COURSE OUTLINE

Introduction to Power Electronics
Evolution, Scope and Applications

Power Semiconductor Devices
Diodes, Thyristors, Controllable Switches (actual and ideal characteristics, switch losses, overview of BJT, MOSFET, GTO, IGBT, and IGCT), wide-bandgap devices, power losses in switches

Power Converter Topologies
Line-Frequency Diode-Rectifiers, Line-Frequency Phase-Controlled Converters, dc-to-dc switch-mode converters, dc-to-ac and ac-to-dc switch-mode converters, interleaved converters, multilevel converters, ac-to-ac converters

Control Techniques in Power Converters
Hysteresis control, Pulse Width Modulation (PWM) and linear power amplifier concept, Phase-Shift Modulation, Space Vector Modulation, square-wave control, Selective Harmonic Elimination, average modeling of converters, controller design

Power Quality:
Harmonic Distortion, Power Quality Indices, Input/Output Filters

Applications of power electronic converters
A subset of: Switch-mode dc power supplies, Motor drives, HVDC Transmission Systems, Flexible AC Transmission Systems (FACTS), Grid interface of renewable energy sources, Active power filter, Grid interface of energy storage systems, Microgrids

Project: The project description will be given at the beginning of the second month of the term. The project work will be performed individually. The deliverable is a report in the IEEE journal paper format, composed of the following components: literature review, analysis, modeling, simulation results and suggestions for improvements to the existing solutions.

References:
- Mehrdad Kazerani, *ECE 663 Lecture Slides*.

LEARN:
LEARN will be used for posting course materials, drill problems, project, old exams and announcements. It will also be used for uploading the deliverables by the students to the appropriate drop boxes.

GRADING SCHEME

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>40%</td>
</tr>
<tr>
<td>6×25min. Quizzes</td>
<td>60%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: Those who audit the course are responsible for the project only.
Note: Missing a quiz without a valid excuse will result in a mark of ZERO. Missing a quiz with a valid excuse will result in shifting the corresponding weight to the remaining quizzes. In order to pass the course,
the student has to obtain a passing mark in each and every component of the course (i.e., project and quizzes).

Online Lectures:
All lectures will be online. The exact dates and times of live online events will be announced ahead of time. Recorded videos of live online events will be made available for streaming.

Important

Please visit the following webpage for information on “Requirements and Responsibilities”.
https://uwaterloo.ca/engineering/current-undergraduate-students/academic-support

Here are a few points from the webpage:
“Students are expected to know what constitutes academic integrity, to avoid committing academic offences, and to take responsibility for their actions. Students who are unsure whether an action constitutes an offence, or who need help in learning how to avoid offences (e.g., plagiarism, cheating) or about "rules" for group work/collaboration should seek guidance from the course professor, TA, academic advisor, or the Undergraduate Associate Dean."

“The AccessAbility Services located in Needles Hall North, collaborates with all academic departments to arrange appropriate accommodations for students with disabilities without compromising the academic integrity of the curriculum. If you require academic accommodations to lessen the impact of your disability, please register with the AccessAbility Services office at the beginning of each academic term.
In Person: Needles Hall North, Room 1401
Phone: 519-888-4567, ext. 35082
Fax: 519-746-2401
Email: access@uwaterloo.ca