦C (22) -3, 20

a1, a2 Parameter in benefit function, player p (26) 10

Z1, Z2 Admissible controls (7) 0, 3, 7, 10

Ē Baseline emissions (29) 10

b1,b2 Cost scaling parameter, players 1 & 2 respectively (28) 15, 15

κ1 Linear parameter in cost function for both players (28) 0.05

κ2 Exponent in cost function for both players (28) 2 or 3

κ3 Term in exponential cost function for both players (27) 1

θP WTP for emissions reduction by player p (5) 0 or 3

T terminal time 150 years

r risk free rate (10) 0.01

21



above the 6000 GT carbon in Nordhaus (2013) and will not be a binding constraint in the

numerical examples.6 A 2014 estimate of the atmospheric carbon level is 840 GT.7

5.2 Stochastic process temperature: details

Equation (3) specifies the stochastic differential equation which describes temperature X

and includes the parameters η(t) and X̄(t). To relate Equation (3) to common forms used

in the climate change literature, we rewrite it in the following format:

dX = φ1

[
F (S, t)− φ2X(t)− φ3[1− α(t)]X(t)

]
dt+ σdZ (22)

where φ1, φ2, φ3 and σ are constant parameters.8 The drift term in Equation (22) is a

simplified version of temperature models typical in Integrated Assessment Models, based

on Lemoine & Traeger (2014). α(t) represents the ratio of the deep ocean temperature to

the mean surface temperature and, for simplicity, is specified as a deterministic function of

time.9 Equation (22) is equivalent to Equation (3) with:

η(t) ≡ φ1

(
φ2 + φ3(1− α(t))

)
(23)

X̄(t) ≡ F (S,t)
(φ2+φ3(1−α(t))

.

F (S, t) refers to radiative forcing, and it measures additional energy trapped at the earth’s

surface due to the accumulation of carbon in the atmosphere compared to preindustrial levels

and also includes other greenhouse gases,

F (S, t) = φ4

(
ln(S(t)/S̄)

ln(2)

)
+ FEX(t) . (24)

6Golosov et al. (2014) chose a maximum atmospheric carbon stock of 3000 GT which is intended to reflect
the carbon stock that results if most of the predicted stocks of fossil fuels are burned in “a fairly short period
of time” (page 67).

7According to the Global Carbon Project, 2014 global atmospheric CO2 concentration was 397.15± 0.10
ppm on average over 2014. At 2.21 GT carbon per 1 ppm CO2, this amounts to 840 GT car-
bon.(www.globalcarbonproject.org)

8φ1, φ2, φ3 are denoted as ξ1, ξ2, and ξ3 in Nordhaus (2013).
9We are able to get a good match to the DICE2016 results using a simple linear function of time.

22



φ4 indicates the forcing from doubling atmospheric carbon.10 FEX(t) is forcing from causes

other than carbon and is modelled as an exogenous function of time as specified in Lemoine

& Traeger (2014) as follows:

FEX(t) = FEX(0) + 0.01
(
FEX(100)− FEX(0)

)
min{t, 100} (25)

The values for the parameters in Equation (22) are taken from the DICE (2016) model.

Note that φ1 = 0.02 which is the value reported in DICE (2016) divided by five to convert

to an annual basis from the five year time steps used in the DICE (2016) model. FEX(0)

and FEX(100) (Equation (24)) are also from the DICE (2016) model. The ratio of the deep

ocean temperature to surface temperature, α(t), is modelled as a linear function of time.

This function approximates the average values from the DICE (2016) base and optimal tax

cases.

Useful intuition about the temperature model can be gleaned by substituting parameter

values from Table 2 to determine implied values for the speed of mean reversion η(t) and

the long run temperature mean X̄(t) in Equation (3) for 2015. Using the definitions in

Equation (23) it can be determined that η(t) = 0.02 and X̄ = 1.9◦C. This value for η implies

that, ignoring volatility, temperature would revert to its long run mean in about 50 years.

The long run temperature of 1.9◦C is above today’s value of 1◦C above preindustrial levels.

This temperature model and assumed parameter values imply considerable momentum in

the temperature trajectory.

Figure 1 shows the changes in global surface temperature relative to 1951 to 1980 aver-

ages.11 Based on this data the volatility parameter was estimated using maximum likelihood

to be approximately σ = 0.1/
√

year. For the numerical solution we choose xmin = −3 and

xmax = 20.

As time tends to infinity, the probability density of an Ornstein-Uhlenbeck process is

Gaussian with mean X̄ and variance σ2/2η. Our assumed parameter values therefore give

10φ4 translates to Nordhaus’s η (Nordhaus & Sztorc 2013).
11The data is from NASA’s Goddard Institute for Space Studies and is available on NASA’s web site

Global Climate Change: https://climate.nasa.gov/vital-signs/global-temperature/.
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Figure 1: Global land-ocean temperature index, degrees C, annual averages since 1880 rela-
tive to the 1951-1980 average

a long run standard deviation of 0.44◦C and mean of 1.9◦C. This implies there is a 2.3%

probability that temperature could rise by 2 standard deviations (0.88 ◦C) due solely to

randomness, independent of carbon emissions. We conclude that volatility should be an

important consideration in any analysis of climate change policies. For further intuition,

Figure 2 presents simulations of the temperature path given our assumed model. We compare

15 realizations of the temperature process if the volatility term σ = 0.1/
√
year and if it is

doubled to 0.2/
√
year.

5.3 Benefits, Damages and the Green Reward

The term πp in Equation (5) comprises benefits and damages from emissions as well as the

green reward. This section describes these components.
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Figure 2: Simulations of Ornstein-Uhlenbeck process for temperature, Equation (3)

5.3.1 Benefits

As is common in the pollution game literature, the benefits of emissions are quadratic ac-

cording the following utility function:

Bp(Ep) = apEp(t)− E2
p(t)/2, p = 1, 2 (26)

ap is a constant parameter which may be different for different players. As in List & Mason

(2001), Ep ∈ [0, ap] so that the marginal benefit from emissions is always positive. In the

numerical example, there are four possible emissions levels for each player Ep ∈ {0, 3, 7, 10}

in gigatonnes (Gt) per year of carbon and we set a1 = a2 = 10.

5.3.2 Damages

Assumptions regarding damages from increasing temperatures are speculative, and this is a

highly criticized element of climate change models. The DICE model (and others) specify

damages as a multiple of GDP and a quadratic function of temperature, implying that

damages never exceed 100% of GDP. This formulation ignores possible catastrophic effects.
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Damage function calibrations are generally based on estimates for the zero to 3◦C range

above preindustrial temperatures.

A multiplicative formulation is not appropriate for the model used in this paper in which

benefits are zero if emissions are zero (Equation (26)). This is because the multiplicative

damage function implies that choosing zero emissions would reduce damages immediately

to zero. For this analysis an additive damage function is adopted in which damages rise

exponentially with temperature:

Cp(t) = κ1e
κ3X(t) p = 1, 2., (27)

where κ3 is a constant and p = 1, 2 refers to the two players. We also explore results with

quadratic or cubic forms of the cost function

Cp(X, t) = κ1X(t)κ2 p = 1, 2, . (28)

where κ1 and κ2 are constants.

We choose the parameters in the damage functions (Equation (28) and (27)) so that

damages represent a reasonable portion of benefits at current temperatures levels (i.e. at

0.86 degrees C over preindustrial levels). Base case values for κ1, κ2 and κ3 imply dam-

ages of about 1% of benefits at current temperature levels. Figure 3 compares the three

cost functions as a percentage of benefits. The comparison is for the exponential function,

Equation (27), compared with the power function, Equation (28), with the exponent set to

2 or 3. We observe that the three cost functions are virtually indistinguishable up to 3 ◦C

above preindustrial levels. After 3 ◦C the cost functions diverge dramatically. We choose

the exponential cost function as our base case as it implies that for temperature increases

above 3 ◦C, damages from climate change would be disastrous, which seems a reasonable

supposition.
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5.3.3 Green Reward

We define emissions reduction, gp(t), relative to a baseline level of emissions level, Ē, for

each region.

gp(t) = max(Ēp − Ep(t), 0), p = 1, 2 (29)

Citizens of each region are assumed to value emissions reduction as contributing to the public

good. We denote the degree of environmental awareness in a region by θp which represents

a willingness to pay for emissions reduction because of a desire to be good environmental

citizens, distinct from the expressions for the benefits and costs of emissions as defined in

Equations (26) and (28) or (27).

The benefit from emissions reduction, called the green reward, Ap, depends on environ-

mental awareness as well as emissions reduction in both regions:

Ap(t) = θpgp(t), p = 1, 2. (30)

27



In our base case, θp = 0 for both players initially. We then explore differential green

preferences by setting θp = 3 for one of the players. In future work, we will explore the

possibility that environmental preferences may evolve randomly over time and may depend

on environmental actions taken in the other region.

6 Numerical results

In this section we analyze the results for five different cases. In the first three cases players

are identical. We contrast a base case in which parameters are described as in Table 2 with

two other cases - one with a higher volatility and the other with an alternative damage

function. We then consider two cases in which players are asymmetric - one in which players

differ in terms of damage functions and in the other, players differ in terms of preferences

for emissions reduction (i.e. green preferences).

6.1 Base case: identical players

We begin with consideration of the case in which players are identical, the willingness to

pay for emissions reduction due to the green reward is zero, and the damage function is

exponential (Equation (27)). Figure 4(a) contrasts total discounted expected utility versus

temperature at S = 800 for the game compared to the social planner. The figures show

Vp(e1, e2, x, s, t) for p = 1, 2 in the game, the sum of players 1 and 2 utilities in the game,

and the sum of utilities for the players as chosen by the social planner. Figure 4(b) zooms

in on the leader and follower utilities in the game. We observe, as expected, that utility

declines with temperature and total utility is greater in the social planner case. Under the

symmetric game, the leader is better off than the follower. Recall that this is a repeated

game which is played (i.e. optimal emissions chosen) every two years over the 150 year time

line of the analysis. Since the leader is able to choose an emission level first, with knowledge

of how the other player will react, this imparts some advantage to the leader depending on

the values of the state variables. When the stock of carbon or temperature are very high,
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the leader’s advantage is diminished.

Figure 5 gives a different perspective on the game with plots of total discounted expected

utility for the follower and leader versus temperature, with several different curves shown

reflecting different levels of carbon stock, S. Utility is uniformly lower at higher carbon

stocks.
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Figure 4: Base case utility for both players, comparing game and social planner. Exponential
damage function. Stock of carbon at 800 GT.

Figure 6 depicts the optimal controls for the game and the social planner versus the stock

of carbon, conditional on a temperature of 1.0 ◦C (close to the current value). For reference,

recall that the stock of carbon in 2017 was about 870 GT. We see that total emissions

fall as the stock of carbon is increased. In the game, both players choose emissions of 7

until the carbon stock reaches 1700 GT at which point the leader increases emissions to 10

while the follower cuts back to 3. By the time the stock reaches 1800 GT both leader and

follower choose a lower emission level of 3. This reflects an advantage to the leader who can

choose a higher emissions level, knowing that the follower will respond appropriately with

emissions reductions which benefit both players. The social planner cuts back emissions more

aggressively and at a lower carbon stock than the players in the game. At a stock of 1000 GT

of carbon, the Planner chooses total emissions of 7 compared to 14 for the total emissions
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Figure 5: Values versus temperature for various carbon stock levels for the game, base case.
Current emission levels at 3 GtC.

under the game. (Recall that the social planner chooses emissions to maximize total utility

for the two players, which implies equalizing emissions since players are symmetric in the

benefits received from emissions.) The model is describing a clear tragedy of the commons

where strategic interactions of the two decision makers leave both worse off (in terms of

utility) than when decisions are made by a central planner. In addition, for most values of

state variables, emissions are higher under the game assumptions.

Figure 7 provides another perspective by contrasting the optimal controls for the game

and the social planner versus temperature when the carbon stock is fixed at 800 GT. Here

the difference between the game and social planner is even more stark. Under the game the

players both choose to emit 7 GT per year (compared to a maximum possible of 10) even

when the temperature reaches a very high level. The social planner is, in contrast, much

more responsive to temperature and reduces emissions when temperature exceeds 2 ◦C.
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Figure 6: Optimal control versus pollution stock, contrasting game and social planner, base
case, exponential damages, current temperature = 1 degrees C above preindustrial levels
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Figure 7: Optimal control versus temperature, game (symmetric players) and social planner,
exponential damage, carbon stock at 800 GT

6.2 Importance of volatility

As noted in Section 5.2, average global temperature exhibits significant volatility. We are

interested in the effect on optimal emissions of an increase in volatility. Figure 8 compares
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the optimal controls of the game versus the social planner when volatility is tripled to 0.3.

For contrast, total emissions for the base case volatility (σ = 0.1) are also shown. Higher

volatility results in earlier emissions reduction for both the game and the planner, but the

impact on the planner is more marked. In the game, total emissions are the same in the high

and low volatility cases until the carbon stock reaches 1200 GT. In contrast, the planner

chooses lower emissions in the high volatility case over most levels of the carbon stock. The

social planner chooses zero emission for carbon stock levels for 1300 Gt and beyond which is

much reduced compared to the social planner choice under lower volatility, or in the game

under either volatility scenario. In general at lower carbon stock levels between 800 to 1000

Gt, the increase in volatility causes the social planner to react to a greater extent than in

the game.

We might consider the difference in utilities in the social planner case versus the game as

another indication of the extent of the tragedy of the commons. For clarity, the difference

V planner(·)− V game(·) will be referred to as the social planner advantage (denoted SPA). At

S = 800 Gt, the SPA in the high volatility case is higher than in the low volatility case, with

the ratio SPAhigh vol/SPAlow vol ranging from 1.35 to 1.45 over temperature levels of interest.

A plot of the planner and game utilities in the high and low volatility cases is shown for S =

800 in Figure 9. This ratio of SPAs is reduced as the carbon stock increases and disappears

completely at very high carbon stock when no amount of cooperative action affect the bad

outcomes.

These results suggest that high temperature volatility makes cooperative action as pro-

vided by a social planner even more important in order to avoid the potentially higher

damages that can result from the high volatility. As carbon stocks increase this effect is

reduced as the social planner has less leeway to avoid those damages.

6.3 Asymmetric damages

An important feature of global warming is the distribution of damages across nations, with

some of the world’s poorer regions suffering disproportionately. In this section we explore
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Figure 8: Optimal control versus carbon stock for high volatility (σ = 0.3) and low volatility
(σ = 0.1) cases, game (symmetric players) and social planner, exponential damage.

the effect of asymmetric damages on strategic interactions by considering a case in which the

follower has much higher sensitivity to increasing temperatures than the leader. Specifically,

we compare a case with symmetric damage functions for the players (κ3 = 0.8 in Equation

(27)) with a case in which the follower’s damages rise more quickly with temperature (κ3 for

player 2 is set at 1.1). We refer to κ3 = 1.1 as high damage and κ3 = 0.8 as low damage.

We also contrast with the social planner case when damages are asymmetric. The optimal

controls in these cases for various carbon stocks and at a temperature of 1◦C are shown in

Figure 10. In Figure 10(a) we observe that when the follower has high damages (dashed

line) it starkly curtails emissions, choosing emissions of zero for all carbon stock levels above

600 Gt. In contrast in the symmetric case (dotted line), when the follower has low damages,

it never reduces emission below 7 GtC. Figure 10(b) depicts the leader’s optimal controls

- the leader always has low damages, but responds differently depending on whether the

follower has low or high damages. In particular, if the follower has low damages (dotted

line), the leader reduces emissions from 10 Gt to 7 Gt when the carbon stock reaches 1000

Gt. However when the follower has high damages, the leader maintains emissions at 10 GtC

until the carbon stock reaches 1600 Gt. The leader benefits from the fact that the follower

has high damages, as the leader is able to maintain high emissions for longer. In Figure
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10(c), which shows total emissions, we observe that although the leader takes advantage of

the higher costs of the follower, total emissions are still lower under asymmetric damages

(dashed line) than under low symmetric damages (dotted line). Note that these results also

hold when the leader has the higher damages. In this case (not shown)the follower takes

advantage and increases its own emissions.

Figure 10(c) also shows the social planner choice for total emissions for the symmetric

damages (both low damages) and asymmetric damages cases (solid lines). We see that when

both players have low damages the social planner chooses fairly high emissions (14 GtC) over

all carbon stock levels shown. In the asymmetric damages case, the social planner reduces

emissions for carbon stocks levels above 800 Gt choosing lower total emissions that in the

game. However, for lower carbon stock levels (S < 800) with asymmetric damages, the social

planner chooses higher total emissions than in the game. This results from the fact that in

the game, the leader is choosing its maximum possible emissions of 10 Gt while the follower

chooses zero emissions over these carbon stock levels. The social planner chooses emissions

of 14 Gt which are distributed equally between the players.

A comparison of utilities is shown in Figure 10(d). Not surprisingly, the relative difference

of total utility for the social planner versus the game (the social planner advantage) is larger

under asymmetric damages than under symmetric low damages
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These results indicate the even greater need for cooperation in the case of asymmetric

damages compared to symmetric damages. The social planner makes significantly different

emissions choices than the outcome of the game in which the player with low damages takes

advantage of the fact that the other player has relatively high damages. The social planner

advantage is relatively larger in the case of asymmetric damages.
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6.4 Alternate damage functions

Sensitivities were conducted using the alternate damage function given by Equation (28).

Using a quadratic function, (κ2 = 2), the optimal choice of emissions is the maximum possible

(10 for each player) in both the game and the social planner. In contrast a cubic damage

function, (κ2 = 3) results in some curtailment of emissions, but emissions are still at higher

levels than with exponential damages. We consider the exponential damage function to be

the most reasonable as the damages quickly become very large at temperature above 3◦C.

6.5 Asymmetric preferences

This sections examines the impact of asymmetric preferences by considering a case in which

one of the players gains a psychic benefit for reducing emissions relative to a given benchmark.

We assume that the environmental friendly player is willing to pay 3 utility units, (θp = 3)

for reductions in emissions below the benchmark Ē. The results are shown in Figure 11

which depicts optimal emissions choices for different carbon stock levels conditional on a

temperature of 1 ◦C. We observe from Figure 11(b) that, as expected, when the leader has

greener sentiments, it chooses a lower level of emissions than in the base case over nearly all

carbon stock levels. In Figure 11(a) it is shown that when the leader has green sentiments,

the follower maintains the same emissions (7 GtC) compared to the base case up to an

atmospheric stock of 1600 GtC. Then for carbon stock levels ranging from 1700 to 1900,

the follower increases its emissions relative to the base case, taking advantage of the reduced

emissions of the leader. This may be characterized as a form of green paradox where increased

green sentiments of one player causes the other player to free ride by increasing emissions.

In Figure 11(a), there is a contrasting effect observed at high carbon stock levels. The

follower chooses zero emissions at 2400 GtC and beyond, which is at a lower stock level than

in the base case. In the base case the follower chooses zero emissions for S ≥ 2600 GtC. We

call this the green bandwagon effect - the opposite of the green paradox effect noted above.

An explanation is that at high carbon levels, the environmentally friendly policies of the

leader make it worthwhile for the follower to also choose environmentally friendly policies,
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because the follower knows this choice will help avert highly damaging consequences.

Figure 11(c) depicts total emissions for the base case and the green reward case. Over

most values of carbon stock, total emissions are less under the green reward than in the base

case. However, between 1800 and 1900 Gt of carbon, it may be observed that total emissions

are higher under the green reward. The green sentiments of the leader have resulted in higher

world emissions overall due to increased free riding of the follower.

Figure 11 shows results for the state variable temperature at 1◦C above preindustrial

levels. The green paradox effect and green band wagon effects are also observed for higher

temperature levels of interest (up to 4◦C). The green paradox is observed at medium high

levels of carbon stock - 1200 to 1900 Gt depending on the temperature. The green bandwagon

effect is observed at the upper end of carbon stock levels of interest, 2000 Gt and above.

These effects are also observed when the follower has a green reward, and the leader responds

via the green bandwagon or green paradox.

The impact of green sentiments in one player requires further investigation. In future

work we will explicitly model the preferences of players and consider the possibility of players

switching from brown to green preferences.

6.6 Checking for Nash equilibria

Recall that we are solving for a repeated series of Stackelberg games which happen every

2 years over the 150 year time span of the analysis. It is of interest to note whether Nash

equilibria exist for these repeated games. In each of the cases described above, we check

for the existence of Nash equilibria across all state variables and at each of the 75 decision

times. We find that at each decision time about 65% of the nodes (representing carbon

stock, temperature and emissions levels) satisfy the Nash equilibrium criterion. Further, we

determine that that 25% of the Stackelberg equilibria are also Nash equilibria. See Section

4.2.2 for details.
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Figure 11: Optimal control versus pollution stock when leader receives a green reward for
emissions reductions. Current temperature = 1 ◦C, Willingness to pay = 3 utility units.

7 Concluding comments

In this paper we have examined the strategic interactions of large regions making choices

about greenhouse gas emissions in the face of rising global temperatures. We have modelled

optimal decisions of players in a fully dynamic, closed loop Stackelberg game and have

demonstrated its numerical solution. Our modelling of the evolution of carbon stock and

temperature is based on Nordhaus’s Integrated Assessment Model (Nordhaus 2013). We take

into account the fundamental random nature of the temperature response to atmospheric

carbon levels. In fact, our analysis shows that purely random effects are likely to cause global
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temperature changes of ±(0.5− 1.0) degrees regardless of emission levels.

Assumptions regarding damages from climate change are a highly controversial part of the

climate economics literature. In our model, damages from rising temperature are subtracted

from benefits derived from emissions, which implies total utility tends to a very large negative

number as temperature rises. This is different from the DICE model and other similar models

in which damages are specified as a percentage reduction in output. As noted by Nordhaus

(2013), “this limits the usefulness of this approach for catastrophic climate change.” We

adopt an exponential damage function rather than the commonly used quadratic damage

function. We find the latter results in very little emissions curtailment even at very high

temperatures and carbon stock levels. We argue that an exponential damage function is

more appropriate to account for the disastrous effects of global average temperatures above

3 ◦C relative to pre-industrial levels.

Our results indicate a classic tragedy of the commons whereby regions acting in their

own self interest in a non-cooperative game choose higher levels of emissions and have lower

total utility than would be chosen by a social planner. In the paper we examined several

factors which are likely to affect the strategic interactions of players and considered their

effects on carbon emissions choices and utilities.

Volatility is found to have an important effect on optimal choices of players in the game

as well as the social planner. An increase in volatility increases the likelihood of high temper-

atures and resulting high damages. This causes players in the game to choose lower levels of

emissions as does the social planner. The difference in total utility between the social planner

and the game (the social planner advantage) tends to be larger for higher volatility, implying

that the tragedy of the commons is exacerbated by higher volatility, or, in other words, the

need for cooperative action is increased. Although the drift in long run temperature is key

in climate change policy, the impact of volatility on strategic interactions of decision makers

is significant.

Asymmetric damages are also found to affect the outcome of the game. When one player

experiences greater harm with rising temperatures, we find that the player with higher
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damages is made worse off by the response of the other player. While the player with

higher damages cuts back on their emissions more aggressively, the low damage player takes

advantage of this by increasing their own own emissions relative to the symmetric damage

case. The social planner advantage is higher in the case of asymmetric damages versus

symmetric damages, as the socially planner optimally distributes emissions across the two

players.

We also examined a case where one of the players receives a psychic benefit from emissions

reductions compared to a benchmark, an effect we labelled the green reward. A green reward

for one player causes that player to cut back their emissions from what would have otherwise

been the case. There are various responses by the player with no green reward (the brown

player) ranging from no response, to increasing or decreasing emissions depending on the

values of the state variable (i.e. the carbon stock and the temperature). For more moderate

values of temperature and carbon stock we observe either no response on the part of the

brown player or an increase in emissions. The latter effect is similar to the one observed by

Wirl (2011) in a deterministic game whereby the increase in green sentiments increases the

free riding of brown players.

We also observed a contrary effect, which we call the green bandwagon effect, to contrast

with the green paradox. For some high values of the carbon stock, the presence of a green

reward for one player causes the brown player to reduce its own emissions (relative to the case

with no green reward). Our interpretation is that at high carbon stocks where disaster is on

the horizon, the brown player can be assured that the green player will cut back emissions,

making it worthwhile for the brown player to also reduce emissions. The green preferences of

the green player give the brown player more agency to effect a change in climate outcomes.

These results provide some novel insight into regions’ strategic behaviour regarding emis-

sions choices. In future work we hope to explore the development of green preferences, and

in particular how preferences of one player might be linked with preferences of the other

player.
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Appendices

A Numerical methods

A.1 Advancing the solution from t−m+1 → t+m

Since we solve the PDEs backwards in time, it is convenient to define τ = T − t and use the

definition

V̂p(e1, e2, xi, s, τ) = Vp(e1, e2, xi, s, T − τ)

π̂p(e1, e2, xi, s, τ) = πp(e1, e2, xi, s, T − τ) . (31)

We rewrite Equation ((11)) in terms of backwards time τ = T − t

∂V̂p
∂τ

= L̂V̂p + π̂p + [(e1 + e2) + ρ(S̄ − s)]∂V̂p
∂s

L̂V̂p ≡
(σ)2

2

∂2V̂p
∂x2

+ η(X̄ − x)
∂V̂p
∂x
− rV̂p . (32)

Defining the Lagrangian derivative

DV̂p
Dτ
≡ ∂V̂p

∂τ
+

(
ds

dτ

)
∂V̂p
∂s

, (33)

then Equation (32) becomes

DV̂p
Dτ

= L̂V̂p + πp (34)

ds

dτ
= −[(e1 + e2) + ρ(S̄ − s)] . (35)

Integrating Equation (35) from τ to τ −∆τ gives

sτ−∆τ = sτ exp(−ρ∆τ) + S̄(1− exp(−ρ∆τ)) +
(e1 + e2

ρ

)
(1− exp(−ρ∆τ)) . (36)
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We now use a semi-Lagrangian timestepping method to discretize Equation (32) in backwards

time τ . We use a fully implicit method as described in Chen & Forsyth (2007).

V̂p(e1, e2, x, sτ , τ) = (∆τ)L̂V̂p(e1, e2, x, sτ , τ)

+(∆τ)πp(e1, e2, x, sτ , τ) + V̂p(e1, e2, x, sτ−∆τ , τ −∆τ) . (37)

Equation (37) now represents a set of decoupled one-dimensional PDEs in the variable x,

with (e1, e2, s) as parameters. We use a finite difference method with forward, backward,

central differencing to discretize the L̂ operator, to ensure a positive coefficient method.

(See Forsyth & Labahn (2007/2008) for details.) Linear interpolation is used to determine

V̂p(e1, e2, x, sτ−∆τ , τ −∆τ). We discretize in the x direction using an unequally spaced grid

with nx nodes and in the S direction using ns nodes. Between the time interval t−m+1, t
+
m we

use nτ equally spaced time steps. We use a coarse grid with (nτ , nx, ns) = (2, 27, 21). We

repeated the computations with a fine grid doubling the number of nodes in each direction

to verify that the results are sufficiently accurate for our purposes.

A.2 Advancing the solution from t+m → t−m

We model the possible emission levels as four discrete states for each of e1, e2, which gives 16

possible combinations of (e1, e2). We then determine the optimal controls using the methods

described in Section 4.2.1. We use exhaustive search (among the finite number of possible

states for (e1, e2) ) to determine the optimal policies. This is, of course, guaranteed to obtain

the optimal solution.
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