ECE 677/QIC 885, Quantum Electronics and Photonics
University of Waterloo, Instructor: A. Hamed Majedi
Winter 2022

General Description
Quantum physics provides not only an essential theory to study elementary objects such as electrons and photons but also radical ways to do information processing, sensing, computation and communication. There is a growing interests in engineering students to learn and master quantum mechanics and its various applications. This course offers a composition of topics in quantum electronics and quantum optics to invite a wide range of audiences who are working on areas such as solid state electronics, quantum photonics and quantum information processing. Fundamental concepts and engineering applications are emphasized in each subject. Examples and problems are designed to address the applications of the course contents to real problems in electronic, optoelectronic, photonic and superconductive devices. There is no need for previous exposure to quantum mechanics and the prerequisites of the course are the passion of knowledge, commitment, hard-work and a bit of classical physics, linear algebra and calculus!

General Course Contents
1- Brief History of Quantum Physics; Why, When and How?
2- Wave Mechanics and the Schrödinger Equation; Electron Meows!
3- Electrons in Quantum Confined Structures (quantum well, wire, dot and superlattice); Electrons’ Ballroom Dance
4- Axiomatic Structure of Quantum Mechanics; Lets be Serious!
5- Quantum Dynamics; Time is Gold!
6- Electrons in Electromagnetic Field; Maxwell Meets Schrödinger
7- Angular Momentum and Spin; Irrotational Rotation!
8- Quantum Statistics; Coin tossing with Mr. Fermi and Mr. Bose!
9- Electromagnetic (EM) Field Quantization; When Dirac Meets Maxwell.
10- Quantum States of EM Field; Photon Face Lift!
11- Electron/Photon & Atom-EM Field Interaction; Electron-photon Cha Cha with social distancing!
12- Cavity Quantum Electrodynamics; *Atom-Photon in Tennis Court!*

Text

1- Course notes and slides.

Some References

11- S. Datta, Quantum Transport, Atom to Transistor, Cambridge, 2005.

Grading Policy: 50% Assignments/mini-project, 50% Final Exam.