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Abstract

Much of the research program in optimal taxation rests on the Atkinson-Stiglitz
theorem (1976) — in the presence of optimal nonlinear earnings taxation, if leisure is
weakly separable from goods, there is no role for differential commodity taxation. The
nonlinear earnings tax in the theorem is one where, conditional on reported earnings,
the government can choose tax paid and the marginal tax rate (mtr). The relationship
between the average tax rate (atr) and mtr is unrestricted. Most governments operate
progressive nonlinear tax systems in which, for each person paying taxes, mtr is not
less than atr. I build on Deaton’s work on distance functions and taxation to show
that the AS theorem fails in the presence of optimal progressive earnings taxation.
Conditional on mtr ≥ atr, the search for optimal earnings tax structures cannot be
undertaken without simultaneously studying optimal commodity taxation whether or
not leisure is weakly separable from goods. The formal theory in the paper assumes
two types. I also discuss a finite-type example of an optimal progressive earnings, and
commodity, tax structure and present numerical examples with four types.
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1 Introduction

Decades ago public economists used to believe that a government’s ability to vary pro-
portional tax rates across commodities was a prominent feature of an efficient revenue
structure. In the most recent Handbook of Public Economics Piketty and Saez explain
how the Atkinson-Stiglitz theorem changed this.

‘Atkinson and Stiglitz (1976) derived the very important and influential result that
under separability and homogeneity assumptions on preferences, differentiated commodity
taxation is not useful when earnings can be taxed nonlinearly. This famous result was
influential both for shaping the field of optimal tax theory and in tax policy debates. The-
oretically, it contributed greatly to shift the theoretical focus toward optimal nonlinear
taxation and away from the earlier Diamond and Mirrlees (1971) model of differentiated
commodity taxation (itself based on the original Ramsey (1927) contribution). Practically,
it gave a strong rationale for eliminating preferential taxation of necessities on redistributive
grounds, and using instead a uniform value-added-tax combined with income-based trans-
fers and progressive income taxation. Even more importantly, the Atkinson and Stiglitz
(1976) result has been used to argue against the taxation of capital income and in favor
of taxing solely earnings or consumption.’ (Piketty and Saez (2013), pp. 401-402; my
emphasis)1

Given the Atkinson-Stiglitz theorem, and its assumption that leisure is weakly separable
from goods, public economists have set to one side the question of optimal commodity
taxation to focus on determining optimal progressive earnings tax structure. But in a
progressive earnings tax system, for those making net contributions to the tax-transfer
system, the average earnings tax rate, atr, rises with earnings and the marginal earnings
tax rate, mtr, must exceed the atr. I build on Deaton’s work on distance functions and
taxation to show that the Atkinson-Stiglitz theorem requires the possibility that, for those
making net contributions to the tax-transfer system, atr exceed mtr. It turns out that even
if leisure is additively separable from goods, determining the optimal progressive earnings
tax structure cannot be separated from determining the optimal commodity tax structure.

I begin with the Ramsey (1927) tax problem which is about choosing proportional tax
rates when some items in the consumer’s budget constraint, e.g. leisure, cannot be taxed
directly. Assume the simplest setting possible: two goods and leisure. The government
might tax either good or earnings and, given the individual’s budget constraint, one must
choose some normalization of tax rates: there is no loss in generality in setting the earnings
tax rate to zero to focus on optimal commodity taxation. Absent an instrument to tax
leisure directly the government must try to tax leisure indirectly by setting a higher tax
rate on whichever good is more complementary with leisure. It is well known that the
deadweight loss of tax rates arises solely from substitution effects so the “complementarity”
between goods and leisure must be measured with utility held constant. The distance

1There is a literature on the optimality of capital taxation; e.g. Erosa and Gervais (2002), Conesa, Kitao
and Krueger (2009) and Burbidge (2015).
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function is ideally suited to this task. In this context it is the number by which a bundle
of goods and leisure must be scaled to deliver a particular level of utility, say u0; the
arguments of the distance function are the same as those of the ordinary utility function,
plus u0. The observation that distance functions offer the clearest understanding of optimal
commodity taxes was made by Deaton in a series of papers that includes Deaton (1979,
1981). Among other things, he derived optimal commodity-tax formulae that showed
goods more complementary with leisure should be taxed at higher rates and he proved the
formulae were equivalent to the better-known inverse elasticity rule.

A distance-function approach to solving the Ramsey problem can be implemented by
choosing goods and leisure to maximize government revenue subject to certain constraints,
one of which must be a lower bound on utility. If one modified the Ramsey problem to
allow an unrestricted nonlinear earnings tax the only constraint would be the lower bound
on utility. The math would dictate setting all commodity tax rates and the mtr to zero and
collecting all revenue with a lump-sum tax on earnings; atr positive, mtr zero. If one were
to constrain the nonlinear earnings tax to be progressive then one would have to ensure
that the mtr be at least as large as the atr. Since this constraint would bind the optimal
earnings tax would be proportional (mtr = atr). Then, following the logic of the previous
paragraph, the proportional earnings tax rate can be set to zero and the math dictates
setting the commodity tax rate on good 1 higher than the tax rate good 2 if good 1 is
more complementary with leisure than is good 2. In section 2, I show that constraining the
earnings tax to be progressive — mtr ≥ atr — is straightforward with distance functions.

The Mirrlees (1971) problem is about taxation for redistribution with imperfect in-
formation — the government can observe earnings but not wage rates or hours worked.
Assume the simplest setting possible — two types A and B, with wA > wB. In Model
1 in this paper, the government chooses goods and leisure for each type to maximize to-
tal revenue subject to minimum-utility constraints for each A and for each B (uA0 , u

B
0 ), a

constraint that As and Bs pay the same prices for goods, and constraints that yield the
outcome that the As not mimic the Bs. The value function for this problem gives maxi-
mum revenue as a function of uA0 , u

B
0 and other parameters. Setting this function to zero

implicitly defines uB0 as a function of uA0 , that is, the utility possibility frontier, upf.2 I
show that Model 1 delivers the well-known results in the literature, which include a zero
marginal earnings tax rate on the high earner, and the Atkinson-Stiglitz theorem — zero
proportional tax rates on goods 1 and 2 if leisure is weakly separable from goods. Even in
Model 1, however, there is a strong link to the Ramsey problem. In the Ramsey problem,

2Every point on the upf will be associated with a particular bundle of goods and leisure for each A and
another bundle of goods and leisure for each B. And for each point on the upf there will be a continuum of
equivalent tax systems depending on whatever normalization of tax rates is chosen. A distinct advantage
of the distance-function approach over other approaches is that its instruments are the variables that
determine each point on the upf. I derive optimal tax results in terms of relations between marginal rates
of substitution and ratios of private equilibrium prices — p1, p2, w

A, wB , which are assumed constant.
And then, for each model, I present the results using the normalization that makes the results easiest to
understand for those familiar with the optimal tax literature.
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and, if leisure is not weakly separable from goods in Model 1, good 1 should be taxed at
a higher rate than good 2 if, holding utility constant, good 1 is more complementary with
leisure (see Jacobs and Boadway (2014)).

Notice that Model 1 does not restrict the nonlinear earnings tax to be progressive —
for the high earner atr exceeds mtr. On the upf, between the private equilibrium and the
point where the no-mimicking constraints bind, Model 1 delivers first-best results: lump-
sum taxes on the high earners fund a cash transfer to each low earner. After the mimicking
constraints bind it is efficient to supplement lump-sum taxes on the high earners with a
marginal earnings tax rate on the low earners to discourage them from working, together
with the possibility of different proportional tax rates on goods 1 and 2 if leisure is not
weakly separable from goods.

Model 2 in this paper is identical to Model 1 except that I impose the constraint that
the earnings tax system be progressive — mtr ≥ atr for the high earner. The addition of
a binding constraint forces the upf for this model inside, or at best to touch, the upf of
Model 1 (it will touch at the private equilibrium). If one adopts the normalization that
the mtr for low earners is zero, I prove that, along the upf, from the private equilibrium
to the point where mimicking starts, mtr = atr for high earners and this earnings tax on
high earners is the primary source of revenue for cash payments to the low earners. Even if
leisure is weakly separable from goods (but preferences are not homothetic)3 the tax rate
will be positive on whichever good is more complementary with leisure, and negative on
the other good. Along the upf, after the mimicking constraints bind, one can show that the
earnings tax rate on the high earners is reduced to discourage mimicking, and increases in
goods’ tax rates gradually replace the earnings tax rate on the high earners as the source of
revenue for redistribution. The Ramsey rule holds along the entire upf — the commodity
tax rate is higher on whichever good is more complementary with leisure.

Does Model 2 generalize to three or more types? With three or more types there
is, of course, a continuum of paths along the upf. I work out the optimal earnings and
commodity tax structure for a particular path along the upf with a finite number of types,
and present numerical examples with four types. This particular path exhibits the main
results of Model 2.

In the next section I model the Ramsey problem in the presence of nonlinear earnings
taxes. Section 3 uses the framework of section 2 to study the Mirrlees problem with Models
1, 2 and the extension of 2 to a finite number of types. Section 4 summarizes and concludes.

2 Ramsey with a nonlinear earnings tax

Denote goods consumption and leisure by (x1, x2, l), prices without taxes by (p1, p2, w), the
time endowment by L, proportional goods’ tax rates by (t1, t2), and the nonlinear earnings

3In the appendix I prove that in both models in this paper weak separability between leisure and goods
together with homothetic preferences imply equal tax rates on goods 1 and 2.
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tax function by T (w(L− l)). The individual’s budget constraint can be written as

(1 + t1) p1x1 + (1 + t2) p2x2 = w(L− l)− T (w(L− l)). (1)

If u(x1, x2, l) is the ordinary utility function the distance function, d(x1, x2, l, u0), is defined
by

u

(
x1

d(x1, x2, l, u0)
,

x2
d(x1, x2, l, u0)

,
l

d(x1, x2, l, u0)

)
= u0, (2)

that is, d(x1, x2, l, u0) is the number by which any vector of goods and leisure must be
scaled to deliver utility level u0, and

u(x1, x2, l) ≥ u0 if and only if d(x1, x2, l, u0) ≥ 1. (3)

Deaton (1979) showed the distance function and the expenditure function, e (p1, p2, w, u0),
are related to each other in the following way.

e (p1, p2, w, u0) =
Min

x1, x2, l

p1x1 + p2x2 + wl

d(x1, x2, l, u0)
. (4)

d (x1, x2, l, u0) =
Min

p1, p2, w

p1x1 + p2x2 + wl

e (p1, p2, w, u0)
. (5)

The derivatives of the expenditure function with respect to prices are Hicksian demands,
hi (p1, p2, w, u0) , i = 1, 2, 3, which map from prices to quantities. The derivatives of the
distance function with respect to quantities, denote these by ai (x1, x2, l, u0) , i = 1, 2, 3, are
like inverse Hicksian demands that map from quantities to prices. Applying the envelope
theorem to (5) with tax rates in place obtain

a1 (x1, x2, l, u0) ≡
∂d (x1, x2, l, u0)

∂x1
=

(1 + t1)p1
E

(6)

a2 (x1, x2, l, u0) ≡
∂d (x1, x2, l, u0)

∂x2
=

(1 + t2)p2
E

(7)

a3 (x1, x2, l, u0) ≡
∂d (x1, x2, l, u0)

∂l
=

(1− T ′)w
E

. (8)

In this context E is

(1 + t1) p1x1 + (1 + t2) p2x2 +
(
1− T ′ (w(L− l))

)
wl = E. (9)

Deaton proved ai/aj , i 6= j is the marginal rate of substitution between i and j, denoted
MRSij . Just as the Hessian of the expenditure function, the Slutsky matrix, must be
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symmetric and negative semi-definite, so must the Hessian of the distance function, the
Antonelli matrix, be symmetric and negative semi-definite. In addition, pre-multiplying
the Slutsky matrix by prices yields a vector of zeros and pre-multiplying the Antonelli
matrix by [x1 x2 l] yields a row vector of zeros.4

The Ramsey problem can be solved by maximizing government revenue, wL− p1x1 −
p2x2 − wl, subject to constraints. If the only constraint is a lower bound on utility5 —
utility ≥ u0 or d(x1, x2, l, u0) ≥ 1 — the math will deliver an answer equivalent to setting
t1 = t2 = T ′ = 0 and collecting all revenue, T (w(L − l)), with a lump-sum tax. Here the
atr is positive and the mtr is zero. What happens if we constrain the nonlinear earnings
tax to be progressive, mtr ≥ atr?

Drop the argument of the earnings tax function and its derivative. Then rewrite (9) as

(1 + t1) p1x1 + (1 + t2) p2x2 = E −
(
1− T ′

)
wl

and from the budget constraint

(1 + t1) p1x1 + (1 + t2) p2x2 = w (L− l)− T.
Thus

E =
(
1− T ′

)
wl + w (L− l)− T.

If the atr equals the mtr then T = T ′w(L − l), E = (1 − T ′)wL and using (8), a3 = 1/L.
If, as in a progressive nonlinear earnings tax system, mtr ≥ atr,

1

L
− a3 ≥ 0, (10)

and the Lagrange multiplier on this constraint must be positive. The Lagrangian for the
government’s problem can be written as

L = wL− p1x1 − p2x2 − wl + λu (d (x1, x2, l, u0)− 1) + λL
(

1

L
− a3 (x1, x2, l, u0)

)
.

The first-order conditions are

0 =
∂L
∂x1

= −p1 + λua1 − λLa31

0 =
∂L
∂x2

= −p2 + λua2 − λLa32

0 =
∂L
∂l

= −w + λua3 − λLa33
4Following Deaton (1981), I assume the elements on the main diagonal of the Antonelli matrix are

negative and the individual consumes a positive amount of each good (pages 1248 and 1251).
5Assume u0 is less than utility in the laisser-faire equilibrium.
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Using the symmetry of the Antonelli matrix

λu =
p1
a1

+ λLa∗13 =
p2
a2

+ λLa∗23 =
w

a3
+ λLa∗33,

where a∗ij ≡ aij/ai. From the second equality

p2
a1

(
a1
a2
− p1
p2

)
= λL (a∗13 − a∗23) . (11)

The sign of a1/a2 − p1/p2 matches the sign of a∗13 − a∗23. a∗j3 measures the degree of
complementarity between good j and leisure holding utility constant, and from (6) and
(7), a1/a2 = (1 + t1)p1/((1 + t2)p2). The algebra confirms the Corlett-Hague (1953-54)
intuition that good 1 should be taxed at a higher rate than good 2 if good 1 is more
complementary with leisure than is good 2, and vice versa. The algebra also shows that
the optimal progressive nonlinear earnings tax should be proportional with mtr equal to
atr.

It is worth noting that weak separability between goods and leisure does not imply
a∗13 = a∗23. For example, Auerbach (1979) showed, for any positive prices, t1 > t2 (a∗13 >
a∗23) is always optimal with

u(x1, x2, l) = (x1x2)
1/2 + x

1/2
1 + l1/2.

3 Taxation for redistribution

Consider an economy with two types of price-taking agents like the agent discussed above.
As and Bs differ only in their wage rates with wA > wB. Earnings have to be spent
on goods 1 and 2, which are taxed at proportional rates t1, t2. Assume the government
wishes to redistribute money from the As to the Bs but it can observe only an individual’s
earnings, not the individual’s wage rate. This is the Mirrlees (1971) problem with two types.
To derive the characteristics of efficient allocations suppose the government maximizes
government revenue subject to minimum-utility constraints for A and B and various other
constraints listed below. The value function for this problem gives maximized revenue as a
function of the A and B utility levels and other parameters such as the time endowment. If
the only purpose of taxation is to raise revenue for redistribution setting this value function
to zero implicitly defines B’s utility as a function of A’s utility, that is, the upf.

The government’s ability to redistribute efficiently depends on the instruments at its
disposal. The equivalent of equations (6)-(8) in the present context are
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aA1 =
(1 + t1) p1

EA
; aA2 =

(1 + t2) p2
EA

; aA3 =

(
1− tH

)
wA

EA
(12)

aB1 =
(1 + t1) p1

EB
; aB2 =

(1 + t2) p2
EB

; aB3 =

(
1− tL

)
wB

EB
, (13)

where Ej is the total “expenditure” of agent j = A,B and tj , j = H,L are mtrs for high
and low earners.6

Government revenue is

nA
(
wAL− p1xA1 − p2xA2 − wAlA

)
+ nB

(
wBL− p1xB1 − p2xB2 − wBlB

)
,

nj , j = A,B is the number of each type. Let λj , j = A,B be the Lagrange multipliers on
the minimum utility constraints for A and B:7

d
(
xj1, x

j
2, l

j , uj0

)
− 1 ≥ 0. j = A,B (14)

Each low earner will be given a cash transfer equal to total revenue divided by nB. TL ≤ 0
denotes total earnings “tax” paid by each low earner.

As noted above I assume the government cannot condition the proportional commodity
tax rates on person type — the As and Bs pay the same prices for the two goods. From
(12) and (13)

(1 + t1) p1
(1 + t2) p2

=
aA1
(
xA1 , x

A
2 , l

A, uA0
)

aA2
(
xA1 , x

A
2 , l

A, uA0
) =

aB1
(
xB1 , x

B
2 , l

B, uB0
)

aB2
(
xB1 , x

B
2 , l

B, uB0
)

or

aA1
(
xA1 , x

A
2 , l

A, uA0
)
aB2
(
xB1 , x

B
2 , l

B, uB0
)
−

aA2
(
xA1 , x

A
2 , l

A, uA0
)
aB1
(
xB1 , x

B
2 , l

B, uB0
)

= 0. (15)

Denote the Lagrange multiplier on this constraint by λp. At this point I cannot place
restrictions on the sign of this multiplier but more can be said in the models presented
later in the paper.

I turn now to mimicking constraints. Starting at the private equilibrium where all tax
rates are zero there is no incentive for an A to mimic a B. But as tax rates are increased
and the revenue given to the low earners one moves up the utility possibility frontier (draw
the upf with uA on the horizontal axis) in the direction of lower A utility. At some point
each A will realize that utility would be higher if the A pretended to be a low earner and

6Note that these equalities build in the assumption that A and B pay the same prices for goods.
7These must be positive; see footnote 13.
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was eligible for the cash transfer. When an A mimics a B, the mimicking A chooses leisure,
lAB, to make earnings wA(L− lAB) equal the earnings of a B, wB(L− lB). By mimicking
a B the mimicking A receives the cash transfer, −TL, and will face a budget constraint for
goods 1 and 2 that is identical to that faced by each B. With mimicking there are three
extra constraints and two new choice variables, xAB

1 and xAB
2 . One of the extra constraints

is that A’s utility acting as an A be at least as high as the utility of an A mimicking a B,
that is, u

(
xA1 , x

A
2 , l

A
)
≥ u

(
xAB
1 , xAB

2 , lAB
)
. This constraint together with the constraint

that u
(
xA1 , x

A
2 , l

A
)
≥ uA0 can be written as (14) and (16).

1− d
(
xAB
1 , xAB

2 , lAB, uA0
)
≥ 0 (16)

The Lagrange multiplier on (16), λAB, must be nonnegative.
A second constraint is that mimicking As pay the same prices for goods as everyone

else. Then the other side of the observation that to prevent mimicking the government
must make the utility of an A at least as large as the utility of an A mimicking a B is that,
to discourage mimicking, the government would like to have an instrument that would
discourage mimicking by pushing the goods budget of a mimicking A below the goods
budget for a B. Using (13) and aAB

1 /aAB
2 = aB1 /a

B
2 this could be written as

aB1
(
xB1 , x

B
2 , l

B, uB0
)
xB1 + aB2

(
xB1 , x

B
2 , l

B, uB0
)
xB2 >

aB1
(
xB1 , x

B
2 , l

B, uB0
)
xAB
1 + aB2

(
xB1 , x

B
2 , l

B, uB0
)
xAB
2 .

The absence of such an instrument means that the second and third constraints arising
from mimicking can be collapsed into

aB1
(
xB1 , x

B
2 , l

B, uB0
)
xB1 + aB2

(
xB1 , x

B
2 , l

B, uB0
)
xB2 ≤

aB1
(
xB1 , x

B
2 , l

B, uB0
)
xAB
1 + aB2

(
xB1 , x

B
2 , l

B, uB0
)
xAB
2 or

aB1
(
xB1 , x

B
2 , l

B, uB0
) (
xB1 − xAB

1

)
+ aB2

(
xB1 , x

B
2 , l

B, uB0
) (
xB2 − xAB

2

)
≤ 0. (17)

The Lagrange multiplier on this constraint, λABc, must be non-positive.
Before going into the details of the two models it is useful to think about goods and

leisure choices on the upf above the point where mimicking constraints bind (recall that I
assumed uA is on horizontal axis). Consider a step up the upf. uB must increase and the
fall in uA must equal the fall in uAB. If dlB were negative or zero, from wA(L − lAB) =
wB(L− lB), it follows that dlAB = (wB/wA)dlB, that is, lAB would have to fall by less or
the same amount as lB. Therefore, for uB to rise, the goods budget for B would have to
increase but this goods budget is the same for a mimicking A and a B, and the marginal
utility of leisure is lower for a mimicking A than a B. There may be utility functions where,
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moving up the upf after mimicking begins, lB decreases (in particular, leisure would have
to be an inferior good) but I am going to rule them out. I assume that lB and lAB

increase on the upf after the point where mimicking begins and the reason uAB falls as uB

increases, even though at each step the goods’ budgets change by the same amount, is that
dlAB = (wB/wA)dlB < dlB. As in the previous section, many of the results in this section
depend on the complementarity of goods and leisure. I assume the sign of a∗j13 − a

∗j
23 is the

same for j = A,B,AB.

3.1 Model 1

In Model 1 the government uses xA1 , x
A
2 , l

A, xB1 , x
B
2 , l

B to maximize government revenue
subject to (14) and (15) if mimicking constraints do not bind. If they do the government
has two extra choice variables, xAB

1 , xAB
2 , to deal with the three mimicking constraints,

(16), (17) and aAB
1 /aAB

2 = aB1 /a
B
2 .8 Since the optimal earnings tax literature has focused

on a zero marginal earnings tax rate for the high earner a ‘natural’ normalization to choose
for this model is tH = 0.

Statement 1: (a) Along the upf, from the private equilibrium until the mim-
icking constraints bind, TH ≥ 0, tL = t1 = t2 = 0. (b) After mimicking constraints
bind: (i) TH > 0, tL > 0; (ii) if leisure and goods are weakly separable t1 = t2 = 0
(the Atkinson-Stiglitz theorem); (iii) if leisure and goods are not weakly sepa-
rable t1 and −t2 have the sign of a∗j13 − a

∗j
23, j = A,B.9

In this model, between the private equilibrium and the point where mimicking con-
straints bind, the upf is first best — a lump-sum tax on high earners, TH > 0, funds a
cash transfer to low earners, TL < 0. After mimicking constraints bind we move onto a
second-best upf inside the first-best upf. TH is still positive and TL is negative but now
other taxes help deal with the mimicking constraints. First, the marginal earnings tax rate
on the low earner is positive, tL > 0. This tax induces the low earners to work less which
reduces the incentive for high earners to mimic low earners. Second, with TH available and
leisure weakly separable from goods, there is no role for differential commodity taxation
— the Atkinson-Stiglitz theorem. But if leisure is not weakly separable from goods and
a∗j13 6= a∗j23 then commodity taxation helps. For example, if good 1 is more complementary

with leisure than good 2, a∗j13 > a∗j23, then taxing good 1 and subsidizing good 2 penalizes
mimicking As who consume more leisure than As. This particular result is consistent with
the findings of Jacobs and Boadway (2014).

Readers of earlier drafts of this paper have asked whether the optimality of uniform
commodity taxation in Model 1 implies leisure must be weakly separable from goods. The
answer is no. Consider an extension of the example in Auerbach (1979).

8Recall that lAB is chosen to make the earnings of a mimicking A equal the earnings of a B.
9The proof is in the Appendix.
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u (x1, x2, l) = (x1x2)
1/2 + (x1l)

1/2 + (x2l)
1/2 ,

when p1 = p2. The perfect symmetry between each good and leisure implies the optimality
of uniform commodity taxation and a∗j13 = a∗j23 and yet leisure is not weakly separable from
goods.

3.2 Model 2

This model is the same as Model 1 except, for the high earner, I impose the restriction that
the mtr equals or exceeds the atr. The extra constraint which is the equivalent of (10) is

1

L
− aA3

(
xA1 , x

A
2 , l

A, uA0
)
≥ 0. (18)

And, of course, one must choose a normalization for tax rates. The one that makes the
results most transparent is to set the marginal earnings tax rates on the low earner, tL,
equal to zero. Statement 2 lists the implications of Model 2.

Statement 2: (a) Whether or not leisure is weakly separable from goods, if
a∗j13 = a∗j23: (i) tH rises from the private equilibrium until the mimicking con-
straints bind, and thereafter it falls; (ii) t1 = t2 = 0 until the mimicking con-
straints bind and thereafter t1 = t2 rise; (b) if a∗j13 > a∗j23 the results in (a) are
modified only in that t1 > 0 and t2 < 0 before the mimicking constraints bind,
and t1 > t2 after the mimicking constraints bind; the opposite is true if a∗j13 < a∗j23.

Model 2 imposes the restriction that for the high earner the mtr exceed or equal atr.
Given the results of Model 1 this constraint binds. Starting at the private equilibrium
along the upf we are in a second-best world where the primary instrument for raising
revenue for redistribution is a proportional earnings tax on the high earner. This tax of
course discourages work effort of the high earner and so it helps to supplement tH > 0 with
commodity taxation of leisure, e.g. t1 > 0 and t2 < 0 if good 1 is more complementary
with leisure, a∗j13 > a∗j23. After mimicking constraints bind we are in a third-best world
where it’s most efficient to raise further redistribution revenue using commodity taxation
and to reduce tH to deal with the mimicking constraints.

3.3 Model 2 with a finite number of types

Model 2 solves the Mirrlees problem for progressive earnings taxation and two types. If
Model 2 could not be generalized to a finite number of types it would hold limited interest.
With three or more types the upf is a surface with a continuum of paths leading away from
the private equilibrium. This section examines a particular path along a upf with a finite
number of types and presents numerical results for a four-type example. In Model 2 with

10



two types I did not have to say much about the progressive earnings tax other than to
specify that, for each type, mtr could not be less than atr. In this section I assume this
is true for each type and in addition, looking across types, the mtr cannot decrease when
moving to a higher wage-rate type, which is a standard feature of a progressive earnings
tax system. As in Model 2 I normalize tax rates by setting the mtr for the lowest-wage
type to zero.

I begin with the simplest case where a∗j13 = a∗j23 because then t1 = t2 along any path on
the upf. At the private equilibrium the equivalent of (18) holds with equality for all types.
At the first step the utility of the highest-wage type is reduced and that of the lowest-wage
type is increased; the utility of all other types is held constant. To accomplish this the
government uses a proportional earnings tax rate on the type with the highest wage rate,
label this tA for a type A, to fund a cash transfer to the lowest earner.10 Inspection of
the equivalent of (13) for the lowest earner reveals that a3 falls because the numerator is
constant and expenditure in the denominator increases; a3 = 1/L for all other types.

Proceeding in this direction mimicking constraints will eventually bind for the high-
est two earners or the lowest two earners. Suppose it is the latter. Efficient ways to
deal with these constraints are to reduce the mtr for the second highest earner or in-
crease the mtr for the lowest earner. But neither is feasible in a progressive earnings tax
system where mtrs cannot fall as earnings rise. So just enough cash must be given to
the second lowest earner to prevent this person from mimicking the lowest earner. Now
1/L > a3 for the second lowest earner > a3 for the lowest earner and a3 = 1/L for every-
one else.

Further redistribution will eventually cause mimicking constraints to bind either for the
second and third lowest earners or for the two highest earners. Suppose it is the latter. At
this point tA > tB = 0. As in Model 1 the most efficient way to cope with these mimicking
constraints is to induce Bs to work less, take more leisure — increase tB and give Bs
some cash. Now 1/L = aA3 > aB3 . So further redistribution continues with tB rising until
it equals tA; under a progressive earnings tax tB cannot exceed tA. Once this constraint
binds further redistribution requires that mtrs on the highest two earners increase lock
step. The particular path along the upf described here holds B utility constant until the
mtrs for A and B move together.

10Everywhere else in this paper I use a notation that tries to emphasize the point that the government
cannot identify a person’s type, thus tH rather than tA etc. But in this section it is convenient to label
mtrs tj , j = A,B, . . ..

11



To this point, as in Model 2, t1 = t2 = 0. And, again as in Model 2, when redistribution
proceeds to the point where mimicking constraints bind for those being taxed and those
being subsidized, further redistribution occurs with earnings tax rates being reduced to
cope with mimicking constraints and the lost revenue is made up by increasing commodity
tax rates, still with t1 = t2. Table 1 presents an example of this path along a four-person
upf with Cobb-Douglas utility, where a∗j13 = a∗j23.

11

When a∗j13 6= a∗j23 the story is modified slightly. In the first stage, if a∗j13 > a∗j23, then it
is efficient that t1 > t2 to tax leisure to counteract increases in tA which encourage the
As to work less. As in Model 2, where it is also true that the mtr of the lowest earner
is zero, this is implemented with t1 > 0, t2 < 0. The optimal levels of these tax rates
trade off the benefit of getting the As to work harder against the distortions to labour
supply and consumption plans for everyone else. At the first step away from the private
equilibrium the utility of As falls, the utility of lowest earners rises, and everyone else’s
utility is held constant. The most efficient way to hold utility constant for types in between
the lowest and highest wage earners is to increase the earnings tax rates slightly to offset
the commodity-tax-rate effects on leisure and to pay each earnings level some cash. For
example, see line 2 of Tables 2 and 3 both of which have utility functions where a∗j13 > a∗j23.
This process implies that when mimicking constraints bind for the two lowest earners the
second lowest earners have a positive mtr. At this point, the most efficient way to deal
with these mimicking constraints as further redistribution is carried out is to reduce the
second-lowest earners’ mtr. Once it hits zero the next step of redistribution proceeds as
described above with mtrs equal to zero for the two lowest earning groups. This extra step
is line 3 in Tables 2 and 3 and it has no counterpart in Table 1, where a∗j13 = a∗j23.

In section 2 I showed that for any particular type mtri ≥ atri is equivalent to 1/L−ai3 ≥
0. How does one use distance functions to capture the constraints that ti ≥ tj if wi > wj?
From the extensions of (12) and (13)

(1 + t1) p1 =

(
1− ti

)
wiai1

ai3
=

(
1− tj

)
wjaj1

aj3

Thus

ti ≥ tj if and only if wiai1a
j
3 − w

jaj1a
i
3 ≥ 0.

11If u(x1, x2, l) = xα1 x
β
2 l

1−α−β , α > 0, β > 0, α + β < 1 then d(x1, x2, l, u0) = u−1
0 xα1 x

β
2 l

1−α−β and
a∗j13 = (1 − α− β)/lj = a∗j23.
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4 Summary and conclusions

This paper uses a simple framework to show that the Atkinson-Stiglitz theorem does not
hold when those making net contributions to the tax-transfer program face optimal pro-
gressive earnings taxation. The decade of the 1970s was a long time ago and much has
changed. To take one example, a large literature has been built on Diamond (1980) and
Saez (2002) who introduced search and other frictions into the competitive labour mar-
kets assumed in Mirrlees (1971). Nevertheless, it is difficult to exaggerate the influence of
the Atkinson-Stiglitz theorem on the modern research program in public economics. Even
though the governments in these models are very instrument-constrained, researchers typ-
ically do not consider the role that optimal commodity taxation might play in improving
social outcomes. The main purpose of this paper is to persuade researchers in public
economics to reconsider their decision to ignore commodity tax instruments.

Just as the Ramsey problem does not vanish in the Mirrlees framework, I suspect the
tension between arranging commodity taxes to tax leisure, or to tax work, holding utility
constant, will be present in models with various frictions in labour or other markets. It is
likely that distance functions will continue to be a useful analytical device — recall that
distance functions are a transformation of the utility function, and therefore can be used
whether agents buy and sell in competitive markets or are constrained in the transactions
they can make. Furthermore, Deaton (1981) describes precisely how to estimate the pa-
rameters necessary to implement tax rules based on distance functions. The combination
of better analytical tools that can be implemented empirically should yield new insights
into tax policy.
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Appendix

Model 1 is a special case of Model 2. The optimization problem for Model 2 with
mimicking constraints is

Opt
xA1 , x

A
2 , l

A

xB1 , x
B
2 , l

B

xAB
1 , xAB

2

λj , j = A,B, p, L,
AB,ABc

nA
(
wAL− p1xA1 − p2xA2 − wAlA

)
+ nB

(
wBL− p1xB1 − p2xB2 − wBlB

)
+

λA
(
d
(
xA1 , x

A
2 , l

A, uA0
)
− 1
)

+

λB
(
d
(
xB1 , x

B
2 , l

B, uB0
)
− 1
)

+

λp
(
aA1
(
xA1 , x

A
2 , l

A, uA0
)
aB2
(
xB1 , x

B
2 , l

B, uB0
)
− aA2

(
xA1 , x

A
2 , l

A, uA0
)
aB1
(
xB1 , x

B
2 , l

B, uB0
))

+

λL
(

1

L
− aA3

(
xA1 , x

A
2 , l

A, uA0
))

+

λAB
(
1− d

(
xAB
1 , xAB

2 , lAB, uA0
))

+

λABc
(
aB1
(
xB1 , x

B
2 , l

B, uB0
) (
xB1 − xAB

1

)
+ aB2

(
xB1 , x

B
2 , l

B, uB0
) (
xB2 − xAB

2

))
where

wA
(
L− lAB

)
= wB

(
L− lB

)
(19)

The first-order conditions for the eight goods and leisure variables are

0 = −nAp1 + λAaA1 + λp
(
aB2 a

A
11 − aB1 aA21

)
− λLaA31

0 = −nAp2 + λAaA2 + λp
(
aB2 a

A
12 − aB1 aA22

)
− λLaA32

0 = −nAwA + λAaA3 + λp
(
aB2 a

A
13 − aB1 aA23

)
− λLaA33
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0 = −nBp1 + λBaB1 + λp
(
aA1 a

B
21 − aA2 aB11

)
+

λABc
(
aB11
(
xB1 − xAB

1

)
+ aB21

(
xB2 − xAB

2

)
+ aB1

)
0 = −nBp2 + λBaB2 + λp

(
aA1 a

B
22 − aA2 aB12

)
+

λABc
(
aB12
(
xB1 − xAB

1

)
+ aB22

(
xB2 − xAB

2

)
+ aB2

)
0 = −nBwB + λBaB3 + λp

(
aA1 a

B
23 − aA2 aB13

)
+

−λABaAB
3

wB

wA
+ λABc

(
aB13
(
xB1 − xAB

1

)
+ aB23

(
xB2 − xAB

2

))
0 = −λABaAB

1 − λABcaB1

0 = −λABaAB
2 − λABcaB2 .

Note the last two equations imply that12

λABcaB1 = −λABaAB
1

λABcaB2 = −λABaAB
2

λABc = −λAB EB

EAB
.

Using these equations obtain

nAp1 = λAaA1 + λp
(
aB2 a

A
11 − aB1 aA21

)
− λLaA31 (20)

nAp2 = λAaA2 + λp
(
aB2 a

A
12 − aB1 aA22

)
− λLaA32 (21)

nAwA = λAaA3 + λp
(
aB2 a

A
13 − aB1 aA23

)
− λLaA33 (22)

nBp1 = λBaB1 + λp
(
aA1 a

B
21 − aA2 aB11

)
−

λAB EB

EAB

(
aB11
(
xB1 − xAB

1

)
+ aB21

(
xB2 − xAB

2

))
− λABaAB

1 (23)

nBp2 = λBaB2 + λp
(
aA1 a

B
22 − aA2 aB12

)
−

λAB EB

EAB

(
aB12
(
xB1 − xAB

1

)
+ aB22

(
xB2 − xAB

2

))
− λABaAB

2 (24)

nBwB = λBaB3 + λp
(
aA1 a

B
23 − aA2 aB13

)
−

λAB EB

EAB

(
aB13
(
xB1 − xAB

1

)
+ aB23

(
xB2 − xAB

2

))
− λABaAB

3

wB

wA
. (25)

Recall a∗ij ≡ aij/ai and use (12), (13) and the symmetry of the Antonelli matrix to obtain

12EAB is the cost of buying (xAB1 , xAB2 , lAB) at ((1 + t1)p1, (1 + t2)p2, w
AB). wAB is the shadow price of

leisure for a mimicking A and equals (1 + t1)p1a
AB
3 /aAB1 .
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nA
p1

aA1
= nAEA 1

1 + t1
= λA + λp

(
aB2 a

∗A
11 − aB1 a∗A12

)
− λLa∗A13 (26)

nA
p2

aA2
= nAEA 1

1 + t2
= λA + λp

(
aB2 a

∗A
21 − aB1 a∗A22

)
− λLa∗A23 (27)

nA
wA

aA3
= λA + λp

(
aB2 a

∗A
31 − aB1 a∗A32

)
− λLa∗A33 (28)

nB
p1

aB1
= nBEB 1

1 + t1
= λB + λp

(
aA1 a

∗B
12 − aA2 a∗B11

)
−

λAB EB

EAB

(
a∗B11

(
xB1 − xAB

1

)
+ a∗B12

(
xB2 − xAB

2

))
− λAB EB

EAB
(29)

nB
p2

aB2
= nBEB 1

1 + t2
= λB + λp

(
aA1 a

∗B
22 − aA2 a∗B21

)
−

λAB EB

EAB

(
a∗B21

(
xB1 − xAB

1

)
+ a∗B22

(
xB2 − xAB

2

))
− λAB EB

EAB
(30)

nB
wB

aB3
= λB + λp

(
aA1 a

∗B
32 − aA2 a∗B31

)
−

λAB EB

EAB

(
a∗B31

(
xB1 − xAB

1

)
+ a∗B32

(
xB2 − xAB

2

))
− λAB a

AB
3

aB3

wB

wA
. (31)

Then (27) minus (26), and (30) minus (29) yield13

nAEA t1 − t2
(1 + t1) (1 + t2)

= λp
(
aB2
(
a∗A21 − a∗A11

)
+ aB1

(
a∗A12 − a∗A22

))
+

λL
(
a∗A13 − a∗A23

)
(32)

nBEB t1 − t2
(1 + t1) (1 + t2)

= λp
(
aA1
(
a∗B22 − a∗B12

)
+ aA2

(
a∗B11 − a∗B21

))
+

λAB EB

EAB

((
a∗B11 − a∗B21

) (
xB1 − xAB

1

)
+
(
a∗B12 − a∗B22

) (
xB2 − xAB

2

))
. (33)

Finally, subtract nAEA times (33) from nBEB times (32), divide by EB, and use (12) and
(13) to write

13At the private equilibrium (in any of the models) all Lagrange multipliers are zero except λA and λB ,
and Ej = wjL, j = A,B. Using (26) and (29), λj = njwjL, j = A,B.
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0 = nBλLaA1
(
a∗A13 − a∗A23

)
+

λp
{
nA
[
aB1
(
a∗B12 − a∗B22

)
+ aB2

(
a∗B21 − a∗B11

)]
+ nB

[
aB1
(
a∗A12 − a∗A22

)
+ aB2

(
a∗A21 − a∗A11

)]}
+

λAB n
AaAB

1

aA1

[(
a∗B21 − a∗B11

) (
xB1 − xAB

1

)
+
(
a∗B22 − a∗B12

) (
xB2 − xAB

2

)]
. (34)

I begin with some observations that simplify the proofs of Statements 1 and 2.

R1: the coefficient of λp is positive in (32) and (34) and negative in (33)

In footnote (4) I noted that I follow Deaton (1981) in assuming that there are no corner so-
lutions and that the main diagonal of the Antonelli matrix is negative. These assumptions,
together with the result that multiplying any Antonelli matrix by the consumption vector
yields a vector of zeros, implies that a ‘typical’ off-diagonal element is positive. Inspection
of the preceding equations reveals terms that fit the pattern

a∗ij − a∗jj =
aij
ai
− ajj
aj
, i 6= j.

In what follows I presume these terms are positive, and given this assumption, R1 follows.

R2: If leisure is weakly separable from goods then

xAB
i = xBi i = 1, 2.

A mimicking A and a B have the same budget for goods 1 and 2; they differ only because the
mimicking A chooses more leisure. If leisure is weakly separable from goods the condition
that

MRS12 =
(1 + t1) p1
(1 + t2) p2

is the same equation for both and thus the result must hold.

R3: Recall that I have assumed the sign of a∗j13 − a
∗j
23 is independent of type

j = A,B,AB. If leisure is not weakly separable from goods then

Sign a∗j13−a
∗j
23 = Sign xAB

1 −xB1 = Sign −
(
xAB
2 − xB2

)
= −Sign a∗j31

(
xB1 − xAB

1

)
+a∗j32

(
xB2 − xAB

2

)
.

Deaton (1981) showed that the MRS12 = a1/a2. Extending the argument in R2 if
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∂

∂l

(
aj1
aj2

)
=
aj13a

j
2 − a

j
1a

j
23(

aj2

)2 =
aj1
aj2

(
a∗j13 − a

∗j
23

)
= 0,

then goods 1 and 2 are equally complementary with leisure and a mimicking A and a B
will choose the same levels for goods 1 and 2. If a∗j13 − a

∗j
23 > 0 then the mimicking A who

enjoys more leisure than the B will choose more of the good most complementary with
leisure, which in this case is good 1, and less of the other good. To prove the last equality
in R3 note

a∗j31
(
xB1 − xAB

1

)
+ a∗j32

(
xB2 − xAB

2

)
=

1

aj3

(
aj13
(
xB1 − xAB

1

)
+ aj23

(
xB2 − xAB

2

))
=

1

aj3

(
a∗j13a

j
1

(
xB1 − xAB

1

)
+ a∗j23a

j
2

(
xB2 − xAB

2

))
.

If a∗j13 = a∗j23 then the last line equals

a∗j13
aj3

(
aj1
(
xB1 − xAB

1

)
+ aj2

(
xB2 − xAB

2

))
= 0,

because a mimicking A and a B have the same budget constraint for goods. Using the
first part of this result if a∗j13 ≷ a∗j23 then xAB

1 ≷ xB1 and the expression immediately above
is ≶ 0.

R4: the λp term in (28) has the same sign as a∗A13 − a∗A23 and the λp term in
(31) has the same sign as a∗B23 − a∗B13 .
The λp term in (28) is

aB2 a
∗A
31 − aB1 a∗A32 = aB2

aA31
aA3
− aB1

aA32
aA3

=
aB1
aA3

(
aB2
aB1

aA31 − aA32
)

=
aB1
aA3

(
aA2
aA1
aA13 − aA23

)
A matrix symmetric; A and B pay the same prices for goods

=
aB1 a

A
2

aA3

(
aA13
aA1
− aA23
aA2

)
=

aB1 a
A
2

aA3

(
a∗A13 − a∗A23

)
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The proof for the λp term in (31) is similar.

R5: If preferences are homothetic and leisure is weakly separable from goods
then in either Model 1 or 2 uniform taxation of goods is efficient.
If preferences are homothetic then there is no loss in generality in assuming the utility
function, u (x1, x2, l), is homogeneous of degree 1.

u (αx1, αx2, αl) = αu (x1, x2, l) , for all α > 0.

Let α equal the inverse of the distance function. Then from the definition of the distance
function

u

(
x1

d (x1, x2, l, u0)
,

x2
d (x1, x2, l, u0)

,
l

d (x1, x2, l, u0)

)
= u0

we have

d (x1, x2, l, u0) = u−10 u (x1, x2, l) ≡ u−10 f (x1, x2) g(l).

Then

a∗q13 =
g′(lq)

g(lq)
= a∗q23, q = A,B.

From here R1, R2 and (34) imply λp = 0, and then (32) implies t1 = t2.

Proof of Statement 1

In this model λL is zero. Given the normalization that tH = 0 equation (12) implies that
wA = aA3 E

A. On the upf between the private equilibrium and the point where mimicking
starts, λAB = 0. R1 says the coefficient of λp in (34) is positive so (34) implies that λp = 0.
Given the normalization, (28) implies λA = nAEA and then t1 = t2 = 0 follows from (26)
and (27). From here (29) implies λB = nBEB and then (13) and (31) imply tL = 0. This
completes the proof of 1(a).

What happens along the upf after the point where mimicking begins — λAB > 0? If
leisure is weakly separable from goods then using R2 xAB

i = xBi , i = 1, 2, and then (34)
tells us λp must be zero and t1 = t2 = 0 follows, as above. This proves Statement 1(b)(ii),
which is the Atkinson-Stiglitz theorem.

R6: when λAB > 0, t1 = t2 = 0 is efficient if and only if xAB
i = xBi , i = 1, 2.

If xBi = xAB
i , i = 1, 2 (34) implies λp = 0 and then t1 = t2 = 0 follows from (26) to (28).

Going in the other direction, if t1 = t2 is optimal, (32) implies λp = 0. Then (26) to (28)
imply aAi /a

A
3 = pi/w

A and (33) implies
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(
a∗B11 − a∗B21

) (
xB1 − xAB

1

)
+
(
a∗B12 − a∗B22

) (
xB2 − xAB

2

)
= 0.

Using R1, if (xB1 − xAB
1 ) were positive (negative) then (xB2 − xAB

2 ) would be negative
(positive) and then above equation could not be true. Therefore, xAB

i = xBi , i = 1, 2.

Now combine R1, R3 and R6 in the context of Model 1. If leisure is not weakly
separable from goods and λAB > 0, making a∗j13 − a

∗j
23, j = A,B positive in turn makes the

coefficient of λAB in (34) negative and therefore λp positive. Using R1 again, (26) and
(27) imply t1 > 0 and t2 < 0. Making a∗j13 − a

∗j
23, j = A,B negative moves each tax rate in

the opposite direction. This proves Statement 1 (b) (iii).
I now move on to the proof that when λAB > 0, tL > 0. Use (13), (29), (30), (31) and

(1 + t1)p1 = aB1 E
B = aAB

1 EAB to write

pi

aBi

aB3
wB

=
1− tL

1 + ti

=
λB + λp

(
aA1 a

∗B
i2 − aA2 a∗Bi1

)
− λAB EB

EAB

(
a∗Bi1

(
xB1 − xAB

1

)
+ a∗Bi2

(
xB2 − xAB

2

))
− λAB aAB1

aB1

λB + λp
(
aA1 a

∗B
32 − aA2 a∗B31

)
− λAB EB

EAB

(
a∗B31

(
xB1 − xAB

1

)
+ a∗B32

(
xB2 − xAB

2

))
− λAB aAB3

aB3

wB

wA

, i = 1, 2

(35)

Case 1: Leisure is weakly separable from goods, or leisure is not weakly separable from
goods and a∗j13 = a∗j23. These assumptions imply ti = 0 and the middle two terms in the
numerator and denominator on the RHS of (35) are zero. Then at the point on the upf
where the mimicking constraints bind λAB becomes positive. The LHS of the equation
above falls below 1 (tL > 0) if and only if

aAB
1

aB1
>

aAB
3

aB3

wB

wA
. (36)

This inequality holds. a1/a3 is the MRS between good 1 and leisure, and mimicking As
enjoy more leisure and the same utility as As, so

aAB
1

aAB
3

>
aA1
aA3

or
aAB
1

aAB
3

aB3
aB1

wA

wB
>
aA1
aA3

aB3
aB1

wA

wB
.

and, using (12) and (13), the right side equals unity when mimicking starts.

Case 2: Leisure is not weakly separable from goods and a∗j13 6= a∗j23, j = A,B. Use (13) to
rewrite (31):
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(
nB + λAB a

AB
3

wA

)
1

1− tL
=

λB

EB
+

λp

EB

(
aA1 a

∗B
32 − aA2 a∗B31

)
−

λAB

EAB

(
a∗B31

(
xB1 − xAB

1

)
+ a∗B32

(
xB2 − xAB

2

))
.

Take the case where we increase a∗j13 − a
∗j
23 from zero to a small positive number. In (34)

the coefficient of λp and λAB are positive numbers. Using R1, R3 and R4, in (34), the
coefficient of λAB is a small negative number and therefore λp must be a small positive
number. Using R4 the entire λp term in the equation above will be negative but it will be
second-order of smalls (two small numbers multiplied together). The entire λAB term will
be a small positive number. Thus the effect of making a∗j13 − a

∗j
23 positive is to increase the

RHS of the equation which means tL becomes more positive. This completes the proof of
Statement 1 (i).

Proof of Statement 2

In this model all Lagrange multipliers may be nonzero and recall that the chosen nor-
malization of tax rates is tL = 0.

Case 1, a∗j13 = a∗j23: Using R2 and R3, whether or not leisure is weakly separable from
goods, xAB

j = xBj , j = 1, 2. Then (34) implies λp = 0. Thus the middle two terms of
the numerator and denominator of (35) are zero. Before mimicking constraints bind (35)
implies t1 = t2 = 0. After mimicking constraints bind the argument in case 1 of the proof
of Statement 1 implies t1 = t2 rise as λAB rises from zero. What happens to tH along the
upf?

The ratio of (28) to (26) or (27) in the present context is

1 + tj
1− tH

=
λA + λp

(
aB2 a

∗A
31 − aB1 a∗A32

)
− λLa∗A33

λA + λp
(
aB2 a

∗A
j1 − aB1 a∗Aj2

)
− λLa∗Aj3

, j = 1, 2. (37)

Recall λp = 0. From the private equilibrium until the mimicking constraints bind λL is
increasing from zero at the private equilibrium, so the RHS must be increasing and thus,
with tj = 0, tH must be increasing from zero. Moving up the upf beyond the mimicking-
constraints point, the Bs are getting a larger cash transfer and everyone is paying higher
commodity taxes. If tH stayed constant or rose there would be no reason for As not to
mimic Bs. Therefore, after mimicking constraints bind, tH must fall to prevent the As
from mimicking the Bs.

Case 2, a∗j13 > a∗j23: Using R1, from the private equilibrium until mimicking constraints
bind, (34) tells us that as λL rises from zero λp falls below zero. Then using (29) and (30),
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t1 < 0 and t2 > 0. And, if leisure is weakly separable from goods so that xAB
j = xBj , j = 1, 2

the same argument says that t1 > t2 after mimicking constraints bind. If leisure is not
weakly separable from goods and mimicking constraints bind could t1 = t2? Using R1
and R3 (33) would force λp to be positive. But then (32) would imply t1 > t2, which
contradicts the assumption t1 = t2. What must happen is that with leisure not weakly
separable from goods (34) implies λp is a bit less negative and then (33) implies t1 > t2.
Mutatis mutandis, one can prove that if a∗j13 < a∗j23, between the private equilibrium and the
point where mimicking constraints bind, t1 < 0 and t2 > 0; and after mimicking constraints
bind t1 < t2.

To complete the proof of Statement 2 I need to show that what was said of tH in case
1 holds in case 2. The argument as to why tH must fall along the upf after mimicking
constraints bind is independent of the sign of a∗j13 − a

∗j
23. All that remains is to explain

why tH must increase from zero at the private equilibrium until the mimicking constraints
bind. Take the case where a∗j13 > a∗j23. From the argument above we know λp < 0, t1 > 0
and t2 < 0. Look at (37) with j = 2. The λp terms in the numerator and denominator are
both negative but using R1 and R3 the absolute value of the λp term in the numerator
will be small relative to the λp term in the denominator. Therefore, the RHS of (37) must
still increase. This means (1 + t2)/(1− tH) must increase and since t2 is falling below zero
tH must increase.
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Table 1**: An example of a Pareto efficient tax structure with four types ‐ A,B,C,D; 

mimicking constraints bind in the order CD first, then AB, then BC; utility = x1^alpha*x2^beta*l^(1‐alpha‐beta)

Parameters
L=5 alpha = 3/10 beta = 9/20 wA=2 wB=1.7 wC=1.1 wD=1 nA=1 nB=1 nC=1 nD=1 p1=1 p2=1 tL=0

Line ateH ateU ateM ateL tH tU tM t1 t2

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.008081 0.000000 0.000000 ‐0.016228 0.008081 0.000000 0.000000 0.000000 0.000000

3 0.037926 0.000000 ‐0.027450 ‐0.046396 0.037926 0.000000 0.000000 0.000000 0.000000

4 0.042164 ‐0.000236 ‐0.031193 ‐0.050514 0.042164 0.042164 0.000000 0.000000 0.000000

5 0.112078 0.072772 ‐0.156740 ‐0.189142 0.112078 0.112078 0.000000 0.000000 0.000000

6 0.066682 0.025367 ‐0.231406 ‐0.272062 0.066682 0.066682 0.000000 0.056446 0.056446

Line x1A x2A lA utA x1B x2B lB utB x1C x2C lC utC x1D x2D lD utD

1 3.000000 4.500000 1.250000 2.892741 2.550000 3.825000 1.250000 2.560788 1.650000 2.475000 1.250000 1.847488 1.500000 2.250000 1.250000 1.720034

2 2.975756 4.463634 1.250000 2.875190 2.550000 3.825000 1.250000 2.560788 1.650000 2.475000 1.250000 1.847488 1.518183 2.277274 1.265152 1.740884

3 2.886221 4.329331 1.250000 2.810061 2.550000 3.825000 1.250000 2.560788 1.683738 2.525606 1.275559 1.885263 1.551597 2.327395 1.292997 1.779200

4 2.873508 4.310262 1.250000 2.800773 2.522685 3.784027 1.291046 2.560788 1.688303 2.532454 1.279017 1.890375 1.556119 2.334179 1.296766 1.784385

5 2.663766 3.995650 1.250000 2.646005 2.338550 3.507825 1.291046 2.419282 1.836652 2.754977 1.391403 2.056479 1.703178 2.554766 1.419315 1.953015

6 2.650352 3.975528 1.250000 2.636005 2.326774 3.490160 1.291046 2.410139 1.818081 2.727122 1.455079 2.063824 1.691122 2.536682 1.488815 1.965995

Line x1AB x2AB lAB utAB x1BC x2BC lBC utBC x1CD x2CD lCD utCD

1 2.550000 3.825000 1.812500 2.810061 1.650000 2.475000 2.573529 2.213025 1.500000 2.250000 1.590909 1.826926

2 2.550000 3.825000 1.812500 2.810061 1.650000 2.475000 2.573529 2.213025 1.518183 2.277274 1.604684 1.847488

3 2.550000 3.825000 1.812500 2.810061 1.683738 2.525606 2.590067 2.250477 1.551597 2.327395 1.629998 1.885263

4 2.522685 3.784027 1.847389 2.800773 1.688303 2.532454 2.592305 2.255539 1.556119 2.334179 1.633424 1.890375

5 2.338550 3.507825 1.847389 2.646005 1.836652 2.754977 2.665025 2.419282 1.703178 2.554766 1.744831 2.056479

6 2.326774 3.490160 1.847389 2.636005 1.818081 2.727122 2.706227 2.410139 1.691122 2.536682 1.808014 2.063824

Line lamA lamB lamC lamD lampA lampB lampC lamL lamAB lamBC lamCD

1 10.000000 8.500000 5.500000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2 9.939390 8.500000 5.500000 5.060610 0.000000 0.000000 0.000000 0.101016 0.000000 0.000000 0.000000

3 9.715551 8.500000 5.612459 5.171990 0.000000 0.000000 0.000000 0.474081 0.000000 0.000000 0.000000

4 9.683770 9.320728 5.627676 5.187064 0.000000 0.000000 0.000000 0.527050 0.911779 0.000000 0.000000

5 9.159416 10.218804 6.122172 5.677258 0.000000 0.000000 0.000000 1.400973 2.423637 0.000000 0.000000

6 9.125880 10.276242 6.584854 6.902708 0.000000 0.000000 0.000000 1.456867 2.520330 0.524584 1.265636

Line 1: Private equilibrium; all taxes zero

Line 2: utA is reduced until CD mimicking constraints start to bind; note tM = 0; after this utC is tied to utD

Line 3: utA further reduced until AB mimicking constraints start to bind

Line 4: utA further reduced with tU rising until it equals tH to cope with AB mimicking constraints

Line 5: utA reduced until BC mimicking constraints start to bind

Line 6: utA reduced by 0.01; CD, AB and BC mimicking constraints bind      

Notation

ate: average earnings tax rate

t1, t2: commodity tax rates

tj, j = H,U,M,L; marginal earnings tax rates on high, upper middle, middle and low wage earners

lamj, j = A,B,C,D; Lagrange multipliers on utility levels for A, B, C and D

lampj, j = A,B,C; Lagrange multipliers on same commodity prices for A and D, B and D, and C and D

lamL; Lagrange multiplier on 1/L‐a3A ge 0

lamAB; Langrange multiplier on utA ge utAB

lamBC; Langrange multiplier on utB ge utBC

lamCD; Langrange multiplier on utC ge utCD

** The programs used to produce these simulations are written in R; I thank Pierre Chaussé of the University of Waterloo for assistance.



Table 2: An example of a Pareto efficient tax structure with four types ‐ A,B,C,D; 

mimicking constraints bind in the order CD first, then AB, then BC; utility = (x1*x2)^(1/2) + x1^(1/2) + l^(1/2)

Parameters
L=5 wA=2 wB=1.9 wC=1.1 wD=1 nA=1 nB=1 nC=1 nD=1 p1=1 p2=1 tL=0

Line ateH ateU ateM ateL tH tU tM t1 t2

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.010051 ‐0.000001 ‐0.000002 ‐0.021882 0.010051 0.000001 1.463 E‐07 0.000017 ‐0.000023

3 0.010051 ‐0.000001 ‐0.000002 ‐0.021882 0.010051 0.000001 0.000000 0.000017 ‐0.000023

4 0.012353 ‐0.000001 ‐0.002238 ‐0.024385 0.012353 0.000001 0.000000 0.000021 ‐0.000029

5 0.012696 ‐0.000008 ‐0.002566 ‐0.024752 0.012696 0.012696 0.000000 0.000022 ‐0.000030

6 0.141937 0.132322 ‐0.248507 ‐0.300731 0.141937 0.141937 0.000000 0.000337 ‐0.000447

7 0.068567 0.058191 ‐0.376097 ‐0.444643 0.068567 0.068567 0.000000 0.092288 0.091383

Line x1A x2A lA utA x1B x2B lB utB x1C x2C lC utC x1D x2D lD utD

1 5.815822 3.852933 0.165623 7.552275 5.529488 3.625431 0.181622 7.255020 3.162780 1.815409 0.474373 4.863361 2.851708 1.590541 0.557750 4.565259

2 5.758271 3.807278 0.168662 7.492561 5.529389 3.625530 0.181622 7.255020 3.162727 1.815463 0.474373 4.863361 2.906464 1.629904 0.560760 4.630199

3 5.758271 3.807278 0.168662 7.492561 5.529389 3.625530 0.181622 7.255020 3.162727 1.815463 0.474373 4.863361 2.906464 1.629904 0.560760 4.630199

4 5.745081 3.796823 0.169370 7.478880 5.529366 3.625553 0.181622 7.255020 3.168986 1.820051 0.474627 4.870703 2.912714 1.634416 0.561099 4.637610

5 5.743115 3.795265 0.169476 7.476841 5.524447 3.621663 0.186288 7.255020 3.169902 1.820723 0.474665 4.871779 2.913629 1.635077 0.561149 4.638696

6 4.997017 3.209445 0.217887 6.706889 4.795815 3.052451 0.239250 6.505160 3.851988 2.328928 0.499226 5.664371 3.594961 2.136205 0.593691 5.437756

7 4.967758 3.186734 0.220179 6.676889 4.767275 3.030418 0.241755 6.475994 3.810516 2.297820 0.593610 5.681549 3.565837 2.114620 0.706358 5.474771

Line x1AB x2AB lAB utAB x1BC x2BC lBC utBC x1CD x2CD lCD utCD

1 5.529488 3.625431 0.422541 7.478880 3.162780 1.815409 2.379900 5.717306 2.851708 1.590541 0.961591 4.799040

2 5.529389 3.625530 0.422541 7.478880 3.162727 1.815463 2.379900 5.717306 2.906464 1.629904 0.964327 4.863361

3 5.529389 3.625530 0.422541 7.478880 3.162727 1.815463 2.379900 5.717306 2.906464 1.629904 0.964327 4.863361

4 5.529366 3.625553 0.422541 7.478880 3.168986 1.820051 2.380047 5.724512 2.912714 1.634416 0.964636 4.870703

5 5.524447 3.621663 0.426973 7.476841 3.169902 1.820723 2.380069 5.725567 2.913629 1.635077 0.964681 4.871779

6 4.795815 3.052451 0.477287 6.706889 3.851988 2.328928 2.394289 6.505160 3.594961 2.136205 0.994264 5.664371

7 4.767275 3.030418 0.479667 6.676889 3.810516 2.297820 2.448932 6.475994 3.565837 2.114620 1.096690 5.681549

Line lamA lamB lamC lamD lampA lampB lampC lamL lamAB lamBC lamCD

1 10.000000 9.500000 5.500000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2 9.902872 9.500000 5.500000 5.097128 ‐0.010167 0.004776 0.001509 0.034855 0.000000 0.000000 0.000000

3 9.902872 9.500000 5.500000 5.097130 ‐0.010167 0.004776 0.001509 0.034855 0.000000 0.000000 0.000003

4 9.880643 9.500000 5.511127 5.108233 ‐0.012573 0.005912 0.001876 0.043023 0.000000 0.000000 0.000003

5 9.877331 9.823343 5.512756 5.109859 ‐0.012932 0.006077 0.001932 0.044246 0.333979 0.000000 0.000003

6 8.642237 12.400667 6.730065 6.324900 ‐0.225138 0.085759 0.055269 0.640808 4.243618 0.000000 0.000045

7 8.594850 12.523159 7.568399 8.477857 ‐0.234622 0.089578 0.057561 0.670705 4.418347 0.941308 2.204585

Line 1: Private equilibrium; all taxes zero

Line 2: utA is reduced until CD mimicking constraints start to bind; note tM is a small positive number

Line 3: In this line utA is reduced by enough with utC constant to make tM zero; after this, utC is tied to utD

Line 4: utA further reduced until AB mimicking constraints start to bind

Line 5: utA further reduced with tU rising until it equals tH to cope with AB mimicking constraints

Line 6: utA reduced until BC mimicking constraints start to bind

Line 7: utA reduced by 0.03; CD, AB and BC mimicking constraints bind      

Notation

ate: average earnings tax rate

t1, t2: commodity tax rates

tj, j = H,U,M,L; marginal earnings tax rates on high, upper middle, middle and low wage earners

lamj, j = A,B,C,D; Lagrange multipliers on utility levels for A, B, C and D

lampj, j = A,B,C; Lagrange multipliers on same commodity prices for A and D, B and D, and C and D

lamL; Lagrange multiplier on 1/L‐a3A ge 0

lamAB; Langrange multiplier on utA ge utAB

lamBC; Langrange multiplier on utB ge utBC

lamCD; Langrange multiplier on utC ge utCD



Table 3: An example of a Pareto efficient tax structure with four types ‐ A,B,C,D; 

mimicking constraints bind in the order CD first, then AB, then BC; utility = (x1*x2)^(1/2) + (x1*l)^(1/2) 

Parameters
L=5 wA=2 wB=1.9 wC=1.1 wD=1 nA=1 nB=1 nC=1 nD=1 p1=1 p2=1 tL=0

Line ateH ateU ateM ateL tH tU tM t1 t2

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.006128 ‐0.000135 ‐0.000165 ‐0.014115 0.006128 0.000038 0.000007 0.000387 ‐0.000258

3 0.006121 ‐0.000142 ‐0.000172 ‐0.014123 0.006121 0.000031 0.000000 0.000394 ‐0.000251

4 0.017352 ‐0.000405 ‐0.011931 ‐0.027285 0.017352 0.000087 0.000000 0.001125 ‐0.000715

5 0.018549 ‐0.000834 ‐0.013862 ‐0.029450 0.018549 0.018549 0.000000 0.002146 ‐0.001360

6 0.101461 0.084145 ‐0.187917 ‐0.225920 0.101461 0.101461 0.000000 0.012383 ‐0.007696

7 0.056400 0.038228 ‐0.271564 ‐0.321403 0.056400 0.056400 0.000000 0.073135 0.044381

Line x1A x2A lA utA x1B x2B lB utB x1C x2C lC utC x1D x2D lD utD

1 5.000000 3.333333 0.833333 6.123724 4.500000 2.892857 0.892857 5.612486 2.750000 1.440476 1.190476 3.799671 2.500000 1.250000 1.250000 3.535534

2 4.967439 3.307249 0.836608 6.091794 4.498727 2.894130 0.892857 5.612486 2.749278 1.441198 1.190476 3.799671 2.525396 1.263675 1.263024 3.572371

3 4.967437 3.307248 0.836608 6.091792 4.498726 2.894131 0.892857 5.612486 2.749278 1.441199 1.190476 3.799671 2.525393 1.263669 1.263036 3.572372

4 4.907716 3.259439 0.842687 6.033184 4.496367 2.896492 0.892858 5.612486 2.771812 1.455070 1.200819 3.832681 2.547953 1.276778 1.274954 3.606020

5 4.896748 3.256944 0.843007 6.025295 4.478139 2.870951 0.917406 5.612486 2.773006 1.458570 1.202154 3.836935 2.549358 1.280024 1.276545 3.610431

6 4.437739 2.916897 0.889358 5.584477 4.056073 2.564656 0.965384 5.204084 3.089156 1.656945 1.348380 4.303344 2.866061 1.467676 1.445172 4.086141

7 4.396463 2.908138 0.890629 5.554477 4.018286 2.556778 0.966696 5.176191 3.056372 1.610989 1.452196 4.325722 2.844824 1.429846 1.559578 4.123197

Line x1AB x2AB lAB utAB x1BC x2BC lBC utBC x1CD x2CD lCD utCD

1 4.643073 2.749784 1.303571 6.033355 2.990532 1.199945 2.671958 4.721087 2.562300 1.187700 1.590909 3.763496

2 4.641744 2.751021 1.303571 6.033295 2.989731 1.200590 2.671958 4.720964 2.587530 1.201501 1.602749 3.799671

3 4.641743 2.751022 1.303571 6.033295 2.989731 1.200590 2.671958 4.720964 2.587526 1.201496 1.602760 3.799671

4 4.639280 2.753317 1.303572 6.033184 3.012143 1.214296 2.678278 4.752804 2.609913 1.214704 1.613595 3.832681

5 4.617568 2.731033 1.325666 6.025295 3.013137 1.217597 2.679094 4.756618 2.611246 1.217919 1.615041 3.836935

6 4.180220 2.437996 1.368845 5.584477 3.326529 1.414770 2.768454 5.204084 2.925389 1.407147 1.768338 4.303344

7 4.141217 2.430462 1.370027 5.554477 3.275925 1.385391 2.831897 5.176191 2.898773 1.374411 1.872344 4.325722

Line lamA lamB lamC lamD lampA lampB lampC lamL lamAB lamBC lamCD

1 10.000000 9.000000 5.500000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2 9.947904 9.000000 5.500000 5.052095 ‐0.132867 0.057890 0.020064 0.091595 0.000000 0.000000 0.000000

3 9.947902 9.000000 5.500000 5.052258 ‐0.132835 0.057922 0.020075 0.091598 0.000000 0.000000 0.000174

4 9.852529 9.000003 5.547783 5.100151 ‐0.380066 0.166864 0.058848 0.261327 ‐0.000001 0.000000 0.000504

5 9.839706 9.593500 5.553946 5.106816 ‐0.236335 0.315574 0.112560 0.278210 0.642861 0.000000 0.000962

6 9.133353 11.684322 6.229318 5.785152 ‐1.591946 1.687959 0.921472 1.596074 3.608175 ‐0.000002 0.006699

7 9.085860 11.781650 6.761463 7.482956 ‐1.023588 2.252718 1.215187 1.663789 3.760825 0.622428 1.764030

Line 1: Private equilibrium; all taxes zero

Line 2: utA is reduced until CD mimicking constraints start to bind; note tM is a small positive number

Line 3: In this line utA is reduced by enough with utC constant to make tM zero; after this, utC is tied to utD

Line 4: utA further reduced until AB mimicking constraints start to bind

Line 5: utA further reduced with tU rising until it equals tH to cope with AB mimicking constraints

Line 6: utA reduced until BC mimicking constraints start to bind

Line 7: utA reduced by 0.03; CD, AB and BC mimicking constraints bind      

Notation

ate: average earnings tax rate

t1, t2: commodity tax rates

tj, j = H,U,M,L; marginal earnings tax rates on high, upper middle, middle and low wage earners

lamj, j = A,B,C,D; Lagrange multipliers on utility levels for A, B, C and D

lampj, j = A,B,C; Lagrange multipliers on same commodity prices for A and D, B and D, and C and D

lamL; Lagrange multiplier on 1/L‐a3A ge 0

lamAB; Langrange multiplier on utA ge utAB

lamBC; Langrange multiplier on utB ge utBC

lamCD; Langrange multiplier on utC ge utCD


