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Abstract

This paper investigates the “spurious almost integration” effect of volatility under a threshold
GARCH structure with realized volatility measures. To closely examine the effect, the realized
persistence of volatility is proposed to be used as a threshold trigger for volatility regimes. Under
the threshold framework, general closed-form solutions of moment conditions are derived, which
provide a convenient way to theoretically examine the “spurious almost integration” effect and
its associated impacts. We find that introducing the volatility persistence-driven threshold can
capture regime-specific characteristics well. It performs better than the traditional GARCH-type
models in terms of both in-sample fitting and out-of-sample forecasting. Based on our Monte
Carlo and empirical results, in general we find that overlooking the relatively low persistence
regime(s) could lead to some misleading conclusions.
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1 Introduction

Volatility of asset returns plays an important role in many areas of financial research. Volatility
modeling literature has grown rapidly in the past three decades since the birth of the (General-
ized) Autoregressive Conditional Heteroscedasticity (ARCH/GARCH) model by Engle (1982) and
Bollerslev (1986). In essence, under the traditional ARCH/GARCH or its extended specifications,
the time-varying latent volatility is typically modeled as a certain function of historical returns
(for instance, squared returns) and past volatilities. GARCH models have been widely used and
applied in both academia and industry. As is well known, GARCH models can well capture the
persistence behavior of the conditional variances. For instance, in the standard GARCH setting,
the sum of the estimated autoregressive ARCH and GARCH coefficients is typically found to be
close to one for most of the financial asset return data. However, this “stylized” phenomenon
should be carefully investigated especially under structural changes in the data. This concern
was first raised by Diebold (1986). Lamoureux and Lastrapes (1990) illustrate an overestimation
effect of volatility persistence by allowing for different regime values for the constant term in the
GARCH conditional volatility equation. A more detailed investigation on this issue is carried out
in Hillebrand (2005), which finds that even a simple parameter-shift in the conditional volatil-
ity generating process could severely bias the overall persistence estimation toward one. This is
independent of estimation approach and the characteristics/properties of the parameter shifts.
Hillebrand (2005) provides both theoretical and Monte Carlo results to illustrate this so-called
“spurious almost-integration” effect. These concerns raise an interesting and serious question
that the commonly-believed highly persistent volatility behavior implied from the conventional
volatility models (such as GARCH) may be just due to a mis-specification. As Hillebrand (2005)
points out, a regime switch structure could be a natural consideration to investigate this problem.

In recent years, with more and more intra-daily high frequency trading data available for
research, there has been considerable interest in incorporating the realized measures of volatility
into the traditional volatility model framework. Andersen et al. (2003) and Hansen et al. (2012)
point out that one new key feature of this class of models is accommodating and updating new
information at a faster speed than the conventional volatility models. Therefore, the models with
realized volatility measures provide a better structure in modeling the dynamics of the latent
return volatility. Engle and Gallo (2006) first introduce the realized measures in the GARCH
process, known as the Multiplicative Error Model (MEM). Hansen et al. (2012) propose a so-
called realized GARCH (RGARCH), in which a measurement equation is built into the process
to link the latent volatility and the corresponding realized measure. Hansen and Huang (2016)
extend the RGARCH to an Exponential GARCH structure to better capture the dependence be-
tween the returns and volatility. Takahashi et al. (2009) introduce the comparable version of the
RGARCH model in Hansen et al. (2012) under the context of stochastic volatility (SV) frame-
work, referred as realized SV model. In the realized SV, the conditional volatility is modeled to
follow a stochastic process with a bridge equation to its realized measures constructed from high
frequency data. Chaussé and Xu (2016) generalize the realized SV model accommodating a more
flexible correlation structure. Some theoretical model properties are investigated and examined in
the context of Generalized Method of Moments (GMM). This literature has grown rapidly in the
past decade, see Bollerslev and Zhou (2006), Corradi and Distaso (2006), Dobrev and Szerszen
(2010), Shephard and Sheppard (2010), Noureldin et al. (2012), Koopman and Scharth (2013)
and references therein.

Volatility models with realized measures, such as RGARCH, have many attractive character-
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istics and provide better performance in both sample fitting and forecasting than the traditional
volatility models. However, we find that the “spurious almost integration” effect is still embed-
ded in the RGARCH structure. In other words, even a single changing point in the parameters
in data generating process could cause an overestimation of the true persistence of the volatil-
ity. Hansen et al. (2012) investigate 28 stocks and 1 stock index under the proposed RGARCH
model. There is an interesting “common” finding on the results across all 29 assets. The volatil-
ity persistence is typically found to be high, for example, in the log-linear RGARCH(1,2) results,
the average persistence over these 29 assets is 0.99. Using a “half-life” measure of the volatility
shocks, this persistence value means that on average it takes about 70 days that a shock to current
volatility level diminishes to half of its initial size.1 Is it a “stylized fact” or is it simply due to the
presence of certain structure break in the sample data? We believe that it should deserve a further
investigation to avoid some misleading conclusions. Motivated by this interesting phenomenon, in
this paper, we develop a threshold triggered regime-switch RGARCH model. Regime switch, es-
pecially the threshold triggered regime switch, has been introduced into volatility modeling in the
literature. See Glosten et al. (1993), Hamilton and Susmel (1994), Zakoian (1994), Li and Lam
(1995), Brooks (2001), Chen and So (2006), Xu (2013) and references therein. In the literature,
the popularly used candidate threshold variable is the asset return. In this paper, we propose
to use volatility persistence as a candidate threshold variable to determine the volatility regimes.
To the best of our knowledge, this paper is the first one to adopt persistence as an indicator
for volatility dynamics. This is motivated by the findings from Ning et al. (2015), which detect
strong evidence of asymmetric patterns in volatility clustering. In particular, clusters of high
volatility occur more frequently than clusters of low volatility. However, unlike the asset prices
(returns), the volatility is latent, so is its persistence. In this paper, the volatility persistence
estimation is conducted over a rolling window of the realized kernel estimates of the volatility.
As is well known, measurement errors could potential deteriorate the quality of the estimates of
the persistence. In this paper, following Hansen and Lunde (2014), we adopt a non-parametric
instrumental variable (IV)-based method to construct time-varying persistence estimates, which
are treated as important indicators for the volatility regimes.

In general, both our Monte Carlo results and empirical evidence support introducing the
threshold effect into modelling the volatility dynamics. The proposal of using the volatility per-
sistence to trigger the regime-switch provides a more intuitive economic interpretation of the
structure. In the case of a two-regime model, we empirically find that the high persistence regime
is normally associated with high volatility level, while low persistence regime is normally associ-
ated with low volatility level. In addition, we find improvements of the proposed model in both
in-sample fitting and out-of-sample forecasting comparing to the conventional benchmark (with-
out threshold effect). More accurate risk measures are also implied under the threshold structure.

The rest of the paper is organized as follows. Section 2 introduces the threshold structure
under a realized GARCH framework (TRGARCH). General closed form moment conditions are
derived for investigation on the volatility “spurious almost integration” effect and its associated
impacts. In section 3, several groups of Monte Carlo simulations are conducted. Section 4 pro-
vides empirical applications consisting of two groups of sample data. Section 5 concludes. All the
proofs are provided in Appendix A and some tables and figures are collected in Appendix B.

1We will discuss this “half-life” measure in the empirical applications (Section 4) in more details. Here we also
provide a “quarter life” measure for readers’ reference. At the persistence level of 0.99, it takes about 138.9 days
for a shock to diminish to a quarter of its initial impact to volatility.
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2 General Structure of a Threshold Realized GARCH

Model

Following Hansen et al. (2012), a standard RGARCH(p, q) has the following specification,

xt = exp(ht/2)εt (1)

yt = β1 + β2ht + τ(εt) + ut (2)

ht = λ+

p∑
i=1

αiht−i +
q∑
j=1

γjyt−j (3)

There are three equations in the system. (1) is referred as return process, where xt is the con-
tinuously compounded return time series, defined by the logarithm of the ratio of two consecutive
prices. ht is the latent logarithmic volatility at time t. yt is the corresponding realized measure
for ht. It can be constructed from the high frequency trading price data. τ(εt) is referred as
the so-called leverage function, which captures the correlation between the return and volatility.
Following the specification in Hansen et al. (2012), we adopt the convenient functional form of
a Hermite polynomials with the first two orders, that is, τ(εt) = τ1εt + τ2(ε

2
t − 1). (2) serves

the role as a measurement equation linking the latent volatility and the realized measures.(3) is
the standard GARCH(p, q)-like equation modeling the dynamics of the volatility. εt is typically
assumed with NID (0, 1) and ut ∼ NID(0, σ2).

In this paper, we extend the above structure into a threshold heteroscedastic model triggered
by a regime-indicator variable ρ. Suppose that there are K regimes in the volatility space. Let
s(ρ) = sk with k = 1, 2, ..., K. In each regime, the measurement between the volatility and
realized measures and the volatility dynamics would exhibit different behavior. In other words,
(2) becomes,

yt = βs1,1 + βs1,2ht + τs1,1εt + τs1,2(ε
2
t − 1) + us1,t s(ρ) = s1

yt = βs2,1 + βs2,2ht + τs2,1εt + τs2,2(ε
2
t − 1) + us2,t s(ρ) = s2

... (4)

yt = βsK ,1 + βsK ,2ht + τsK ,1εt + τsK ,2(ε
2
t − 1) + usK ,t s(ρ) = sK

Correspondingly, (3) becomes,

ht = λs1 +

p∑
i=1

αs1,iht−i +
q∑
j=1

γs1,jyt−j s(ρ) = s1

ht = λs2 +

p∑
i=1

αs2,iht−i +
q∑
j=1

γs2,jyt−j s(ρ) = s2

... (5)

ht = λsK +

p∑
i=1

αsK ,iht−i +
q∑
j=1

γsK ,jyt−j s(ρ) = sK

Therefore, (1), (4) and (5) define a general structure of a K-regime realized GARCH model.
The coefficients in (4) and (5) are all state-dependent, which could capture and explain regime-
specific characteristics. In particular, the unknowns for the K-regime realized GARCH (p, q)
model are collected in the θ-vector, where θ = (βsk,1, βsk,2, τsk,1, τsk,2, λsk , αsk,i, γsk,j , σ

2
sk
), with
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k = 1, 2, ..., K, i = 1, 2, ..., p and j = 1, 2, ..., q. There are, in total, (6 + p+ q)K parameters.

Proposition 1. Given the K-regime realized GARCH (p, q) model specified in (1), (4) and (5),
when p = 1 and q = 1, the overall persistence of the volatility (denoted as ω) and the leverage
effect (denoted as ϕ) are implied as follows,

ω =
K∑
k=1

p(s(ρ) = sk)(αsk + γskβsk,2) (6)

ϕ =
K∑
k=1

p(s(ρ) = sk)
τsk,1√

τ 2sk,1 + 2τ 2sk,2 + σ2
sk

(7)

Proof. see Appendix A.2

Proposition 2. Given the K-regime realized GARCH (p, q) model specified in (1), (4) and (5),
when p = 1 and q = 1, the Moment Generating Function (MGF) for ht and yt are provided as
follows,

Mh(η) =

K∑
k=1

p(s(ρ) = sk) exp

(
ηωsk,1

1− ωsk,2

) ∞∏
j=0

Mv

(
ηωj

sk,2

)
(8)

My(η) =

K∑
k=1

p(s(ρ) = sk)Mζ(η)Mε2(η)Mhk
(ηβsk,2) (9)

Proof. see Appendix A. Mψ(.) represents the MGF of ψ. They are all defined in the proof.

Proposition 3. Given the K-regime realized GARCH (p, q) model specified in (1), (4) and (5),
when p = 1 and q = 1, the general moments for xt are specified as follows,

E (xmt ) =
∂mMε(η)

∂ηm
||η=0

(
K∑
k=1

p(s(ρ) = sk)Mhk(
m

2
)

)
(10)

More generally, the (m,n)th order cross-moment of xt and xt+g has the following closed-form,

E
(
xmt x

n
t+g

)
=

[
K∑
k=1

p(s(ρ) = sk)Mhk

(
m+ nωgsk,2

2

)
exp

(
n

2
ωsk,1

g∑
j=1

ωj−1
sk,2

)

×
g∏
j=1

Mv(
n

2
ω
(g−j)
sk,2

)

]
∂mMε(η)

∂ηm
||η=0

∂nMε(η)

∂ηn
||η=0 (11)

Proof. see Appendix A. Mψ(.) represents the MGF of ψ. ∂if(ξ)
∂ξm

||ξ=0 stands for the ith derivative

of f(.) w.r.t ξ evaluated at ξ = 0.

(8), (9), (10) and (11) in Proposition 2 and 3 can theoretically supply any order of moments
of the return, latent volatility and the realized measure implied from the model. More impor-
tantly, these closed form solutions provide a convenient way to further investigate the theoretical
properties of the model. For instance, the impact of the so-called “spurious almost integration”

2In Proposition 1, we only present the persistence and leverage effect in the case of p = 1 and q = 1. For any
other order, it is a straightforward extension based on the proof in Appendix.
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effect (overestimation of the volatility persistence) on the variance and kurtosis of return can
be seen via the corresponding moments’s plots against relevant parameters. For illustration, we
take a set of empirical estimates of the RGARCH(1,1) on S&P 500 index in Hansen et al. (2012).
θ̂ = (λ̂, α̂, γ̂, β̂1, β̂2, τ̂1, τ̂2, σ̂u)= (0.06, 0.55, 0.41, -0.18, 1.04, -0.07, 0.07, 0.38). In Figure 1 and
2, we investigate the impact of each parameter on the variance and kurtosis of returns by fixing
other parameter values. In particular, we pay attention to the two key parameters in the persis-
tence, α and γ.3 As one can see from Figure 1 and 2, both α and γ impact the return variance
and kurtosis in the same direction. More specifically, overestimating the persistence can lead to
underestimation of return variance and overestimation of return kurtosis. This is also supported
by Figure 3, which plots the 3-dimension relationship of α and γ on return variance (upper panel)
and kurtosis (lower panel). Taking the advantage of close-form solution in (11), we can further
examine how the persistence (via α and γ) impacts on the autocorrelation function (ACF) of the
squared returns. Figure 4 presents the ACF plots (over 20 lags) under the persistence changes
due to α-switch (upper panel) and γ-switch (lower panel). One can see that overestimating the
persistence could lead to a positively biased ACF in both α-switch case and γ-switch case. As the
volatility persistence approaches closer to 1 (“spurious almost integration”), the bias increases
at a faster rate. For instance, in the α-switch case, when α changes from 0.1 to 0.3 (equivalent
to persistence level from 0.53 to 0.73), the ACF is slightly shifted, while when α switches from
0.5 to 0.55 (equivalent to persistence level from 0.93 to 0.98), the ACF is shifted significantly. In
other words, if the persistence is overestimated (especially towards to one), the ACF of squared
returns is positively biased.

The modified Quasi Maximum Likelihood estimator (mQMLE) based on Hansen et al. (2012)
are applied in this paper for estimation. In particular, the full likelihood function is defined over a
sequential products of the conditional densities. These conditional densities are state dependent
determined by the indicator function of the threshold variable. Therefore, under the Gaussian
assumption, the objective log-likelihood function is given by,

�(x, y, θ) = −1

2

T∑
t=1

(�t|It−1) (12)

�t is the log-likelihood at time t given the information up to t − 1. In particular, it can be
constructed as follows,

(i) when s(ρt−1) = sk, it indicates that the volatility dynamics follows the kth regime process;
(ii) given {yt}, {λsk},{αsk,i}pi=1, {γsk,j}qj=1 and initial values of {h}t−1

t−p, ht can be computed by
λsk +

∑p
i=1 αsk,iht−i +

∑q
j=1 γsk,jyt−j;

(iii) given {xt, ht}, εt = xt ∗ exp(−ht/2);
(iv) given {βsk,1, βsk,2, τsk,1, τsk,2} and {εt}, usk,t = yt − βsk,1 − βsk,2ht − τsk,1εt − τsk,2(ε

2
t − 1);

(v) �t = log(ht) + log(σ2
sk
) + x2t/ht + u2sk,t/σ

2
sk
.

Following Straumann and Mikosch (2012) and Hansen et al. (2012), we construct the stan-
dard error for the mQMLE in a typical sandwich form that

√
T (θ̂− θ) → N(0,Ω−1ΛΩ−1), where

3According to (6), there are three relevant parameters characterizing volatility persistence, α, γ and β2. How-
ever, β2 is found to be stable around 1 empirically, which is also consistent with the theoretical explanation that the
realized measures are expected to be proportional to the latent volatility. Hansen and Huang (2016) also discuss
imposing this restriction (β2=1) in the framework. In this paper, we examine the persistence impacts through the
changes of α and γ.
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Ω = E
(

∂2�
∂θ∂θ′

)
and Λ = E

((
∂�
∂θ

) (
∂�
∂θ

)′)
, with 1√

T

∑T
t=1

∂�t
∂θ

d−→ N(0,Λ) and − 1
T

∑T
t=1

∂2�t
∂θ∂θ′

p−→ Ω.

In this paper, we propose to use the realized persistence of volatility as the threshold to trig-
ger the regime switch. It could explain the findings in Ning et al. (2015), which indicates that
high persistence is more often observed in the high volatile period, and vice versa. It also con-
tributes to the investigation on the so called “spurious almost integration” effect. In Hansen et al.
(2012), high persistence is commonly detected in all their sample data examined. Under our pro-
posed framework, it could explain whether this phenomenon is consistent with the stylized fact
in the literature or it is simply due to parameter(s) shift. However, the volatility persistence
is latent. A robust way is needed to construct the corresponding approximation. Recently,
with more and more trading data available at intra-daily level, there is a growing literature
on constructing realized proxies for volatility using these high frequency data, see for exam-
ple Barndorff-Nielsen and Shephard (2002), Zhang et al. (2005), Barndorff-Nielsen et al. (2008),
Barndorff-Nielsen et al. (2011) and references therein. This provides us a solid foundation for the
volatility persistence estimation. However, as Hansen and Lunde (2014) point out, the measure-
ment errors can influence the quality of the volatility persistence estimate constructed from the
high frequency data (such as realized volatility or realized kernel). Therefore, Hansen and Lunde
(2014) develop an IV-based method to estimate the volatility persistence. They demonstrate that
the proposed IV estimator has a better finite sample properties.

In this paper, we construct our realized volatility persistence following Hansen and Lunde
(2014). In particular, we utilize the multiple instruments method to estimate the persistence
parameter with a rolling window on a realized kernel sequence. Suppose yt is the logarithm of
the realized kernel measure. Assume that each rolling window has a fixed window size with n.
Define the multiple instruments as Zt = (yt−n1 − yn1

, ..., yt−n2 − yn2
)′, where 0 ≤ n1 ≤ n2 ≤ n.

Then the realized volatility persistence is estimated as follows,

ρ̂t =

(
n−1∑
t=1

Ztyt

)−1(n−1∑
t=1

Ztyt+1

)
(13)

The above formula, (13), is just the multiple IV estimator version presented in Hansen and Lunde
(2014). For each rolling window, we can achieve a volatility persistence estimate. Therefore, a
sequence of ρ̂t’s can be constructed as thresholds. In particular, this sequence of estimates will
be the input of our indicator function to determine the regime with s(ρ̂) = sk, k = 1, 2, ...K.
Theoretically, we need to use K − 1 threshold levels, (ρ∗1, ρ

∗
2, ..., ρ

∗
K−1), to define K regimes. In

other words, s(ρ∗i ≤ ρ̂ < ρ∗i+1) = si+1, with i = 1, ..., K − 2. If ρ < ρ∗1 or ρ ≥ ρ∗K−1, it will be in
regime 1 or K respectively.

3 Monte Carlo Experiments

In the beginning of this section, we investigate the so-called “spurious almost integration” effect
in the RGARCH structure via Monte Carlo experiments. In the first group of Monte Carlo
experiments, the true data generating process (DGP) is specified as follows,

xt = exp(ht/2)εt

yt = −0.18 + 1.04ht − 0.07εt + 0.07(ε2t − 1) + ut (14)

ht = 0.06 + αht−1 + γyt−1 ut ∼ N(0, 0.382)
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All the parameter values are taken from the empirical estimates of the RGARCH (1,1) to S&P
500 returns in Hansen et al. (2012). We allow α or γ to be shifted across time as α or γ is one
component in determining the persistence level. In Hansen et al. (2012), α = 0.55 and γ = 0.41,
correspondingly, the persistence is found to be 0.976, which indicates high persistence behavior
of the S&P volatility empirically. In this experiment, we allow the parameter-shift right on the
middle time point. In particular, in the first half of the data, α = 0.10 (or γ = 0.10) and in the
second half of the data, α = 0.55 (or γ = 0.41).4 In the setting, in the first regime, the persistence
is low, which is equal to 0.526 (or 0.654). While in the second regime, the true persistence is
the same as in Hansen et al. (2012), which is 0.976. Since the switch occurs in the middle of the
sample, the true overall persistence is simply the average of the two regimes’ persistence, which
is 0.751 (or 0.815). The data are then simulated based on (14). The estimation is conducted
neglecting the parameter jumps. In other words, we just fit a one-regime RGARCH model to the
simulated data. The procedure is replicated 1000 times. The results are presented as follows in
Table 1.

Table 1: Spurious almost integration effects caused by a single parameter shift

λ α γ β1 β2 τ1 τ2 σ π
α = 0.10 to 0.55 0.0621 0.5235 0.4125 -0.1805 1.0411 -0.0695 0.0736 0.3900 0.9501

(0.0273) (0.0471) (0.0474) (0.0531) (0.0837) (0.0124) (0.0094) (0.0093) (0.0234)
γ = 0.10 to 0.41 0.0503 0.6672 0.2979 -0.1831 1.0423 -0.0696 0.0749 0.3922 0.9761

(0.0175) (0.0308) (0.0336) (0.0484) (0.0788) (0.0120) (0.0094) (0.0096) (0.0114)

Note: The parameter shift for either α or γ occurs in the middle of the sample. Each entry represents the mean
value over 1000 replications. The numbers in the parenthesis are the standard deviations of the estimates.

As we observed, under both cases, neglecting the parameter shifts in the data generating
process (in the conditional variance equation) of realized GARCH can substantially overestimate
the persistence. This observation is consistent with the findings established for the conventional
GARCH models in Hillebrand (2005). For example, in the α-switch case, the true overall persis-
tence should be 0.751 (with 0.526 in regime 1 and 0.976 in regime 2). However, the estimated
persistence is 0.9501. This positive bias on persistence could potentially produce misleading in-
formation on the return and volatility distributions and dynamics. For instance, in the α-switch
case, for the first half of the data (low-persistence regime), neglecting the parameter shifts leads
to an underestimation of return variance by 23.47% and an overestimation of return kurtosis by
33.16%.5

Motivated from the above observation, we design the second group of Monte Carlo simulations.
The true DGP is the same as in the first group, which follows (14). We investigate the perfor-
mance of the proposed persistence-driven TRGARCH model under the parameter-shift DGP. In
other words, we examine whether the proposed threshold structure can identify and capture the
regime switch caused by a single change-point in parameters. As mentioned earlier, the threshold
variable used in this paper is not directly observed. In each simulation round, an additional step
is needed for construction of the persistence before proceeding to the model estimation stage. In
particular, after simulating the sequence of {yt} under (14), the realized persistence of volatility
is sequentially constructed via (13) following Hansen and Lunde (2014) based on rolling windows.

4In this simulation exercise, we also experiment with other values on α and γ. The general results are similar.
To save space, we do not report those results in this paper.

5This implies that the “spurious almost integration” could have impacts on the distribution of the returns,
and consequently deteriorate the corresponding risk analysis. In the empirical analysis section, we conduct a
Value-at-Risk back-testing analysis for a further illustration.
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In this group of simulations, we set the rolling window size to be 252, which is roughly equivalent
to the number of yearly trading days in the real life. A multiple IV estimator is used for each
rolling window. The number of IV’s is set to be 5.6 A two-regime TRGARCH model is then
fitted to the simulated data with the following regime-indicator function, s(ρ̂t−1 ≤ ρ∗) = 1 and
s(ρ̂t−1 > ρ∗) = 2. In this group of simulations, we set the threshold at a fixed level (0.53 in the
α switch case or 0.65 in the γ switch case). It is worth mentioning that in the third group of
Monte Carlo experiments, we design a sequential data-driven algorithm to search for the “opti-
mal” threshold level.

The estimation results for the second group of experiments are presented in Table 2. In
general, the proposed persistence-driven TRGARCH model can successfully capture the regime
switch due to the parameter shift. In both cases, the parameter estimates are close to the true
values in the DGP of (14). In particular, the threshold model detects that the α parameter is
shifted from 0.1173 to 0.5392 and the γ parameter is shifted from 0.1206 to 0.3865, while the true
parameter jumps are from 0.1 to 0.5 (for α)and from 0.1 to 0.4 (for γ) respectively. In addition,
based on the parameter estimates, the implied persistence (constructed from Proposition 1) is also
close to the true persistence in the DGP. For instance, in the α switch case, the true persistence
for each regime should be 0.526 and 0.976 respectively. The corresponding estimated ones are
0.5704 and 0.9637. In summary, with an appropriate threshold level, the proposed algorithm can
identify the regime-switch caused by parameter shifts.

In the third group of Monte Carlo experiments, we investigate a data-driven algorithm to
search for the “optimal” threshold level of persistence. In particular, rather than fixing the
threshold at an arbitrary level (for example, the mean or median), we consider each realized
value of persistence as a potential candidate threshold level. In other words, an estimation is
conducted for each candidate threshold value. The “optimal” threshold is determined from all
estimation results based on certain criterion. In this paper, we choose the “optimal” threshold
level that gives the largest maximum likelihood value. In the first sub-group of simulations,
we still follow the α-switch DGP in (14) to generate the experimental data. Then, the flexible
threshold estimation procedure is applied to search for the “optimal” threshold level. Since the
computational cost is relatively high in this group of simulations, we set the replication number
to be 200.7 The results are presented in Table 3. In general, the mean estimates over these
200 replications are fairly close to the benchmark values in the DGP. The proposed data-driven
algorithm finds the “optimal” threshold level (0.6457) and at the “optimal” threshold level, the
parameter-shift effect is revealed in the estimates. In the true DGP, α is shifted from 0.10 to
0.55 with all other parameters the same under both regimes. The estimation results imply that
α is switched from 0.1627 to 0.5454 with all other parameters’ estimates close to the the true
values. The last two rows in Table 3 provide the true persistence under each regime and the
corresponding estimated persistence, which are quite similar as well.

6Different sizes of rolling window and different numbers of IV’s are also experimented in this group of Monte
Carlo simulations. No significantly different results are observed. Hence, those results are not reported in the
paper to save space. They are available upon request.

7Even with 200 times replications, we need to perform 200,000 optimizations in total if we treat each value as
a candidate threshold level.
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4 Empirical Data Analysis

In this section, the proposed model and estimation procedure are implemented using empirical
data. In particular, two groups of empirical data are investigated in this paper. The first one is
the identical data set that was used in Hansen et al. (2012).8 In Hansen et al. (2012), for all 29
sample series, a commonly high volatility persistence is detected using the RGARCH structure.
We re-visit this identical data set for a further investigation using our proposed framework. The
results are presented in Table 4. For comparison, each sample is estimated under RGARCH, TR-
GARCH and realized heterogeneous autoregressive GARCH (RHARGARCH)9 specifications.10

For RGARCH (1,1), there are 8 parameters, (λ1, α1, γ1, β1,1, β1,2, τ1,1, τ1,2, σ1). π and φ repre-
sent volatility persistence and leverage effect. For the TRGARCH (1,1), there are 16 unknowns,
which are (λ1, λ2, α1, α2, γ1, γ2, β1,1, β2,1, β1,2, β2,2, τ1,1, τ2,1, τ1,2, τ2,2, σ1, σ2). π is the overall
volatility persistence (π1 and π2 measure the volatility persistence for regime 1 and 2 respec-
tively). φ presents the overall leverage effect (φ1 and φ2 represent the leverage effect in regime
1 and 2 respectively). Lastly, ρ∗ is the “optimal” volatility persistence threshold level found by
the proposed algorithm. We also report the average volatility level under each regime in the two
columns of (vol1 and vol2) in Table 4. For RHARGARCH (1,1), there are 10 unknowns, which
are (λ1, α1, γ1, β1,1, δ1, β1,2, δ2, τ1,1, τ1,2, σ1). Compared to the RGARCH setting, the extra two
parameters capture the information from the last week and last month. This can be generally
viewed as the long-run volatility factor component in the latent volatility process, see Engle et al.
(2013). In particular, following Engle et al. (2013) and Huang et al. (2016), we adopt the HAR
specification as follows,

ht = λ+ α1ht−1 + γ1yt−1 +
δ1
5

5∑
j=1

yt−j +
δ2
22

22∑
j=1

yt−j (15)

where δ1 and δ2 capture the weekly and monthly effects in the volatility dynamic process. The
empirical estimates for these two parameters are reported in the δ1 and δ2 column respectively.
It is worth noting that in the RHARGARCH specification, the overall volatility persistence can
be described in α1 + β1,2(γ1 + δ1 + δ2). This is reported in the π column of Table 4.

The first notable finding is that, in general, a relatively low volatility persistence regime is
detected based on the estimation results of the TRGARCH in Table 4. However, the overall
volatility persistence and leverage effect implied by TRGARCH are quite similar to those from
RGARCH and RHARGARCH. It is interesting to observe that the estimates from both RGARCH
and RHARGARCH are quite close to the set of estimates in the high-persistence regime for the
TRGARCH. In other words, under the proposed persistence-threshold structure, an “overlooked”
relatively low volatility persistence regime is identified. Moreover, based on vol1 and vol2, we find
that in the high persistence regime, the average volatility level is always higher than that in the
low persistence regime. The average of the mean volatility level in the regime 1 (low persistence
regime) across all 29 assets is 1.25, while in the regime 2 (high persistence regime) it is 2.94. In

8In Hansen et al. (2012), there are 29 assets in total over the sample period from January 1, 2002 to December
31, 2007, which consists AA, AIG, AXP, BA, BAC, C, CAT, CVX, DD, DIS, GE, GM, HD, IBM, INTC, JNJ,
JPM, KO, MCD, MMM, MRK, MSFT, PG, T, UTX, VZ, WMT, XOM and SPY. Please refer to Hansen et al.
(2012) for the detailed summary statistics.

9Adopting the RHARGARCH model for comparisons as the RHARGARCH is designed for capturing the long
memory feature in the volatility process, see Corsi (2009) and Huang et al. (2016).

10In Table 4, X-1 stands for the estimation results under RGARCH (1,1) for company X. X-2 stands for the esti-
mation results under TRGARCH (1,1) for company X. X-3 stands for the estimation results under RHARGARCH
(1,1) for company X.
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other words, the volatility level in the high persistence regime is generally 135% higher than that in
the low persistence regime under our framework. This also provides consistent empirical evidence
to support the findings in Ning et al. (2015). The results of RHARGARCH are consistent with
those from Huang et al. (2016). In particular, we also find the RHARGARCH has much lower
α1 values than RGARCH and TRGARCH as the volatility movement can be partially explained
in the weekly and monthly factors by δ1 and δ2. In general, the daily effect estimate is larger
than the weekly effect estimate, and followed by the monthly one. We also report the partial
likelihood and full likelihood values of the three specifications across all 29 assets. It is interesting
to note that the partial likelihood values of the returns are similar across these three models.
However, in general, we find that the TRGARCH provides the largest likelihood values, followed
by RHARGARCH and then RGARCH. This general finding supports the threshold structure in
the volatility process as we can see the improvement mainly comes from the conditional volatility
component. It is also not hard to understand that the full likelihood values of RHARGARCH
dominate the RGARCH because of the incorporation of the long-run volatility components in the
structure.11

To give a further illustration, in the following analysis, we use one representative data series,
DIS, as an example. One popularly used measure in terms of the implied persistence is the half-
life of volatility shocks. This measure essentially presents the time span over which a shock to
current volatility level decreases to half of its original size.12 In general, regardless of RGARCH
or TRGARCH specification, the conditional variance equation can be written in the form of
ht = ω1+ω2ht−1+vt−1, where ω1 = λ+γβ1, ω2 = α+γβ2 and vt−1=γ(τ1εt−1+τ2(ε

2
t−1−1) +ut−1).

Through a repeated substitution process, ht can be decomposed into two components: uncondi-
tional variance (σ2) and polynomial sequence of disturbance term (

∑∞
j=1 ω

j−1
2 vt−j). Therefore,

the half-life measure can be computed by solving k from 1
2
= ωk−1

2 . As Lamoureux and Lastrapes
(1990) pointed out, this half-life measure depends solely on the persistence, which can pro-
vide some perspective on the implied persistence mis-specification. In the DIS case, under the
RGARCH (1,1), the estimated persistence is as high as 0.98. The interpretation in terms of the
half-life measure implies that a shock to the current volatility level of DIS would take about 35
days to diminish to half of its original size. However, under the TRGARCH (1,1), two regimes are
detected based on volatility persistence. In the high-persistence regime, the estimated persistence
is also 0.98. While, in the low-persistence regime, the persistence is only 0.70. Using the half-life
measure, it implies a much shorter impact for the shock to volatility in this regime. It would take
only 3 days for a shock to volatility to diminish to its half size.

Alternatively, following Malik et al. (2005), we plot the dynamic impulse response functions
in Figure 5 for DIS to visualize the effects of decreasing in volatility persistence. The dynamic
impulse response function is defined as �(k) = ∂ht/∂vt−k. In particular, we plot �(k) over 30
lags under both RGARCH and TRGARCH specifications. Consistent with the findings in the
half-life measure, the high-persistence regime’s (regime 2 in Figure 5) dynamic impulse function
behaves similarly as RGARCH’s. However, we observe a very different dynamic impulse plot
in the low persistence regime in the TRGARCH model. The effect of a shock on conditional
volatility drops at a much faster rate. For instance, after 10 trading days (2 weeks), a unit shock

11Including the partial likelihood and full likelihood in the comparison can us understand better where the
improvement comes from.

12The half-life was originally proposed in nuclear physics to measure the survival time period of stable atoms.
The measure becomes popular in econometrics as well to describe the shock effects, see Lamoureux and Lastrapes
(1990), Malik et al. (2005), etc.
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on the current volatility has only 1.86% effect left in the regime 2, while 25.6% is remaining in
regime 1 and 29.7% is remaining in the RGARCH (without threshold-regime structure). This
suggests that overlooking this regime specific characteristics could lead to a significantly different
conclusion. Thus, the policy based on it could be erroneous and misleading. In addition, follow-
ing Engle and Ng (1993) and Hansen et al. (2012), we plot the news impact curves for different
regimes in the TRGARCH model. The news impact curve presents the response for the volatility
when negative/positive news arrives. In Figure 6, we see that volatility reacts to news differently
in high and low persistence regimes.13

In the second part of the empirical data analysis, we carry out further investigations of Value-
at-Risk (VaR) performance with our proposed framework based on two illustrative stock indices,
S&P 500 (SPY) and Dow Jones Industrial Average (DJIA). The sample data set comes from the
Realized Library provided by the Oxford-Man Institute of Quantitative Finance. The sample
period covers from January 1st, 2007 to December 31st, 2015. The summary statistics of the
returns and realized kernels (RK) are presented in Table 5. In particular, we report the first four
basic moments, sample size and the Kolmogorov-Smirnov (K-S) test statistics. As expected, both
returns exhibit heavy tails. Although the kurtosis values for the log(RK) are relatively closer to
the benchmark, 3, the K-S tests still reject the normality at 5% level.

We fit both indices (along with the RK) to RGARCH, RHARGARCH and the proposed
TRGARCH.14 The empirical estimates are provided in Table 6. The general empirical findings
are similar to those in the first sample data set. A relatively low volatility persistence regime is
detected under TRGARCH. Although the overall persistence is similar across these three models,
overlooking the low persistence regime could provide misleading economic interpretations. For
instance, without the threshold structure (RGARCH), the implied half-life of volatility is about
18 days for both S&P 500 and DJIA. With the threshold structure (TRGARCH), in regime 2
(high persistence), the implied half-life is about 70 days for both indices, while, in regime 1 (low
persistence), the implied half-life is only 12.2 and 7.6 days for S&P 500 and DJIA respectively. As
mentioned earlier, we evaluate the VaR performance for further investigation. In particular, the
commonly used back-testing algorithm is carried out for the constructions of the VaR measures,
which serve as one diagnostic check on the candidate models. For comparison purpose, we also
include the standard GARCH model. Several standard measures are constructed for evaluation.
First, we define a dummy “hit-sequence” to account for violations. A violation is said to occur if
xt < V aRt. Hence,

Nt =

{
1 if xt < V aRt;
0 otherwise.

Given a confidence level, c% (normally 95% or 99%), E(Nt) = (1−c)T , where T is the sample size.
The total number of violations (TNoV) is the sum of Nt. To address the statistical significance
of the empirical violations, we follow Christoffersen (1998) to construct the likelihood-ratio (LR)

test, LR = 2 log
[(

Υ
1−c
)n (1−Υ

c

)T−n] ∼ χ2
(1), where n is the number of violations, Υ is the actual

13We have also investigated the news impact curves for all 29 samples. We did not find any stylized pattern in
new impact curves for the high and low persistence regimes respectively. However, for most of the samples, the
news impact curves have very different shapes in different regimes. We believe that it is worth exploring more in
the future study to better understand the regime specific characteristics.

14As discussed in Section 2 (see also Hansen and Huang (2016)), in this empirical study we set β2 to be one for
simplified interpretations. In other words, the persistence of each regime is simply the summation of αst and γst .
It is worth mentioning that we also estimate the models without this restriction. We do not observe any significant
difference since β2 is empirically found closed to one.
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proportion of the violations (APoV) to the whole sample. The critical values are 6.635 and 3.841
respectively at the 1% and 5% significance levels. Besides number of violations, an average size
of violation (ASoV) measure is used for evaluation, where ASV = xt−V aRt

V aRt
given Nt = 1. We also

construct the quadratic loss function (see Lopez (1998)) to take into account the magnitude of
the violations. We refer this measure as the sum squared of violations (SSoV), SSoV =

∑
t St,

where St = 1 + (xt − V aRt)
2 if xt < V aRt.

In Figure 7, we plot the return time series and its corresponding VaR measures at 5% level
(upper panel–SPY and lower panel–DJIA). As expected, the standard GARCH provides a rel-
atively flatter VaR “curve”. The RGARCH, RHARGARCH and TRGARCH perform similarly
in the VaR measures. We expect a better performance in TRGARCH since it could accommo-
date/capture regime specific volatility dynamics, and thus it can present a better conditional
distribution for returns than the RGARCH and RHARGARCH. In Table 7. we present TNoV
along with the corresponding LR statistics, APoV, ASoV and SSoV measures. Since the length
of both indices is 2259, at 5% level, the expected number of violations (ENoV) should be 100.35.
We observe that TRGARCH provides the closest TNoV to the expected number of violations
among the three candidates. From the LR test statistics, for both SPY and DJIA, we can not
reject the null hypothesis that “TNoV equals ENoV” at either 5% or 1%. GARCH performs the
worst. It indicates 136 and 134 violations for SPY and DJIA respectively. Under both cases,
the null hypothesis is rejected at 1% level. TRGARCH performs relatively similar to RGARCH
and RHARGARCH. However, for DJIA case, we reject the null hypothesis at 5% level with
both RGARCH and RHARGARCH violations. The APoV measure should be close to 5%. As
expected, TRGARCH dominates the other two. The ASoV and SSoV measures take the magni-
tudes of the violations into account. We do observe that the threshold structure in the realized
GARCH improves these two VaR measurements under both SPY and DJIA cases. Overall, we
conclude that GARCH performs the worst in terms of all VaR loss measures used in this paper.
The extension by introducing the threshold effect improves the VaR performance. The underlying
reason for this improvement can be also implied from the last measure in Table 7. We construct
the partial likelihood (PL) for returns (only) under each model (see Hansen et al. (2012)). We
find that the TRGARCH dominates the other two with the maximum partial log-likelihood val-
ues. This indicates that the structure under threshold improves the fitting of return distribution
in general.

Similar to RGARCH, the proposed TRGARCH is also a complete model. This important
feature provides us a convenient way to conduct feasible multi-step-ahead forecasting on both
realized measure and latent conditional volatility. The procedure of multi-step-ahead prediction
based on the TRGARCH is a straightforward extension from Hansen et al. (2012). In general,
from (13), we are able to construct volatility persistence sequence, based on which we could
determine the regime or state of the next period volatility process. As the state (s) is determined,
the prediction basically follows the procedure in Hansen et al. (2012). In particular, for p = q = 1,
a k-period-ahead prediction can be constructed as follows,[
ĥt+k

ŷt+k

]
=

[
αs,1 γs,1

βs,2αs,1 βs,2γs,1

]k [
ĥt

ŷt

]
+

k−1∑
j=0

[
αs,1 γs,1

βs,2αs,1 βs,2γs,1

]j ([
λs

βs,1 + βs,2λs

]
+

[
0

τ(εt+k−j) + ut+k−j

])

Based on the in-sample estimates, we perform the out-of-sample volatility forecasts (with GARCH,
RGARCH, RHARGARCH and TRGARCH) for the next 100 days. The results are plotted
in Figure 8 (upper panel – SPY and lower panel – DJIA). The realized kernel is used as the
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benchmark for comparison. Overall, RGARCH, RHARGARCH and TRGARCH performs sim-
ilarly (by taking realized volatility measures in the structure), while all perform uniformly bet-
ter than GARCH, which produces pretty flat forecasts of volatility. To evaluate the empiri-
cal forecasting performance, we consider three commonly used measures: the R2-measure from
the Mincer-Zarnowitz (MZ) regression (log(rkt) = b1 + b2ht + et), the mean squared error
(MSE) measure (MSE = 1

n

∑n
t=1(rkt − exp(ht))

2) and the mean absolute error (MAE) mea-
sure (MAE = 1

n

∑n
t=1 |rkt − exp(ht)|). We find the R2s from the MZ regression for GARCH,

RGARCH, RHARGARCH and TRGARCH are 65.0%, 70.5%, 70.7% and 71.2% for SPY and
60.1%, 65.5%, 65.6% and 66.3% for DJIA. The MSEs for GARCH, RGARCH, RHARGARCH
and TRGARCH are 0.4021, 0.3701, 0.3692 and 0.3528 for SPY and 0.4250, 0.3919, 0.3873, 0.3712
for DJIA.15 Lastly, the MAE measures for GARCH, RGARCH, RHARGARCH and TRGARCH
are 0.4367, 0.4198, 0.4087, 0.3922 for SPY and 0.4216, 0.4118, 0.4099, 0.4091 for DJIA. In gen-
eral, one can see that the TRGARCH provides the best volatility forecasts in terms of all the
measures. This is consistent with our expectation that the threshold model introduces regime
specific characteristics and thus provides a flexible structure to well explain the dynamics of the
volatility. Moreover, we find that the bigger the differences of the volatility persistence between
the regimes, the better the performance of the proposed TRGARCH model. This is consistent
with our expectation that if the two regimes are distinct in terms of volatility persistence, it would
be advantageous to adopt our proposed threshold structure.16

5 Conclusion

In this paper, to investigate the “spurious almost integration” effect of volatility, we propose to
introduce the threshold effect in the dynamics of the realized GARCH volatility process. General
closed form solutions of moment conditions are available, which provides a convenient way to
theoretically investigate the statistical properties of the “spurious almost integration” effect and
its impacts. Furthermore, we propose to use the realized volatility persistence as the threshold
candidate to trigger the regime-switch. We find that the proposed framework avoids the overes-
timation of the persistence due to structure breaks/paramter shifts. In the meantime, the regime
specific characteristics can be well captured. Thus, the proposed model provides a better economic
representation of the volatility dynamics than the conventional models. Several groups of Monte
Carlo simulations have been conducted to demonstrate the performance of the proposed model
and the designed estimation algorithm. In particular, the data-driven threshold search algorithm
captures the true regime-switch threshold level well. In the empirical study, two sample data
sets are used for illustration of the proposed framework. In general, we show that overlooking
the relatively low persistence regime could lead to some misleading conclusions (such as volatil-
ity half-life measures and its dynamic impulse response). Evaluating the VaR and forecasting
performance, we find that incorporating the threshold structure improves the fit on the return
distribution and thus provides more accurate VaR measures and better volatility forecasts than
the conventional alternatives especially when the volatility persistence is detected significantly

15We also perform the Diebold-Mariano (DM) test on the forecasting MSE measures. We found that for SPY
the DM test rejects all four models; and for DJIA, the DM test rejects GARCH, RGARCH and RHARGARCH
(cannot reject TRGARCH) at 5% level.

16We also perform the DM test over all 29 assets across different forecasting horizons. In general, we find that
our proposed threshold model provides the best performance against the alternatives. In particular, our proposed
model has more obvious advantage when the differences of the volatility persistence between the regimes are large,
for example, DIS. Since the forecasting is not the focus of the paper, to save space, we do not report all these
detailed results here. We leave those for further extended research based on the current work.
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different across regimes.

Lastly, we want to point out several important issues remaining of interest in this paper.
The data-driven algorithm is designed to search for the “optimal” threshold level. However, the
computational cost is high if we treat every point as one candidate threshold level. It would
be beneficial to develop a more efficient way to estimate the “optimal” threshold level. The
proposed model in this paper can be, in theory, applied using any threshold variables. In this
paper, we address the use of the volatility persistence. It would be interesting to investigate other
alternatives (or combination of multiple candidates). In the paper, for simplicity and for our
economic interpretations, we set the number of regimes to be two (high versus low persistence
regimes). It would be also interesting to extend the empirical study under multiple regimes. We
will leave these for future research.
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Notes

Appendix

A Proofs

Proof of Proposition 1.

Suppose the probability/propotion in regime k is defined as pk = p(sρ = sk). Without loss of
generality, we focus on regime k. Substituting the kth equation in (4) into the corresponding kth
equation in (5), when p = 1 and q = 1, we have,

ht = λsk + αskht−1 + γskβsk,1 + γskβsk,2ht−1 + γskτsk,1εt−1 + γskτsk,2(ε
2
t−1 − 1) + γskusk,t−1

It could be simplified as,
ht = ωsk,1 + ωsk,2ht−1 + vsk,t−1

where ωsk,1 = λsk + γskβsk,1, ωsk,2 = αsk + γskβsk,2 and vsk,t−1=γsk(τsk,1εt−1+τsk,2(ε
2
t−1 − 1) +usk,t−1).

By construction, ωsk,2 captures the kth regime persistence. Therefore the overall persistence ω =
p1ωs1,2 + ...+ pkωsk,2. This is the expression in (6).

In the kth regime,

ϕk = corr(εt, vsk,t) =
E[εtγsk(τsk,1εt + τsk,2(ε

2
t − 1) + usk,t)]√

var(vsk,t)

=
τsk,1√

τ2sk,1 + 2τ2sk,2 + σ2
sk
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Therefore, the overall leverage effect, ϕk = p1ϕ1 + ...+ pkϕk, which is the expression in (7).

Proof of Proposition 2.

Without loss of generality, we focus on the kth regime.

(A) From the proof in Proposition 1, we have ht = ωsk,1 + ωsk,2ht−1 + vsk,t−1. By a repeated
substitution of h-expression on the right-hand side, this equation can be transformed into,

ht =
ωsk,1

1− ωsk,2
+

∞∑
j=0

ωjsk,2vsk,t−j−1

Therefore, the MGF of h can be derived as follows, in the kth regime,

Mhk(η) = E(exp(ηh)) = E

⎛⎝exp

(
η

ωsk,1
1− ωsk,2

)
exp

⎛⎝η
∞∑
j=0

ωjsk,2vsk,t−j−1

⎞⎠⎞⎠
= exp

(
η

ωsk,1
1− ωsk,2

) ∞∏
j=0

Mv

(
ηωjsk,2

)
where the MGF for v is defined as follows.

Mv(ξ) = E(exp(ξv)) = E
(
exp

(
ξγsk(τsk,1εt−1 + τsk,2(ε

2
t−1 − 1) + usk,t−1)

))
= Mε(ξγskτsk,1)Mu(ξγsk) exp(−ξγskτsk,2)Mε2(ξγskτsk,2)

= exp

(
−ξγskτsk,2 +

1

2
ξ2γ2sk(τ

2
sk,1

+ σ2
sk
)

)
(1− 2ξγskτsk,2)

− 1
2

Therefore, the MGF for h can be expressed as,

Mh(η) =
∑K

k=1 pk exp
(
ηωsk,1

1−ωsk,2

)∏∞
j=0Mv

(
ηωjsk,2

)
.

(B) Since in the kth regime, yt = βsk,1 + βsk,2ht + τsk,1εt + τsk,2(ε
2
t − 1) + usk,t, we have,

My(η) = E (eηy) = E
(
eη(βsk,1+βsk,2ht+τsk,1εt+τsk,2(ε2t−1)+usk,t)

)
= exp(η(βsk,1 − τsk,2))Mh(ηβsk,2)Mε(ητsk,1)Mε2(ητsk,2)Mu(η)

Since ε and u are normally distributed, the above can be simplified to,

exp

(
η(βsk,1 − τsk,2) +

1

2
η2(τ2sk,1 + σ2

sk
)

)
(1− 2ητsk,2)

− 1
2Mhk(ηβsk,2)

This expression can be viewed as the product of three MGFs, Mζk(η)Mε2(η)Mhk(ηβsk,2), where ζk ∼
N
(
βsk,1 − τsk,2, τ

2
sk,1

+ σ2
sk

)
.

Hence, the MGF for y is
∑K

k=1 pkMζk(η)Mε2(η)Mhk(ηβsk,2).

Proof of Proposition 3.

E (xmt ) = E
(
e

m
2
htεmt

)
=

∂mMε(η)

∂ηm
||η=0

(
K∑
k=1

pkMhk(
m

2
)

)
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where Mhk(.) is defined in the proof of Proposition 2 and ∂mf(ξ)
∂ξm ||ξ=0 stands for the mth derivative of

f(.) w.r.t ξ evaluated at ξ = 0.

More generally,

E
(
xmt x

n
t+g

)
= E

(
e

m
2
hte

n
2
ht+gεmt ε

n
t+g

)
Since, in regime k, ht = ωsk,1 + ωsk,2ht−1 + vsk,t−1, via iterative substitutions, we have ht+g = ωgsk,2ht +

ωsk,1
∑g

j=1 ω
j−1
sk,2

+
∑g

j=1 ω
g−j
sk,2

vt+g−j . Hence,

E
(
xmt x

n
t+g

)
= E

⎡⎣exp((m+ nωgsk,2
2

)ht

)
exp

⎛⎝n

2
ωsk,1

g∑
j=1

ωj−1
sk,2

⎞⎠ exp

⎛⎝n

2

g∑
j=1

ωg−jsk,2
vt+g−j

⎞⎠⎤⎦
× ∂mMε(η)

∂ηm
||η=0

∂nMε(η)

∂ηn
||η=0

In the kth regime (refer to the proof in Proposition 2),

Mhk(ξ) = exp

(
ξωsk,1

1− ωsk,2

) ∞∏
j=0

Mv

(
ξωjsk,2

)
Mv(ξ) = exp

(
−ξγskτsk,2 +

1

2
ξ2γ2sk(τ

2
sk,1

+ σ2
sk
)

)
(1− 2ξγskτsk,2)

− 1
2

Therefore,

E

⎡⎣exp((m+ nωgsk,2
2

)ht

)
exp

⎛⎝n

2
ωsk,1

g∑
j=1

ωj−1
sk,2

⎞⎠ exp

⎛⎝n

2

g∑
j=1

ωg−jsk,2
vt+g−j

⎞⎠⎤⎦
=

⎡⎣ K∑
k=1

p(s(ρ) = sk)Mhk

(
m+ nωgsk,2

2

)
exp

⎛⎝n

2
ωsk,1

g∑
j=1

ωj−1
sk,2

⎞⎠ g∏
j=1

Mv(
n

2
ω
(g−j)
sk,2

)

⎤⎦
Combining the mth and nth derivatives of the MGF of ε, this yields the closed-form expression of the
(m,n)th order cross-moment of xt and xt+g.
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Figure 1: Theoretical Return Variance Evolution Under the Changes of Model Parameters
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Figure 2: Theoretical Return Kurtosis Evolution Under the Changes of Model Parameters
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Figure 3: Persistence Parameters on Return Variance and Kurtosis
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Figure 4: ACF Plots Under α-switch and γ-switch
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Upper panel is the α-switch impact on ACF (α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.55}). Lower panel is the
γ-switch impact on ACF (γ = {0.1, 0.2, 0.3, 0.35, 0.41}).
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Table 2: Persistence-Driven realized threshold GARCH under a single parameter shift

α = 0.10 to 0.55 γ = 0.10 to 0.41

λ1 0.0577 0.0603
(0.0679) (0.0379)

λ2 0.0581 0.0532
(0.0341) (0.0358)

α1 0.1173 0.5591
(0.0531) (0.1723)

α2 0.5392 0.5685
(0.0403) (0.0473)

γ1 0.4123 0.1206
(0.1078) (0.0659)

γ2 0.4082 0.3865
(0.0471) (0.0520)

β1,1 -0.1758 -0.1661
(0.0885) (0.0638)

β2,1 -0.1794 -0.1752
(0.0681) (0.0760)

β1,2 1.1077 0.9442
(0.2441) (0.2480)

β2,2 1.0399 1.0424
(0.0875) (0.0891)

τ1,1 -0.0698 -0.0692
(0.0303) (0.0176)

τ2,1 -0.0701 -0.0693
(0.0156) (0.0172)

τ1,2 0.0690 0.0728
(0.0220) (0.0136)

τ2,2 0.0728 0.0710
(0.0114) (0.0123)

σ1 0.3757 0.3834
(0.0207) (0.0138)

σ2 0.3859 0.3815
(0.0117) (0.0129)

π1 0.5704 0.6730
(0.1570) (0.2046)

π2 0.9637 0.9714
(0.0185) (0.0135)

Note: The parameter shift for either α or γ occurs in the middle of the sample. Each entry represents the mean
value over 1000 replications. The numbers in the parenthesis are the standard deviations of the estimates.
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Table 3: Persistence-Driven realized threshold GARCH under a single parameter shift

true parameter value estimates

λ1 0.06 0.0573 (0.0303)

λ2 0.06 0.0536 (0.0281)

α1 0.10 0.1627 (0.0812)

α2 0.55 0.5454 (0.0400)

γ1 0.41 0.4108 (0.1202)

γ2 0.41 0.4086 (0.0507)

β1,1 -0.18 -0.1681 (0.0823)

β2,1 -0.18 -0.1715 (0.0832)

β1,2 1.04 1.1563 (0.4454)

β2,2 1.04 1.0402 (0.0928)

τ1,1 -0.07 -0.0709 (0.0262)

τ2,1 -0.07 -0.0713 (0.0166)

τ1,2 0.07 0.0702 (0.0154)

τ2,2 0.07 0.0708 (0.0139)

σ1 0.38 0.3803 (0.0372)

σ2 0.38 0.3782 (0.0109)

π1 0.5704 0.5980 (0.1010)

π2 0.9637 0.9670 (0.0171)

Note: The parameter shift for α occurs in the middle of the sample. Each entry represents the mean value over
200 replications. The numbers in the parenthesis are the standard deviations of the estimates. The mean of the
optimal threshold level is 0.6457.
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Figure 5: Dynamic Impulse Function (DIS)
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Figure 6: News Impact Curve (DIS)
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Table 5: Summary Statistics

Mean Var Skew Kurt Length K-S test
SPY-Return 0.0182 1.6313 -0.2701 12.3270 2259 0.1068
SPY-Log(RK) -0.5601 1.2903 0.6251 3.5710 2259 0.0408
DJIA-Return 0.0243 1.5056 0.0518 12.7276 2259 0.1052
DJIA-Log(RK) -0.5480 1.2331 0.6855 3.6952 2259 0.0452

Note: K-S test stands for the Kolmogorov-Smirnov Normality test at 5% level. The corresponding critical value is
0.0285.

Table 6: Empirical Estimates – SPY and DJIA

SPY-1 SPY-2 SPY-3 DJIA-1 DJIA-2 DJIA-3
λ1 0.19 (0.0854) 0.21 (0.0670) 0.28 (0.0014) 0.14 (0.0171) 0.16 (0.0900) 0.21 (0.0014)
λ2 - 0.14 (0.0578) - 0.11 (0.0046)
α1 0.48 (0.0633) 0.42 (0.0156) 0.27 (0.0054) 0.54 (0.0352) 0.42 (0.1203) 0.37 (0.0087)
α2 - 0.62 (0.1121) - 0.63 (0.0330)
γ1 0.48 (0.0719) 0.52 (0.0069) 0.48 (0.0007) 0.42 (0.0288) 0.48 (0.0739) 0.41 (0.0008)
γ2 - 0.36 (0.1001) - 0.35 (0.0310)

β1,1 -0.41 (0.0893) -0.43 (0.0762) -0.41 (0.070) -0.35 (0.0540) -0.41 (0.1827) -0.35 (0.008)
β2,1 - -0.38 (0.0206) - -0.31 (0.0371)
τ1,1 -0.12 (0.0087) -0.13 (0.0031) -0.12 (0.0001) -0.10 (0.0017) -0.11 (0.0086) -0.11 (0.0001)
τ2,1 - -0.11 (0.0294) - -0.11 (0.0045)
τ1,2 0.13 (0.0135) 0.12 (0.0055) 0.12 (0.0001) 0.15 (0.0093) 0.14 (0.0113) 0.14 (0.001)
τ2,2 - 0.16 (0.0080) - 0.17 (0.0047)
σ1 0.51 (0.0034) 0.52 (0.0002) 0.51 (0.0011) 0.53 (0.0007) 0.52 (0.0012) 0.52 (0.0081)
σ2 - 0.48 (0.0010) - 0.52 (0.0003)
δ1 - - 0.09 (0.0054) - - 0.08 (0.0081)
δ2 - - 0.11 (0.0005) - - 0.10 (0.0006)
π1 0.96 0.94 0.96 0.96 0.90 0.96
π2 - 0.98 - - 0.98 -

Note: XX-1 stands for the RGARCH model of asset XX. XX-2 stands for the TRGARCH model of asset XX.
XX-3 stands for the RHARGARCH model of asset XX. The numbers in the parenthesis are the standard errors
of the estimates.
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Figure 7: Value-at-Risk
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Table 7: VaR – SPY and DJIA

TNoV APoV ASoV SSoV PL
SPY-(GARCH) 136 (12.06)** 6.78% 42.93% 2.9871 -3137.7
SPY-(RGARCH) 120 (3.82) 5.98% 36.29% 1.8052 -2701.4
SPY-(TRGARCH) 118 (3.10) 5.88% 35.56% 1.7681 -2684.3

SPY-(RHARGARCH) 121 (4.21) 6.03% 35.81% 1.7781 -2692.3
DJIA-(GARCH) 134 (10.80)** 6.68% 38.85% 2.4443 -3076.3
DJIA-(RGARCH) 122 (4.61)* 6.08% 32.87% 1.5734 -2660.4
DJIA-(TRGARCH) 118 (3.10) 5.88% 31.28% 1.5397 -2651.5

DJIA-(RHARGARCH) 122 (4.61)* 6.08% 31.50% 1.5689 -2655.5

Expected number of violations is 100.35 for both SPY and DJIA. * and ** denotes significance at the 5% and 1%
level respectively.

Figure 8: Volatility Forecast
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