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Abstract

We provide two new proofs of the Bondareva-Shapley theorem, which states that the
core of a transferable utility cooperative is nonempty if and only if the game is balanced.
Both proofs exploit the fixed points of self-maps of the set of imputations, applying
elementary existence arguments typically associated with noncooperative games to
cooperative games.

1 Introduction

The celebrated Bondareva-Shapley Theorem (Bondareva (1962, 1963); Shapley (1967)) shows

that balancedness is both necessary and sufficient for the existence of the core of a transfer-

able utility (TU) cooperative game. In this paper, we provide two new proofs of this theorem

which rely on elementary fixed point methods. Our aim is to approach the problem of core

existence through analogies to common proofs of the existence of Nash equilibria in nonco-

operative games, where coalitional blocking of imputations in cooperative games stands for

best-responses to strategy profiles in noncooperative games. While a Nash equilibrium is

a strategy profile that is a best-response to itself, a core imputation is not blocked by any

other imputation. Therefore, both our proofs start by assuming that some balanced TU

game fails to have a core and derives a contradiction: only in this case does the blocking

relation yield a well-defined “best-response” to each imputation.1
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In our first proof, the analogy is to establishing the existence of Nash equilbria through

fixed points of best-response correspondences (Nash (1950)). If a TU game has no core

and every imputation is blocked by some coalition, then we can construct payoffs for block-

ing coalitions and define a (non-empty valued) correspondence from the set of imputations

into itself. The existence of a fixed point of this correspondence, which corresponds to

an imputation that is a convex combination of imputations that block it, is established

through an elementary fixed point theorem for lower hemicontinuous correspondences due

to Gale and Mas-Colell (1975). Furthermore, this fixed point identifies a balanced collection

of blocking coalitions, which contradicts the balancedness of the game.

In our second proof, the analogy is to establishing the existence of Nash equilibria through

an application of Brouwer’s fixed point theorem to a continuous function on the set mixed

strategies of the game that has tâtonnement-type properties: it tends to increase the use

of pure strategies that are best-responses and decrease the use of those that are not (Nash

(1951)). By adapting a construction from Zhou (1994), we provide a continuous function on

the set of imputations of the game that tends to increase the payoffs of blocking coalitions and

decrease the payoffs of non-blocking coalitions, and, as in our first proof, its fixed point also

identifies a balanced collection of blocking coalitions. Zhou (1994) constructs this function

as an intermediate step in the proof of an intersection of open covers theorem which is closely

related to the K-K-M-S theorem (see Scarf (1967), Shapley (1967), Ichiishi (1981), Kannai

(1992), Shapley and Vohra (1991), Krasa and Yannelis (1994), Komiya (1994) and Herings

(1997)), and which he then applies to provide an alternative proof of Scarf’s (1967) theorem

that all balanced nontransferable utility games have nonempty cores.2

The original proof of the Bondareva-Shapley theorem relies on duality results from linear

programming. Another proof due to Osborne and Rubinstein (1994) applies the separating

hyperplanes theorem to construct a core imputation for any balanced TU game. A third

proof by Aumann (1989) establishes a connection between core existence and the minimax

theorem for zero-sum games: given a balanced TU game, he constructs a zero-sum game

whose mixed strategy equilibrium identifies a core imputation. One distinction of our proofs

is that we do not borrow results from noncooperative games to establish the Bondavera-

Shapley theorem, but instead we prove the theorem through the methods used to establish

the existence of equilibria in noncooperative games.

2Of course, the nonemptiness of the core of a balanced nontransferable utility game implies the nonempti-
ness of the core of a (TU) game.
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2 Two Proofs of the Bondareva-Shapley Theorem

Given a set of players N , a transferable utility (TU) game is a function W : N → R, where

N = 2N . Let V be the set of imputations for this game, that is, the set of individually

rational utilities attainable for the grand coalition, or

V = {v ∈ RN : vi ≥ W ({i}) for all i ∈ N and
∑
i∈N

vi = W (N)}.

Let V be endowed with the relative Euclidean topology. The core of the game W is de-

fined as Core(W ) = {v ∈ V |
∑

i∈S vi ≥ W (S) for all S ∈ N}. A collection of coalitions

B ⊆ N is balanced if there exists weights {δS}S∈B such that δS ≥ 0 for all S ∈ B and∑
S∈B, i∈S δS = 1 for all i ∈ N . The game W is balanced if for all balanced collections of

coalitions B,
∑

S∈B δSW (S) ≤ W (N).

Theorem (Bondareva-Shapley). A TU game has a nonempty core if and only if it is

balanced.

We make a few remarks before giving our proofs of the theorem. First, given 0 < ε < 1,

we normalize the game such that W ({i}) = ε for all i ∈ N . To see this, fix any game W ,

and consider another game W̃ such that W̃ (S) = W (S) +
∑

i∈S [ε−W ({i})] for all S ∈ N
along with the isomorphism f : Rn → Rn such that f(x)i = xi + ε −W ({i}) for all i ∈ N .

Clearly, a coalition S ∈ N blocks imputation v ∈ V if and only if coalition S also blocks

imputation f(v) ∈ f(V ). Second, we expand the set of imputations associated to W such

that

V̂ = {v ∈ RN : vi ≥ 0 for all i ∈ N and
∑
i∈N

vi = W (N)},

and modify the definition of the core such that

Ĉore(W ) = {v ∈ V̂ |
∑
i∈S

vi ≥ W (S) for all S ∈ N}.

Clearly, because for all v ∈ V̂ \ V , there exists i ∈ N such that vi < W ({i}) = ε, we have

that Ĉore(W ) = Core(W ). Third, if the game is balanced, then W (N) > 0 (because the

collection {{i} : i ∈ N} is balanced, with weights such that δ{i} = 1). Finally, the necessity

of balancedness for a nonempty core follows from standard arguments, so that we only prove

its sufficiency.

A First Proof of the Bondareva-Shapley Theorem. Towards a contradiction, assume that W
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has an empty core. It follows that all v ∈ V̂ are blocked by some coalition, and let S(v)

denote the set of coalitions that block v. Define ψS(v) ∈ V̂ such that, given any v ∈ V̂ and

any S ∈ S(v),

ψS,i =


W (N) max{vi,ε}∑

j∈S max{vj ,ε} if i ∈ S,

0 if i /∈ S.

Define a correspondence P : V̂ � V̂ such that P (v) = co{ψS(v)}S∈S(v), and note that P has

nonempty and convex values.

Lemma 1. There exists v such that v ∈ P (v).

Given any imputation v ∈ V̂ and coalition S ∈ S(v), the set of imputations that block

v for S is open, so that P is not an upper hemicontinuous correspondence. However, P is

lower hemicontinuous. Lemma 1 then follows from an application of the fixed point theo-

rem of Gale and Mas-Colell (1975), which, as re-stated in Yannelis and Prabhakar (1983),

guarantees that any non-empty and convex-valued lower semicontinuous correspondence on

a nonempty, convex and compact subset of Rn has a fixed point. The following lemma, in

obvious contradiction with Lemma 1, completes the proof of the Bondareva-Shapley theorem.

Lemma 2. For all v ∈ V̂ , v /∈ P (v).

Proof. Suppose, toward a contradiction, that there exists v ∈ P (v), and fix i ∈ N . It follows

that, for all S ∈ S(v), there exist λS ≥ 0 with
∑

S∈S(v) λS = 1 such that

vi =
∑
S∈S(v)

λSψS,i(v).

First, suppose that vi ≥ ε, so that

vi =
∑

S∈S(v),i∈S

λS
W (N)vi∑

j∈S max{vj, ε}
,

which because vi > 0 is equivalent to

∑
S∈S(v),i∈S

λSW (N)∑
j∈S max{vj, ε}

= 1.
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Second, suppose that vi < ε, so that

vi =
∑

S∈S(v),i∈S

λS
W (N)ε∑

j∈S max{vj, ε}

< ε,

which, because ε > 0 yields that

∑
S∈S(v),i∈S

λSW (N)∑
j∈S max{vj, ε}

< 1. (1)

We construct weights δS ≥ 0 for all S ∈ N so that the collection N is balanced. For all

S ∈ S(v), let δS = λS/
∑

j∈S max{vj ,ε}. For all i ∈ N such that vi = 0, set δ{i} = 1. For all i ∈ N
such that 0 < vi < ε, set

δ{i} = λ{i} +

1−
∑

S∈S(v),i∈S

λSW (N)∑
j∈S max{vj, ε}

 ,
where λ{i} is well-defined because {i} ∈ S(v). Finally, for all other S ∈ N , set δS = 0. Note

that the collection {δS}S∈N is well-defined because, for all i ∈ N such that 0 < vi < ε, we

have that

0 < δ{i}

= 1 + λ{i}

[
1− 1

ε

]
−

∑
S∈S(v)\{i}, i∈S

λSW (N)∑
j∈S max{vj, ε}

≤ 1,

where the first inequality follows from (1) and the fact that 0 < ε < 1. By construction,
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∑
S∈N ,i∈S δS = 1 for all i ∈ N , so that the collection N is balanced, and it follows that∑

S∈N

δSW (S) =
∑
S∈S(v)

δSW (S) +
∑

{i∈N :vi=0}

δSW ({i})

>
∑
S∈S(v)

δS
∑
i∈S

vi +
∑

{i∈N :vi=0}

δSε

>
∑
S∈N

δS
∑
i∈S

vi

=
∑
i∈N

vi
∑

S∈N ,i∈S

δS

= W (N),

contradicting the fact that the game is balanced. The first inequality follows from the facts

that (i) each coalition S ∈ S(v) blocks v and S(v) is nonempty by assumption, and that (ii)

W ({i}) = ε.

A Second Proof of Bondareva-Shapley Theorem. Towards a contradiction, assume that W

has an empty core. It follows that all v ∈ V̂ are blocked by some coalition. For each coalition

S, define a blocking benefit function bS : V̂ → V̂ such that bS(v) = max{W (S)−
∑

i∈S vi, 0}.
Furthermore, define a modified blocking benefit function b̂S : V̂ → V̂ such that

b̂S(v) =

bS(v) if |S| = 1,

bS(v) max{minj∈N vj − ε, 0} if |S| ≥ 2,

and define a function p : V̂ → V̂ such that, for all i ∈ N

p(v)i = vi + ε

[∑
S∈S(v),i∈S b̂S(v) |N |

|S|∑
S∈S(v) b̂S(v)

− 1

]
.

Lemma 3 (Zhou (1994)). There exists v such that v = p(v).

The function p adapts a construction from Zhou (1994) to our simplified setting. Because

p is continuous, Zhou (1994) shows that Lemma 3 follows from an application of Brouwer’s

fixed point theorem. The following lemma, in obvious contradiction with Lemma 3, completes

the proof of the Bondareva-Shapley theorem.
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Lemma 4. For all v, v 6= p(v).

Zhou (1994)’s construction of p also ensures that the collection S(v) is a balanced col-

lection, with associated weights δS =
b̂S(v̄)

|N|
|S|∑

S∈S(v) b̂S(v)
for all coalitions S ∈ S(v). It follows

that ∑
S∈S(v)

δSW (S) >
∑
S∈S(v)

δS
∑
i∈S

v̄i

=
∑
i∈N

v̄i
∑

S∈S(v),i∈S

δS

= W (N),

contradicting the fact that the game is balanced. The inequality follows because δS > 0 only

if W (S) >
∑

i∈S v̄i.
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