MASc seminar - Daniel Saari

Friday, October 31, 2014 10:15 am - 10:15 am EDT (GMT -04:00)

Candidate

Daniel Saari

Title

Op Amp Design in Nanoscale Processes Using Fixed-Length Devices

Supervisor

David Nairn

Abstract

Analog integrated circuit design struggles to find relevance in modern fabrication processes. The motivation for digital speed has posed problems for mixed-signal projects that wish to implement digital and analog blocks on the same chip. With the introduction of multigate transistors (also known as FinFETs), the challenges for analog design increase. This is due to the fact that FinFET devices will no longer have a continuum of width and lengths sizes (as previous technologies have exhibited), but instead, these parameters are now quantized. This work proposes a potential solution to the fixed-length problem, in a topology termed the “series-stack”.

Foundries plan to launch the FinFET technology with a number of fixed-sized transistors (typically with minimum length). This work explores a simple method for implementing longer devices: connecting transistors in series, herein called series-stack. To test the feasibility of this architecture, a two-stage CMOS operational amplifier is designed. In lieu of application-specific design constraints, a structured strategy is presented. A key motivation for the series-stack as well as the design strategy is to bring the analog design process up a level of abstraction. The amplifier was planned to be put through the entire design cycle, from conception to lab testing, giving insight into the accuracy of simulation models.

Schematic and post-layout results were collected from the TSMC 65nm kit. Analysis of the results yields obvious simulation discrepancies. Namely, the schematic simulation vastly overestimates the parasitics when using finger-gate techniques. Additionally, the results show significant differences between conventional bulk length and series-stack, with a relative error spanning from 2% to 20% depending on the performance metric. However, most discrepancies are expected, and the two implementations follow similar trends with respect to current density and length. Due to this, the series-stack is deemed a suitable alternative to long transistor designs, especially when considering the organizational advantages at the layout level.