PhD defence - Ahmed Samir Ahmed Awad

Friday, September 12, 2014 1:30 pm - 1:30 pm EDT (GMT -04:00)

Candidate

Ahmed Samir Ahmed Awad

Title

Application of Energy Storage Systems in Smart Grids

Supervisors

Magdy Salama and Tarek El-Fouly (Adjunct)

Abstract

The increasing deployment of distributed generation, especially the renewable based due to feed-in-tariff programs, has led to a revolution in the use of distribution systems and the emergence of smart-grid concepts. Smart grids are intended primarily as a means of facilitating the integration of renewable energy sources and of achieving greater system reliability and efficiency. Energy storage systems (ESSs) offer a number of benefits that can help utilities move toward those goals. However, ESSs are very expensive in capital and operation costs. Consequently, utilities are not usually convinced with the economic benefit of integrating ESSs into their networks with respect to their costs. Thus, the main goal of the research work presented in this thesis is to increase the interest of adopting ESSs in distribution networks through maximizing the benefits of installing ESS for distribution companies. Moreover, this thesis aims to investigate the impact of large-scale ESSs on electricity markets.

The first goal of this thesis is to develop a comprehensive planning framework for allocating distributed storage (DS) units in distribution networks in order to achieve several benefits, as follows: improving distribution system reliability, deferring network upgrades, and making benefit of the price arbitrage. The use of DS allows for successful islanding operation, thus preventing loss of load or minimizing the loss of energy supplied to non-affected customers during network disturbances. Moreover, the application of DS helps in shifting the peak demand into off-peak times, thus deferring the network upgrades. On the top of that, charging and discharging the DS units during off-peak and peak times, respectively, represents another benefit due to the price arbitrage between those different times. In this framework, the installation and maintenance costs of DS units are optimized with respect to the economic value of the benefits mentioned above. The output of the planning framework is the optimal size and location of DS units to be installed, the optimal operation of DS at each load state, and the load points to be shed during contingencies.

The second goal of this thesis is to present a mathematical model for determining the optimal operation of ESS as well as the market prices in a perfectly competitive environment. Controlling ESS operation usually depends on electricity market prices so as to charge when the price is low and discharge when the price is high. On the other hand, the market-clearing price itself is determined based on the energy storage output. The problem is formulated as a mixed complementarity problem (MCP). The proposed model is useful for power system operators dealing with large-scale ESSs at their networks. Furthermore, the impact of energy storage size and location on market price, total generation cost, energy storage arbitrage benefit, and total consumer payment is investigated in this thesis.