ECE6615PD: Design and Applications of DC/DC Converters

COURSE INSTRUCTOR:

Dr. Mehrdad Kazerani Professor Department of Electrical & Computer Engineering University of Waterloo 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1 Tel: 519-888-4567, Ext. 33737 Fax: 519-746-3077 mkazeran@ecemail.uwaterloo.ca http://www.power.uwaterloo.ca

Course Objectives:

The objective of this course is to expand the knowledge and expertise of the practicing engineer in the area of DC/DC converters. The course covers analysis, modeling, design, control and industrial applications of different DC/DC converter topologies.

Study Material:

- Detailed lecture slides will be made available for download before the live on-line lectures.
- Other related material (research papers, *etc.*) will also be made available to participants.

Lectures:

- There will be 12 lecture sessions in the course.
- Each Lecture Session will consist of a 2 to 3-hour lecture.

Marking Scheme:

- Written final exam: 60%
- Assignments and Project: 40%

DETAILED PLAN:

12 LECTURE SESSIONS

Торіс	No. of	Sub-Topics
	Lecture	
	Sessions	
Overview of	1	 Characteristics of Diodes and Controllable Switches,
Electronic	Week 1	Switch Losses
Switches,		Waveform Distortion and Harmonics
Waveform		Waveform Quality Indices
Quality, and		 Input and Output Low-Pass Filter Design
Low-Pass Filters		
Non-Isolated	5	Buck Converter
DC/DC	Week 2	Synchronous Buck Converter
Converter	to	• Introduction to PSIM
Topologies and	Week 6	Boost Converter
Control		Buck-Boost Converter
Techniques		Cuk Converter
		• SEPIC
		• Interleaved Converters
		 Non-Idealities and Discontinuous Conduction
		Bidirectional Buck-Boost Converter
		• Full-Bridge (H-Bridge) DC/DC Converter
		• Examples/Applications
		Unidirectional DC/DC Converter Comparison
DC/DC	1	Average Modeling Technique
Converter	Week 7	• State-Space and Transfer Function Representations of
Modeling		Buck, Boost and Buck-Boost DC/DC Converters in
		Continuous and Discontinuous Conduction Modes
		Stability Issues
Isolated DC/DC	3	Flyback Converter
Converter	Week 8	Forward Converter
Topologies and	То	Push-Pull Converter
Control	Week 10	Half-Bridge DC/DC Converter
Techniques,		• Full-Bridge DC/DC Converter
DC Power		Multi-Output DC/DC Converters
Supply Control		• DC Power supply Controller Design
		Examples/Applications
Snubber Design	1	Hard-Switching: Practical Issues
and Soft	Week 11	• Snubber Circuits: Benefits and Design
Switching		• Soft-Switching: Benefits and Limitations

Other Design1Aspects ofWeek 12DC/DCConverters	 Thermal Management Switch Drivers Series/Parallel Connection of Switches Magnetic Design
---	---

REFERENCES:

- 1. Mohan, Undeland and Robbins, *Power Electronics: Converters, Applications, and Design*, 3rd Edition, John Wiley & Sons, Inc., 2003.
- 2. D.W. Hart, *Introduction to Power Electronics*, Prentice Hall, 1997or D.W. Hart, *Power Electronics*, McGraw-Hill, 2011.
- 3. J.G. Kassakian, M.F. Schlecht and G.C. Verghese, *Principles of Power Electronics*, Addison-Wesley Publishing Company, Inc., 1992.
- 4. P.T. Krein, *Elements of Power Electronics*, Oxford University Press, Inc., 1998.
- 5. R.P. Severns and G.E. Bloom, *Modern DC-To-DC Switch Mode Power Converter Circuits*, Van Nostrand Reinhold, 1985.
- 6. K. Kit Sum, *Switch Mode Power Conversion: Basic Theory and Design*, Marcel Dekker, Inc., 1984.
- 7. Conference and Journal papers.

PREREQUISITES:

Basic understanding of circuit analysis and control theory is required. Familiarity with magnetic circuits and electric machinery is desirable.