Course Outline
1) Discrete Signals and Systems, Z-transform, and Discrete Fourier Analysis
Discrete signals and systems; Z-transform; discrete-time Fourier transform (DTFT); transform
domain analysis of signals and systems; discrete Fourier series (DFS) and transform (DFT); fast
Fourier transform (FFT).

2) Digital Filter Design
Finite impulse response (FIR) filter design; infinite impulse response (IIR) filter design.

3) Digital Processing of Analog Signals
Bandlimited signals and Shannon’s sampling theorem; reconstruction from sampling.

4) Multi-Rate Digital Signal Processing
Discrete sampling rate conversion; narrowband and short time Fourier transform and analysis;
spectrogram; analysis-synthesis filter banks and multi-resolution analysis.

5) Multi-Dimensional Digital Signal Processing
Multi-dimensional DFT and FFT; multi-dimensional filter design; multi-dimensional general sampling lattice.

6) **Digital Signal Processing and Machine Learning**
Neural networks; convolutional neural networks; machine learning for digital signal processing.

Textbooks and References
No required textbook. Lecture notes and study materials will be posted at LEARN. Additional reference books and materials include (but not required)

Homework
Both paper and computer homework assignments/solutions will be posted at LEARN. Homework assignments are not graded but are important to after-exam happiness. Computer homework uses MATLAB as an analysis, design and visualization tool.

Exam and Grading
There will be one midterm exam and one final exam.
Mark1 = 0.3 (midterm exam grade) + 0.7 (final exam grade)
Mark2 = 0.5 (midterm exam grade) + 0.5 (final exam grade)
Overall grade = max{Mark1, Mark2}