ECE6610PD
POWER ELECTRONIC CONVERTERS:
DESIGN AND APPLICATIONS
Fall 2021

COURSE INSTRUCTOR:

Mehrdad Kazerani, PhD, P.Eng., SMIEEE
Professor
Department of Electrical & Computer Engineering
University of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
Tel: 519-888-4567, Ext. 33737
Fax: 519-746-3077
mkazerani@uwaterloo.ca
www.power.uwaterloo.ca

Teaching Assistant:
TBD

Live Lectures Schedule:
TBD

Study Material:

- Detailed lecture slides will be made available for download from LEARN before live lectures.
- Other related materials will also be made available to participants, when appropriate.

Lectures:

- There will be 12 3-hour lectures in the course.

Marking Scheme:

- Written final exam: 60%
- Assignments: 40%
SUMMARY:

This course covers a wide range of topics in power electronics including: power semiconductor devices (an overview), power converter topologies for ac-to-dc, dc-to-dc, dc-to-ac and ac-to-ac conversions, multi-converter and multi-level converter topologies, control techniques in power converters, modeling and controller design of power converters, applications of power converters, implementation aspects of power converters (snubber circuits, gate/base-drive circuits, thermal management, and series/parallel combinations of switches), and computer simulation of power electronic systems.

OBJECTIVES:

❖ Understand the operating characteristics of power semiconductor devices.
❖ Learn about topologies, control techniques, and applications of power converters.
❖ Learn about modeling, controller design and implementation aspects of power converters.
❖ Learn to use a standard power electronic simulation package.

MAJOR TOPICS:

1. Power Semiconductor Devices
2. Power Converter Topologies, Control Techniques and Applications

DETAILED PLAN: 12 LECTURE SESSIONS

<table>
<thead>
<tr>
<th>Topics</th>
<th>No. of Lecture Sessions</th>
<th>Sub-Topics</th>
</tr>
</thead>
</table>
| Introduction to Power Electronics | 1 Week 1 | • Evolution and Scope
 | | • Application Examples
 | | • Waveform Quality
 | | • Input and Output Low-Pass Filters |
| Power Semiconductor Devices and Computer Simulation of Power Electronic Systems | 1 Week 2 | • Diode
 | | • SCR (Thyristor)
 | | • Controllable Switches
 | | • Introduction to Wide-Band-Gap Devices
 | | • Switch Losses
 | | • Introduction to Power Electronic Circuit Simulation using PSIM |
Power Converters: Topologies, Design, Modeling and Control Techniques

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Week 3</td>
<td>• Line-Frequency Diode Rectifiers ◊ Single-Phase and Three-Phase Diode Rectifiers ◊ Applications</td>
</tr>
<tr>
<td>2 Week 4 & Week 5</td>
<td>• Line-Frequency Phase-Controlled Converters ◊ Single-Phase & Three-Phase Phase-Controlled Converters ◊ Applications</td>
</tr>
<tr>
<td>2 Week 6 & Week 7</td>
<td>• Switch-Mode DC-to-DC Converters ◊ Topologies ◊ Control Techniques: Hysteresis, Pulse-Width Modulation, Phase-Shift Modulation ◊ Modeling ◊ Controller Design ◊ Applications</td>
</tr>
<tr>
<td>3 Week 8, Week 9 & Week 10</td>
<td>• DC-to-AC Converters (Inverters) ◊ Voltage- and Current-Sourced Converter Topologies ◊ Control Techniques: Hysteresis, Pulse-Width Modulation, Square-Wave Control, Selective Harmonic Elimination, Space Vector Modulation ◊ Modeling ◊ Multi-Converter and Multi-Level Converter Topologies ◊ Applications</td>
</tr>
</tbody>
</table>

Implementation Aspects of Power Converters

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Week 11 & Week 12</td>
<td>• Snubber Circuits and soft switching • Thermal Management • Gate/Base-Drive Circuits • Series and Parallel Switch Combinations</td>
</tr>
</tbody>
</table>

REFERENCES:

5. Conference and Journal papers.

PREREQUISITES:

- Basic understanding of circuit analysis and control theory
- Familiarity with electric machines and power systems