
ECE 606, Fall 2022, Syllabus, Logistics and Schedule

Algorithms are at the very foundations of computing. It is important that one understands
how to design them, and analyze them for correctness and efficiency. It is important also
that one recognizes whether a problem is intractable so one does not naively seek an effi-
cient algorithm when none may exist. The intent of this course is to provide students with
fundamental training in these aspects.

Target audience Graduate students in engineering at Waterloo
Recommended ECE 250 or an equivalent
prior knowledge www.ucalendar.uwaterloo.ca/1920/COURSE/course-ECE.html

Lectures
See the schedule of classes: classes.uwaterloo.ca/grad.html

Technology permitting, I will record and post my lectures.

Instructor
Mahesh Tripunitara, tripunit@uwaterloo.ca
“Mahesh” “Dr. T” “Prof. T”

Office hours
Mondays, 5-6pm via the team for the course on MS teams.
Or by appointment — schedule via email/private Piazza post.

TA(s)

I do have some help with marking; however, those folks
do not have sufficient bandwidth to interact with you. Please
address all concerns, e.g., regarding marks you receive on an
assignment problem with me via email/private Piazza post.

Course materials learn.uwaterloo.ca

“Textbook”
Tripunitara, “ECE 606 – Algorithms”
Available on Learn. May be posted in stages only.

Discussions
Self signup as of Sept. 1, 2022 at
piazza.com/uwaterloo.ca/fall2022/ece606

Marking
Weekly assignments 50%
Final exam 50%

Assignments
Weekly, Due: 11:59pm Tuesdays. Administered through
Crowdmark: app.crowdmark.com/sign-in/waterloo

Lateness policy No late submissions accepted for any reason whatsoever.

Audit
All deliverables (assignments + final exam) must be
met. A mark of 50 on the course must be achieved.

AccessAbility uwaterloo.ca/accessability-services

Academic Integrity
uwaterloo.ca/academic-integrity

−→ Students

Content Schedule

Week Topics
(1) Sep 07 – Sep 13 Intro to the course; Discrete math review; intro to Python 3
(2) Sep 14 – Sep 20 Expressing algorithms; Data structures review
(3) Sep 21 – Sep 27 Properties of algorithms: existence, correctness, efficiency
(4) Sep 28 – Oct 04 Design strategy I: incremental
(5) Oct 05 – Oct 11 Design strategy II: divide-n-conquer
(-) Oct 12 – Oct 18 (nothing; reading week)
(6) Oct 19 – Oct 25 Design strategy III: greedy
(7) Oct 26 – Nov 01 Design strategy IV: dynamic programming
(8) Nov 02 – Nov 08 Randomization, Probabilistic and approximation algorithms

(9) Nov 09 – Nov 15
Non-determinism; computational complexity; the class NP;
other complexity classes

(10) Nov 16 – Nov 22
Cook- and Karp-reductions; hardness and
completeness for a complexity class

(11) Nov 23 – Nov 29 NP-complete problems and reductions between them
(12) Nov 30 – Dec 06 Machine learning — Probably Approximately Correct (PAC)

Dec 9 – 23, final exam

Assignments

There will be weekly assignments, for a total of 12 assignments across the course. Each com-
prises a few problems that the TAs will mark. There may be problems in the assignment that
involve programming in Python 3; each such problem will be annotated with “[python3].”
Assignments will be published by midnight every Tuesday. They are due by 11:59pm the
following Tuesday. Written solutions must be typeset, or written legibly and scanned, and
uploaded to Crowdmark. Some subset of the problems on each assignment will be marked
by us. This subset will not be announced beforehand.

Lateness policy: no late submissions accepted.

Collaboration policy: you may collaborate with your colleagues when working on your as-
signments in that you can discuss ideas with one another. However, your final submission
must be your own. That is, when you sit down to write your solutions, you should do so
on your own. Any sources you use, whether they are your colleagues, books, papers or on-
line resources, should be appropriately credited in your submission. There is no penalty for
utilizing such (re)sources, provided they are credited explicitly. Otherwise, it is regarded as
plagiarism, and is an academic offence.

Originality detection: We may use plagiarism-detection software to check that your submis-
sions are indeed original, and not plagiarized. Such software includes Turnitin, iThenticate
and Moss.

Final Exam

The final exam will be published similarly as the assignments. However, you will have 24
hours only to turn in your solutions. Your submission is expected to be your own; you
are not to collaborate with anyone, in the course nor outside. However, you’re free to use
any resources, e.g., books/papers/online resources, that you like. You should credit any
(re)source you use in your submission.

I am often asked what the best preparation for this course is. I suggest that a
prospective student have a good grasp of basic discrete math, logic and proof tech-
niques — at the level we teach in our ECE 108 course: www.ucalendar.uwaterloo.
ca/1920/COURSE/course-ECE.html. Note that ECE 108 is a pre-requisite to ECE
250, which I mention as recommended prior knowledge for ECE 606 in the table
on the first page. I attach a “textbook” for ECE 108; I recommend strongly that
a prospective student in ECE 606 peruse it beforehand.

ECE 108, Discrete Math & Logic

John Thistle Mahesh Tripunitara

{jthistle,tripunit}@uwaterloo.ca
ECE, University of Waterloo

2

Acknowledgements

This book relies partly on material from the following.

• W. Conradie and V. Goranko, “Logic and Discrete Mathematics, a
Concise Introduction,” Wiley.

• G. P. Hochschild, “Perspectives of Elementary Mathematics,” Springer-
Verlag.

• P. J. Cameron, “Sets, Logic and Categories,” Springer.

• M. Huth and M. Ryan, “Logic in Computer Science, Modelling and
Reasoning about Systems,” Cambridge.

• T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction
to Algorithms, Third Edition,” MIT Press.

Contents

1 Introduction 5

2 Propositional Logic and Proof Techniques 9

3 Sets, Functions and Cardinality 31

4 Combinatorics 65

3

4 CONTENTS

Chapter 1

Introduction

What is “discrete math?”

Discrete math is a collection of branches of mathematics that deals with
discrete, as opposed to continuous, structures. An example of a discrete
structure is the set of integers, {. . . ,−2,−1, 0, 1, . . .}. We call those “dis-
crete” because they are a collection of “distinct and unconnected elements,”
as defined in the Merriam-Webster’s dictionary. The real numbers, on the
other hand, are not discrete: between any two real numbers, we can find
another real number.

Discrete math and logic is at the very foundations of several aspects of Elec-
trical and Computer Engineering (ECE).

For example, consider a fundamental problem in communications, which itself
is an important topic in ECE. The problem is that of efficiently encoding a
message so it can then be transmitted. Suppose the message we want to send
is:

this is a test this is only a test

One way of encoding the above message is to allocate a fixed number of
bits per character, e.g., 8-bits, as done by the American Standard Code for
Information Interchange, ASCII. This results in an encoding of 272 bits for
the above message, including the spaces.

What if we, instead, assign a sequence of bits to a character based on its fre-
quency of occurrence in the message? Such an approach is called a Huffman

5

6 CHAPTER 1. INTRODUCTION

code. The more frequently a character occurs, the fewer number of bits we
associate with it. Under such an encoding, for the above message, we may
associate, for example, 01 with a space, 100 with each “i,” 1110 with each
“h,” 111101 with each “n,” and so on. This results in only 106 bits to encode
the above message; a significant savings.

See https://people.ok.ubc.ca/ylucet/DS/Huffman.html for a cool ap-
plet that constructs such an encoding by building a particular kind of tree
data structure. The ideas behind the construction of such a code, and an
analysis of why it works, are all based in discrete math.

Another example of where discrete math and logic shows up in ECE is in the
context of Digital Integrated Circuits (ICs). ICs are fundamental to modern
computers. An IC can be seen a kind of directed graph of logic gates. (We
discuss graphs briefly in this course in the context of relations in Chapter 3.)
The following picture shows a modern IC to the left with a detailed view of a
full adder circuit to the right. The full adder circuit adds the bits A and B,
with a carry-in bit, CIN , and outputs two bits: the sum, S, and a carry-out
bit, COUT . In the picture, the gates labelled 1 and 3 are XOR gates, the
gates labelled 2 and 4 are AND gates, and the gate labelled 5 is an OR gate.
For example, the result of A = 0, B = 1, CIN = 1 is S = 0, COUT = 1.

credit: vlabs.ac.in

As a final example of where discrete math and logic shows up in ECE, we
point to algorithms. An algorithm can be thought of as a procedure to com-
pute a function. (We discuss what a function is in Chapter 3.) Algorithms
underlie computer programs, e.g., those written in C++, and show up in var-
ious aspects of our lives, e.g., in the computer equipment and cellphones we
use. The design and analysis of algorithms is rooted deeply in discrete math

7

and logic. It is typical, for example, to adopt a data structure to represent
and store data on which an algorithm operates. A data structure is often a
discrete structure, e.g., an array, or a graph. To analyze the correctness and
efficiency of an algorithm, we often use concepts we introduce in this course,
such as proof by induction and contradiction.

Layout The remainder of this book, and the course, are structured roughly
as follows: (i) Chapter 2, propositional logic and proof techniques, 3 weeks,
(ii) Chapter 3, sets, functions and cardinality, 4 weeks, and, (iii) Chapter 4,
combinatorics, 5 weeks.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Propositional Logic and Proof
Techniques

In this chapter, we’ll define the precise language of propositional logic. You’ll
find that it is very closely related to switching algebra – or the two-element
boolean algebra – that you will be studying in ECE 124, Digital circuits and
systems.

Definition 1 (Proposition). A proposition is a statement with which we are
able to associate true or false.

Examples of propositions:

1. “The Earth is flat.”

2. “Not all birds can fly.”

3. “A dog is a mammal, and not a bird.”

Of course, in the above, Proposition (1) happens to be false, and Propositions
(2) and (3) are true.

Examples of statements that are not propositions:

1. “Hey, you!”

2. “Which way is the hotel?”

3. “This statement is false.”

9

10CHAPTER 2. PROPOSITIONAL LOGIC AND PROOF TECHNIQUES

4. “The variable x is non-negative.”

The first of the above is an exclamation, and the second is a question. As
for the third, if it is true, then it is false, and if it is false, then it is true.
Thus, we are able to associate neither true nor false with that statement. The
fourth refers to a variable that can take on one of several values. Without
knowledge of exactly what value x takes at a given moment, we cannot assess
the truthfulness of the statement.

In this context, it is interesting and fun to address an old riddle. Suppose
one is faced with two persons, call them Alice and Bob, one of whom always
speaks the truth, and the other of whom always lies. What questions, when
asked of Alice and/or Bob, would reveal which one amongst them is the
truth-teller, and which one is the liar?

Suppose we ask one of them, say Alice, whether the other, Bob, would say
‘yes’ if asked whether Alice is the liar. If Alice is the truth-teller, then she
would say ‘yes,’ because Bob is the liar, and he would answer ‘yes’ to our
question to him, when the correct answer is ‘no.’ If Alice is the liar, then
she would say ‘no,’ because Bob, as the truth-teller, would say ‘yes’ if we
asked him whether Alice is the liar, and because Alice always lies, she would
negate that expected response from Bob.

While devising the right question to ask above certainly takes creativity,
underlying the entire exercise is careful logical reasoning. Communicating
and inculcating this is exactly our intent with our discussions on propositional
logic.

To develop an understanding of propositional logic, we will often deal with
propositions abstractly. Specifically, we will adopt usages such as: “Assume
that p is a proposition.” When we say that, we do not know exactly what
the proposition p is. All we know is that p is either true or false.

Given propositions, we can compose them in certain ways to yield other
propositions. Some refer to such a new proposition as a compound proposi-
tion. A proposition that is not compound is called an atomic proposition.

The third example of a proposition above, “A dog is a mammal, and not a
bird” is an example of a compound proposition. As another example, consider
the following two propositions: (i) “The glass is not empty.” (ii) “The glass

11

is not full.” We can compose them and say, (iii) “The glass is neither empty
nor full.” Given such a compound proposition, it is necessary to clarify its
semantics, that is, what the truth value of the compound proposition (iii) is
as a function of the truth values of its constituent, atomic propositions.

To clarify what we mean, suppose the glass is indeed empty. Then Propo-
sition (i) above is false. This implies that Proposition (iii) is false as well.
Similarly, suppose Proposition (iii) is false. Then at least one of Proposition
(i) and (ii) is false. A customary way, in propositional logic, to specify a se-
mantics for a proposition that is composed of other propositions is to specify
a truth table. For our example of Propositions (i)–(iii) above, such a truth
table may look like the following.

If “the glass is not
empty” is

and “the glass is
not full” is

then “the glass is
neither empty nor
full” is

true true true
true false false
false true false
false false false

An important aspect of logic is to carefully distinguish syntax from seman-
tics. Syntax refers to the way we write things down. Semantics refers to
what they mean. We now specify a syntax for compound propositions. We
then clarify what the semantics of each is, via truth tables. The manner
in which we specify a syntax for compound propositions is by introducing
logical connectives, and then asserting that the use of such connectives in
particular ways is syntactically valid.

Logical connectives – syntax Given that each of p and q is a proposition,
so are the following:

• (p): parenthesization – used to force precedence.

• ¬p: negation.

• p ∧ q: conjunction.

• p ∨ q: disjunction.

12CHAPTER 2. PROPOSITIONAL LOGIC AND PROOF TECHNIQUES

• p =⇒ q: implication.

• p ⇐= q: inference.

• p ⇐⇒ q: if and only if.

Given the above syntax for the use of logical connectives to make new propo-
sitions, we can further propose rules via which even more propositions can
be derived. They would be similar to the axioms of boolean algebra, which
you will likely see in ECE 124. We present an example here, but leave more
for a future course. For this course, we focus on employing semantics, which
we specify using truth tables, to infer more propositions. Similarly, in ECE
124, you will generally use “truth tables,” like those employed here, rather
than proofs based on the axioms of boolean algebra.

We point out that more connectives can be introduced, for example, ⊕,
“exclusive-or.” It turns out that in propositional logic, the connectives ¬,∨
and ∧ suffice, and all other connectives can be defined using those three only.
Analogously, in ECE 124, you see that AND, OR, and NOT gates suffice to
implement any boolean function; but you’ll consider XOR and other gates,
which may be more convenient for the implementation of specific functions.
We introduced =⇒ , ⇐= and ⇐⇒ as well because those are used heavily
in this course for proofs. Consequently, it is useful to directly specify and
understand those connectives as well.

As an example of the use of purely syntactic derivation, see proofwiki.org/

wiki/Rule_of_Material_Implication/Formulation_1/Forward_Implication/Proof,
which shows a derivation from p =⇒ q to ¬p ∨ q.

Logical connectives – semantics The following truth tables are custom-
arily associated with the above propositions that are formed using logical
connectives. A truth table specifies, for every possibility of a truth value for
the constituent propositions, what the truth value of a compound proposition
is. We use T for true, and F for false.

• parenthesization:
p (p)
T T
F F

The above truth table merely emphasizes that the truth value of p is
unaffected by parenthesization.

13

• negation:
p ¬p
T F
F T

Example: suppose “the Sun is hot” is true. Then, “the Sun is not hot”
is false. The second statement is the manner in which we customarily
write the negation of “the Sun is hot” in English.

• conjunction:

p q p ∧ q
T T T
T F F
F T F
F F F

Example: suppose “the Moon is made of cheese” is false, and “the Sun
is hot” is true. Then, “the Moon is made of cheese and the Sun is hot”
is false.

• disjunction:

p q p ∨ q
T T T
T F T
F T T
F F F

Example: suppose “the Moon is made of cheese” is false, and “the Sun
is hot” is true. Then, “either the Moon is made of cheese, or the Sun
is hot, or both” is true.

• implication:

p q p =⇒ q
T T T
T F F
F T T
F F T

Example: suppose “the Moon is made of cheese” is false, and “the Sun
is hot” is true. Then:

– “If the Sun is hot, then the Moon is made of cheese” is false.

– “If the Moon is made of cheese, then the Sun is hot” is true.

– “If the Sun is not hot, then the Moon is made of cheese” is true.

14CHAPTER 2. PROPOSITIONAL LOGIC AND PROOF TECHNIQUES

The last two examples illustrate that, in propositional logic, “if p then
q” may have a very different meaning than in natural language. In
English, it is often used, for instance, to imply a causal relationship
between p and q. But given a premise p that is false – for example,
“the Sun is not hot” – the implication p =⇒ q is true for any q,
even a completely unrelated proposition q such as “the Moon is made
of cheese.” So the current truth of p =⇒ q does not mean that,
when the Sun eventually cools, the Moon will then be composed en-
tirely of fermented curd; rather, when the Sun cools, the implication
itself will be false: in our truth-functional semantics, the truth value of
the compound proposition reflects only the specific truth values of the
constituent propositions, and no more profound relationship between
those constituent propositions. It may be helpful to think of “if p then
q” as shorthand for, “(in any row of the truth table in which p =⇒ q
is true), if p is true, then q is true.”

In mathematics, because we use these same truth-functional semantics,
if p is false, we say that p =⇒ q is vacuously true, to mean that the
implication is true simply by virtue of the falsity of its premise. For
example, if p is “x is an element of the empty set,” and q is “x has
property Q,” then p =⇒ q is (vacuously) true, whatever the property
Q: the elements of the empty set can be said to have any property that
you like, because there are no such elements.

It is not necessary to read p =⇒ q as “if p then q”; another common
way is to say “p only if q.” Again, the proper interpretation is truth-
functional.

In other words, in our truth-functional semantics, the following two
statements are completely equivalent:

If the Sun is hot, then the Moon is made of cheese.

The Sun is hot only if the Moon is made of cheese.

• inference:

p q p ⇐= q
T T T
T F T
F T F
F F T

15

Here the compound proposition is a different way of writing q =⇒ p.
It is commonly read, “p if q,” but should be interpreted only truth-
functionally, and not as implying some deeper relationship between p
and q.

Example: suppose “the Moon is made of cheese” is false, and “the Sun
is hot” is true. Then:

– “the Sun is hot if the Moon is made of cheese” is true.

– “the Moon is made of cheese if the Sun is hot” is false.

– “the Moon is made of cheese if the Sun is not hot” is true.

• if and only if:

p q p ⇐⇒ q
T T T
T F F
F T F
F F T

Example: suppose “the Moon is made of cheese” is false, and “the Sun
is hot” is true. Then:

– “The Sun is hot if and only if the Moon is made of cheese” is false.

– “The Moon is made of cheese if and only if the Sun is not hot” is
true.

Given the above semantics via truth tables, we can now infer several more
propositions.

Claim 1. (p =⇒ q) ⇐⇒ (¬p ∨ q).

Proof. By truth-table.

p q ¬p p =⇒ q ¬p ∨ q (p =⇒ q) ⇐⇒ (¬p ∨ q)
F F T T T T
F T T T T T
T F F F F T
T T F T T T

We claim that the above is a valid proof for the claim because for every
possible combination of truth values for p and q, we have shown that the

16CHAPTER 2. PROPOSITIONAL LOGIC AND PROOF TECHNIQUES

proposition in the claim is true. We now make and prove two more claims.
The first, which is an implication, has a special name, and is useful for
carrying out some proofs. Given p =⇒ q, we call the proposition ¬q =⇒
¬p its contrapositive. The contrapositive of an implication is different from
the converse: the converse of p =⇒ q is q =⇒ p. It turns out that
(p =⇒ q) ⇐⇒ (¬q =⇒ ¬p), that is, an implication and its contrapositive
are completely equivalent from the standpoint of their respective truth values.
However, given a proposition p =⇒ q, its converse, q =⇒ p, is not
necessarily true.

For example, suppose you know that if it rains, then I carry an umbrella. You
happen to observe that I am carrying an umbrella. Can you infer anything,
for example, that it is raining? The answer is no, not necessarily. On the
other hand, suppose you observe that I am not carrying an umbrella. Can
you infer anything? The answer is yes, you can infer that it is not raining.

Claim 2. (p =⇒ q) ⇐⇒ (¬q =⇒ ¬p).

Proof. We prove by truth table.

p q ¬p ¬q p =⇒ q ¬q =⇒ ¬p (p =⇒ q) ⇐⇒
(¬q =⇒ ¬p)

F F T T T T T
F T T F T T T
T F F T F F T
T T F F T T T

We now assert something that is perhaps not as easy to prove. If only because
it involves three propositions, p, q and r. But again, careful use of the truth
table enables us to carry out the proof.

Claim 3. (p =⇒ q) =⇒ (p ∨ r =⇒ q ∨ r).

17

Proof. By truth table.

p q r p ∨ r q ∨ r p =⇒ q
p ∨ r =⇒ (p =⇒ q) =⇒
q ∨ r (p ∨ r =⇒ q ∨ r)

F F F F F T T T
F F T T T T T T
F T F F T T T T
F T T T T T T T
T F F T F F F T
T F T T T F T T
T T F T T T T T
T T T T T T T T

Perhaps the trickiest part of the truth table in the above proof is intuiting
the truth value of the last column when p =⇒ q is false. Recall that the
proposition φ =⇒ ψ is true whenever φ is false. And in this case, φ is
p =⇒ q.

A number of other useful propositions can similarly be inferred from the
truth tables. Following are some useful propositions, and names we associate
with them when perceived as properties.

• (p ∨ q) ⇐⇒ (q ∨ p) – commutativity of ∨.

• (p ∧ q) ⇐⇒ (q ∧ p) – commutativity of ∧.

• ((p ∨ q) ∨ r) ⇐⇒ (p ∨ (q ∨ r)) – associativity of ∨.

• ((p ∧ q) ∧ r) ⇐⇒ (p ∧ (q ∧ r)) – associativity of ∧.

• (¬(p ∨ q)) ⇐⇒ (¬p ∧ ¬q) – De Morgan’s law (¬ over ∨).

• (¬(p ∧ q)) ⇐⇒ (¬p ∨ ¬q) – De Morgan’s law (¬ over ∧).

• (p ∨ (q ∧ r)) ⇐⇒ ((p ∨ q) ∧ (p ∨ r)) – distributivity of ∨ over ∧.

• (p ∧ (q ∨ r)) ⇐⇒ ((p ∧ q) ∨ (p ∧ r)) – distributivity of ∧ over ∨.

• (p =⇒ q) ⇐⇒ (q ⇐= p).

• (p ⇐⇒ q) ⇐⇒ ((p =⇒ q) ∧ (p ⇐= q)).

18CHAPTER 2. PROPOSITIONAL LOGIC AND PROOF TECHNIQUES

Quantifiers We now introduce constructs that are not part of propositional
logic, but a higher-order logic called predicate logic. However, as they are
useful for this course in intuiting properties in various contexts, we introduce
and discuss them here. The constructs are called quantifiers, and they are
useful when we want to make assertions that have variables in them.

An example of the use of a quantifier is the following: “every star is hot.”
Another way of saying the same thing, while explicating the use of a variable
and a quantifier is: “for every star x, x is hot.” The “for every” part is
a quantifier, specifically the universal quantifier. The other quantifier of
interest to use is the existential quantifier. An example of its use is: “there
exists x such that x is a bird and x can fly.” (More simply, in English we
would say, “there exists a bird that can fly,” or “some birds can fly.”)

The notation we use for the universal quantifier is “∀ ” and for the existential
quantifier is “ ∃ .” For example, we might write: “∃ rational y such that y2 =
2.” As another example, “∀ integer x, x3 is an integer .” We can use the
logical connectives ¬,∨ and ∧ along with quantifiers. For example, to ex-
press that there exists no rational y such that y2 = 2, we could write:
“¬(∃ rational y such that y2 = 2),”

In the context of that last example, it is useful to be able to intuit equiva-
lent assertions. We could equivalently assert: “∀ rational y,¬(y2 = 2),” for
that example, or, “∀ rational y, y2 6= 2,” if we define the symbol “6=” as the
complement of “=.” Indeed, following are the rules, in general, of negating
an assertion with a quantifier. In the following, we assume that p(x) is an
assertion that involves the variable x.

• ¬(∃x, p(x)) ⇐⇒ ∀x,¬p(x).

• ¬(∀x, p(x)) ⇐⇒ ∃x,¬p(x).

We can quantify over more than one variable. For example: “∀ positive
integer a, ∃ real b such that b =

√
a.” Note that, when different quantifiers

are used, as in this example, their order matters: in general, “∀ person a,
∃ person b such that b is a’s mother” is not equivalent to “∃ person b, such
that, ∀ person a, b is a’s mother”; the first formula asserts that every person
has a mother, the second that there is a person who is mother to everyone
(even herself).

Sometimes, when we use the same quantifier over multiple variables, we write

19

one instance of a quantifier only, and not several. For example:

∀ real a, b, (a ≤ b ∨ b ≤ a)

When we really should write “∀ real a, ∀ real b”

We have already been using quantifiers implicitly. For example, consider
Claim 3 above. When we refer to p, q and r in the statement of the claim,
what we really mean to say is, “for all propositions p, q and r, it is true
that. . . ” The “for all” quantifiers on each of p, q and r were left implicit in
the statement of the claim.

20CHAPTER 2. PROPOSITIONAL LOGIC AND PROOF TECHNIQUES

Proof techniques

We now discuss proof techniques that are useful in this course, and in future,
to you in your engineering profession. The mindset and systematic thinking
that working out a proof develops is critical to one’s success as an engineer.
The kinds of proofs we develop, and the underlying mindsets and techniques
we use, are not only of esoteric or theoretical interest. They have immedi-
ate, practical consequence. Also, the precise communication that such proofs
require also are very valuable for one to develop as an engineer. Precise tech-
nical communication is an invaluable skill, that is highy prized not only in
academia, but also industry and business settings. We return to this some-
what philosophical discussion once we have discussed the proof techniques
we seek to impart as part of this course.

Logical deduction The overarching technique we use is logical deduction:
going from a set of known or assumed statements to new statements, that are
typically derived by logic implication. We have already seen some examples
of this in our discussions on logic in this chapter.

Consider the following joke. Three logicians walk into a bar. The bartender
asks, “would y’all like something to drink?” Logician 1 says, “I don’t know.”
Logician 2 says, “I don’t know.” Logician 3 says, “yes.”

The joke is a play on the wording of the bartender’s question, specifically,
her use of “all.” She seems to be asking whether all three of the logicians
want a drink. Presumably, each of Logicians 1 and 2 would like a drink. But
they do not know yet as to whether all of them want a drink. Therefore,
they are compelled to say, “I don’t know.” Logician 3 infers that the other
two would each like a drink; otherwise, one of them would have said, “no.”
She knows that she wants a drink herself, and therefore says, “yes.”

Imagine that Logician 3 had said, “no.” Then, presumably Logicians 1 and
2 want a drink each, but Logician 3 does not. While this is admittedly a
joke, it exercises logical deduction in a good way. Such logical deduction is
at the foundations of every proof we carry out. Following are some specific
strategies one could adopt to carry out a proof. Each strategy provides a
kind of framework within which logical deduction is used. More than one
strategy may be useful in carrying out a proof, and a proof does not require
any particular strategy to be adopted to be carried out successfully. It is

21

important also to recognize when one has successfully carried out a proof;
the strategy helps with this aspect as well.

Some of the strategies that arise in this course, and in future courses are:

• Case analysis: we enumerate, exhaustively, all possible cases that can
occur, and prove each, in turn. Following is an example.

Claim 4. For any three natural numbers x, y, z, where x + y = z, if
any two of x, y, z are divisible by 3, then so is the third.

Proof. By case analysis.

1. x, y are divisible by 3. Then, x = 3a, y = 3b for some natural
numbers a, b. Then, because z = x+y, z = 3(a+b), which implies
that z is divisible by 3.

2. x, z are divisible by 3. Then, x = 3a, z = 3b for some natural
numbers a, b. As y is a natural number, i.e., y ≥ 0 and x+ y = z,
b ≥ a. And, y = 3(b − a). As b ≥ a, b − a is a natural number,
and therefore y is a natural number that is divisible by 3.

3. y, z are divisible by 3. This is identical to the previous case as x
and y are interchangeable.

An interesting observation about the above claim is that its converse
is not necessarily true. That is, for three natural numbers x, y, z with
x+y = z, if one of them is divisible 3, it does not necessarily imply that
the other two are as well. A counterexample can be used to establish
this. A counterexample is x = 1, y = 2, z = 3.

• Contradiction: we recall the truth table for an implication, and observe
that the only case such a proposition is false is when φ is true, and ψ
is false. For a proof by contradiction of a proposition φ =⇒ ψ, we
assume that the premise, φ is true, and yet, the implication, ψ, is false.
We then establish by logical deduction that something that is false
must be true, or that something that is true must be false – this is the
contradiction we deduce.

For example, consider the following claim, and its proof by contradic-
tion.

22CHAPTER 2. PROPOSITIONAL LOGIC AND PROOF TECHNIQUES

Claim 5.
√

2 is not rational.

Proof. To perceive the statement the claim as an implication, we can
rephrase it as: x =

√
2 =⇒ x is not a rational number.

For the purpose of contradiction, assume that x =
√

2, and x is rational.
Then, x = p/q, where p and q are integers. We assume, without loss of
generality, that p and q have only 1 as a common factor, i.e., p/q is in
its simplest form. Then, x2 = 2 = p2/q2 =⇒ p2 = 2q2.

Thus, p2 is even. This implies that p is even, because if p is odd, then p
is of the form 2x+1 where x is an integer, and (2x+1)2 = 4x2 +4x+1,
which is odd. Thus, p = 2y, for some integer y.

Therefore, p2/2 = (2y)2/2 = 2y2 = q2. Thus, q2 is even as well, and
therefore q is even. Thus, both p and q are even, which means p/q is
not in its simplest form, which is our desired contradiction.

Another example, which was on the final exam of the Spring’18 offering
of the course is the following claim. We define an even number as
follows: x is an even number if x = 2y, where y is an integer.

Claim 6. If a, b, c are positive integers, then at least one of a− b, b−
c, c− a is even.

An example is a = 13, b = 8, c = 5. Then, c− a = −8, which is even.

Proof. Assume, for the purpose of contradiction, that none of a− b, b−
c, c−a is even. Then, a−b = 2k+1 for some integer k, and b−c = 2l+1
for some integer l. then, c−a = −(b− c+a− b) = −(2l+1+2k+1) =
2(−l− k+ 1), which is an integer because l, k are integers, and is even.
This contradicts our assumption that c− a is odd.

• Contrapositive: recall that (φ =⇒ ψ) ⇐⇒ (¬ψ =⇒ ¬φ); the two
implications are contrapositives of one another. Given a claim φ =⇒ ψ
a proof of the contrapositive proves, instead, ¬ψ =⇒ ¬φ.

Following is an example of proof by contrapositive.

23

Claim 7. For x, y positive integers,

(
x∑

i=1

i =

y∑

i=1

i

)
=⇒ (x = y).

Proof. We prove the contrapositive, that is, for x, y positive integers,

(x 6= y) =⇒
(

x∑

i=1

i 6=
y∑

i=1

i

)
.

Given that x 6= y, either (i) x > y or (ii) x < y. In case (i),

(
x∑

i=1

i

)
=

(
y∑

i=1

i+
x∑

i=y+1

i

)
≥
(
y + 1 +

y∑

i=1

i

)
>

(
1 +

y∑

i=1

i

)
, because x ≥ y+1

and y > 0. This implies that
x∑

i=1

i 6=
y∑

i=1

i, as desired.

Case (ii) is proven identically, by interchanging x and y.

• Construction: this is typically for statements of the form “there ex-
ists. . . ” That is, a natural way to prove that something exists is to
construct, or present, one. For example, if we all agree on what an
elephant is, and I am challenged to prove that elephants exist, I can
simply produce and present an elephant. Following is an example.

Claim 8. Given any two real numbers, x, y such that x < y, there
exists a real number z such that x < z < y.

Proof. By construction. Let z = (x+ y)/2. Then z is real because the
sum of two real numbers is real, and dividing a real by another that is
not zero yields a real. To establish that x < z < y, we observe:

x < z < y ⇐= x <
x+ y

2
< y

⇐= 2x < x+ y < 2y

⇐= x+ x < x+ y < y + y

⇐= x < y

24CHAPTER 2. PROPOSITIONAL LOGIC AND PROOF TECHNIQUES

The above proof demonstrates a useful strategy: to begin with what
we seek to prove, and then work backwards to a sufficient condition for
that to be true, in this case, x < y, which we know to be true.

• Induction: a proof by induction is usually put to use when we have a
statement that involves a universal quantifier, for a sequence of items,
for example, all natural numbers. A proof by induction is structured
as follows:

– We first prove that the statement is true for the base case. The
base case is the statement for the first natural number, 0.

– We then prove the step, i.e., the following implication: if the state-
ment is true for all natural numbers, 0, 1, . . . , i−1, then the state-
ment is true for the natural number i.

Together, the two steps above prove the statement for all items in the
sequence, for example, every natural number. This is because proving
the (i) base case, i.e., the statement for 0, and, (ii) the step, implies
that the statement is true for the second natural number, 1. This, with
the step, in turn implies that the statement is true for 2. And, 3, and
so on, for all natural numbers. Following is an example.

Claim 9. 1 + 2 + . . .+ n = n(n+1)
2

.

Proof. By induction on n.

Base case: n = 1. When n = 1, the left hand side is 1. And the right
hand-side is 1×2

2
= 1. Thus, we have proved that the statement is true

for the base case.

Step: we adopt the induction assumption, that the statement is true
for all n = 1, 2, . . . , i− 1, for some i ≥ 2. Under that premise, we seek
to prove the statement for n = i. We observe:

1 + 2 + . . .+ i− 1 + i =
(i− 1)i

2
+ i ∵ induction assumption

=
i2 − i+ 2i

2

=
i2 + i

2
=
i(i+ 1)

2

25

Thus, we have proven the base case and the step, and therefore we have
successfully carried out our proof by induction on n.

As the base case, we have proved that the statement is true when n = 1. As
a consequence of proving the step, then, we have proved that the statement
is true for n = 2. And with that, and as a consequence of the step, we have
proved that the statement is true for n = 3. And so on.

We now carry out several proofs as examples to demonstrate the above strate-
gies. We begin with a problem from the final exam of the Spring’18 offering
of the course.

Claim 10. For every natural number n ≥ 12, there exist natural numbers
m1,m2 such that n = 4m1 + 5m2.

Proof. By induction on n.

Base cases: we prove the statement for the following cases: n = 12, 13, 14, 15.
The reason we consider several base cases becomes apparent once we get in
to proving the step. We observe:

• 12 = 4× 3 + 5× 0.

• 13 = 4× 2 + 5× 1.

• 14 = 4× 1 + 5× 2.

• 15 = 4× 0 + 5× 3.

Step: we assume that the assertion is true for all n = 12, 13, . . . , i − 1 for
some i ≥ 13. For n = i, we first observe that i = i− 1 + 1 = 4k1 + 5k2 + 1,
for some natural numbers k1, k2, from the induction assumption. We do a
case analysis.

Case (i): k1 > 0. Then, i = 4k1 + 5k2 + 1 = 4(k1 − 1) + 5(k2 + 1).

Case (ii): k1 = 0. Then, because i > 12, k2 ≥ 3. Then, i = 5k2 + 1 =
4× 4 + 5(k2 − 3).

The reason we prove several base cases is to address Case (ii) of the step.
Because the smallest n for which k2 ≥ 3 is n = 15. By addressing several

26CHAPTER 2. PROPOSITIONAL LOGIC AND PROOF TECHNIQUES

base cases, we ensure that our proof is indeed correct, i.e., that we can indeed
make the inductive argument.

Claim 11. For every non-negative integer n, exactly one of the following is
true:

• there exists a non-negative integer m such that n = 3m.

• there exists a non-negative integer m such that n = 3m+ 1.

• there exists a non-negative integer m such that n = 3m+ 2.

We need to be careful here in that the statement says that exactly one of
those cases is true. That is, for a particular n, one of the cases is true, and
neither of the others is true. We need to prove both those properties.

Proof. By induction on n. Again, we are careful to address several base cases.

Base cases: for each of n = 0, 1, 2, we prove the first part by construction,
i.e., by producing an m that demonstrates that the statement is true.

For n = 0, we observe that 0 = 3 × 0, i.e., m = 0, which proves that the
statement is true. For n = 1, we again propose m = 0, and observe that
n = 1 = 3 × 0 + 1. And for n = 2, we propose m = 0, and observe that
n = 2 = 3× 0 + 2. Thus, we have shown one part of the statement for each
of n = 0, 1, 2, which is that there exists such an m.

We now prove the other part of the statement: that given that 0 = 3m for
some m, then it can be neither 3m′ + 1 nor 3m′ + 2 for any non-negative
integer m′. Suppose, for the purpose of contradiction, there exists such an
m′, that is, 0 = 3m′+1. Then, m′ = −1/3, which contradicts the assumption
that m′ is a non-negative integer. Similarly, 0 = 3m′ + 2 =⇒ m′ = −2/3,
again a contradiction.

And similarly, if 1 = 3m′, then m′ = 1/3 and if 1 = 3m′+2, then m′ = −1/3,
in each case a contradiction to the assumption that m′ is a non-negative
integer. And finally, if 2 = 3m′, then m′ = 2/3, and if 2 = 3m′ + 1, then
m′ = 1/3.

Step: we assume that the statement is true for all n = 0, 1, 2, . . . , i − 1 for
some i ≥ 1. For n = i, we do a case analysis, and in each case, produce an
m.

27

• if i− 1 = 3m for some non-negative integer m, then, i = 3m+ 1.

• if i− 1 = 3m+ 1 for some non-negative integer m, then, i = 3m+ 2.

• if i− 1 = 3m+ 2 for some non-negative integer m, then, i = 3(m+ 1).
And because m is a non-negative integer, so is m+ 1.

To establish that no other case applies, assume that a non-negative integer
m′ exists that corresponds to one of the other cases, for the purpose of
contradiction. We again do a case analysis.

• if i = 3m and i = 3m′+ 1, then m′ = m− 1/3, which is a contradiction
to the assumption that m′ is a non-negative integer. And if i = 3m′+2,
then m′ = m− 2/3, which is a similar contradiction.

• if i = 3m+ 1 and i = 3m′, then m′ = m+ 1/3, and if i = 3m′+ 2, then
m′ = m− 1/3, each of which is a contradiction.

• if i = 3m+ 2 and i = 3m′, then m′ = m+ 2/3, and if i = 3m′+ 1, then
m′ = m + 1/3, both of which contradict our assumption that m′ is a
non-negative integer.

We now consider a proof by induction for a statement that is obviously not
true. The statement is: all horses have the same colour. The proof is as
follows. For the base case, pick a horse. Obviously it is the same colour as
itself. Therefore, the base case has been proved. The induction assumption
is that given up to n = i − 1 horses, for some i ≥ 2, they all have the
same colour. Now consider that we are given n = i horses. We pick some
horse, and temporarily remove it from the set. Then we are left with i − 1
horses which, by the induction assumption all have the same colour. We now
temporarily remove one of those i − 1 horses from the set, and add back in
the horse that we first removed. Again, we are left with i− 1 horses which,
by the induction assumption must all have the same colour.

A flaw in the above proof is in the manner in which we prove the step. While
it is certainly ok to remove a horse, call it H, from the set and then assert
that the remainder all have the same colour, what we now need to do is prove

28CHAPTER 2. PROPOSITIONAL LOGIC AND PROOF TECHNIQUES

that H has the same colour as the other i−1 horses. We cannot again appeal
to the induction assumption to do that, as the above flawed proof does.

We now present one more correct example of proof by induction. In the
following claim, we address a situation that there appears to be more than
one choice for the parameter on which we carry out induction.

Claim 12. Suppose n is a natural number whose digits, in order of most-
to least-significant, are nk−1 nk−2 . . . , n0, where each ni is one of 0, . . . , 9. If

the sum of the digits of n, Sn =
k−1∑

i=0

ni, is divisible by 3, then n is divisible

by 3.

An example is n = 809173. Then, Sn = 28, which is not divisible by 3.
Therefore, from the statement in the claim, we cannot infer anything as to
whether n is divisible by 3. On the other hand, the digits of 82907370 add
up to 36, and therefore, if the claim is true, then 82907370 is divisible by 3.

We emphasize that the implication in the statement goes in one direction
only. “. . . if Sn is divisible by 3, then n is divisible by 3. . . ” It says nothing
about what Sn may be if n is divisible by 3.

The above claim presents an example of where if we choose to carry out a
proof by induction, then we need to clearly say on what parameter we carry
out induction. For the above claim, there appear to be at least two choices:
induction on n, and induction on k. In the following proof, we carry out
induction on k, i.e., the number of digits when we write n in decimal.

Proof. Base case: k = 1. Then, n = n0 = Sn, i.e., n has only one digit.
Then, for Sn to be divisible by 3, Sn must be one of 3, 6 or 9. In each case,
because n = Sn, we observe that n is divible by 3 as well.

Step: our induction assumption is that given any n that has k = 1, . . . , i− 1
digits, for some i ≥ 2, if Sn is divisible by 3, then so is n. We need to
now prove that given some n of i digits, if Sn is divisible by 3, then so is n.
Henceforth, we use the notation ()10 to indicate when we write a number in
base-10, i.e., its digits from most- to least-significant.

We have n = (ni−1 ni−2 . . . n0)10. Therefore, n = 10i−1ni−1+10i−2ni−2+ . . .+

29

100n0 = 10i−1ni−1 +(ni−2 . . . n0)10. Also, Sn =
i−1∑

j=0

nj = ni−1 +
i−2∑

j=0

nj. We do

a case analysis on
i−2∑

j=0

nj as to whether it is divisible by 3. We appeal often

to Claim 4. Recall that that claim is: given three natural numbers x, y, z
such that x+ y = z and any two are divisible by 3, then so is the third.

• Suppose
i−2∑

j=0

nj is divisible by 3. Then, for Sn to be divisible by 3,

ni−1 must be divisible by 3 by Claim 4. That is, ni−1 = 3a for some

natural number a. Then, n = 10i−1 × 3a+ (ni−2 . . . n0)10. As
i−2∑

j=0

nj is

divisible by 3, by the induction assumption, (ni−2 . . . n0)10 is divisible
by 3. Therefore, by Claim 4, n = 10i−1×3a+ (ni−2 . . . n0)10 is divisible
by 3, because it is the sum of two numbers, each of which is divisible
by 3.

• Suppose
i−2∑

j=0

nj is not divisible by 3. Then,
i−2∑

j=0

nj = 3a + b, for some

natural number a, and for b either 1 or 2. We now do a case analysis
of those two cases for b.

– If b = 1, then ni−1 = 3a′ + 2 for some natural number a′, because
otherwise, Sn is not divisible by 3. And we have:

n = 10i−1ni−1 + (ni−2 . . . n0)10

= 10i−1(3a′ + 2) + (ni−2 . . . n0)10

= 10i−1 × 3a′ + 10i−2 × 20 + (ni−2 . . . n0)10

Now, we do a further case analysis on ni−2:

∗ If ni−2 = 0, then, we choose to write n as:

n = 10i−1 × 3a′ + 10i−2 × 18 + (2ni−3 . . . n0)10

Now, each of 10i−1 × 3a′ and 10i−2 × 18 is divisible by 3.
And the digits of (2ni−3 . . . n0)10 are divisible by 3, because

30CHAPTER 2. PROPOSITIONAL LOGIC AND PROOF TECHNIQUES

i−2∑

j=2

nj = 3a + 1. Therefore, by the induction assumption,

(2ni−3 . . . n0) is divisible by 3. Thus, n is the sum of three
numbers, each of which is divisible by 3, and therefore n is
divisible by 3.

∗ If ni−2 > 0, then, we choose to write n as:

n = 10i−1 × 3a′ + 10i−2 × 21 + ((ni−2 − 1)ni−3 . . . n0)10

Again, n is the sum of three numbers each of which is divisible
by 3.

– If b = 2, then ni−1 = 3a′ + 1 for some natural number a′, because
otherwise, Sn is not divisible by 3. And we have:

n = 10i−1ni−1 + (ni−2 . . . n0)10

= 10i−1(3a′ + 1) + (ni−2 . . . n0)10

= 10i−1 × 3a′ + 10i−2 × 10 + (ni−2 . . . n0)10

As before, we do a further case analysis on ni−2:

∗ If ni−2 = 0 or ni−2 = 1, then we choose to write n as:

n = 10i−1 × 3a′ + 10i−2 × 9 + ((ni−2 + 1)ni−3 . . . n0)10

And n is the sum of three numbers each of which is divisible
by 3.

∗ If ni−2 ≥ 2, then we choose to write n as:

n = 10i−1 × 3a′ + 10i−2 × 12 + ((ni−2 − 2)ni−3 . . . n0)10

And n is the sum of three numbers each of which is divisible
by 3.

Chapter 3

Sets, Functions and Cardinality

A set is a collection of distinct item or elements. For example, {apple, orange,
pear} is a set, as is {1, 2, aardvark, x}.

The above definition is somewhat vague and incomplete, and as will be seen
shortly, it can lead to paradoxes. A thorough treatment of the way it needs
to be qualified is beyond the scope of this course. Suffice it to say that it is
safe to consider the standard collections normally encountered in engineering
– such as those of the integers, rationals and real numbers – to be sets; and
we will introduce some restrictions on the manner in which new sets can be
defined – these will be sufficient to keep us out of trouble.

A set is completely determined by its elements: two sets A and B are iden-
tical, or equal, written A = B, if they have exactly the same elements.
Otherwise, they are distinct, different or unequal: A 6= B.

We emphasize two important properties of a set:

• a set imposes no ordering on the items it contains. A set is an unordered
collection. For example, {1, 2, 3} = {2, 1, 3}.

• each element of a set is distinct. No two elements can be identical. As
an example, this precludes {1, 1, 2, 3} from being deemed a set. (It is,
rather, a multiset.)

An element of a set can also be called a member, and we say that the set
contains that member. We use “∈ ” to denote set membership. E.g., 1 ∈

31

32 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

{1, 2, 3}, and, x ∈ {a, x, y, z}. The complement of ∈ is 6∈, e.g., b 6∈ {a, x, y, z}.
We can define 6∈ terms of ∈ as follows, using logic: x 6∈ S ⇐⇒ ¬(x ∈ S).

The empty set is a set which has no members. By definition, any two such
sets are in fact one and the same: they have exactly the same members.
There is therefore a unique empty set. It is denoted ∅, or { }.

An alternative to denoting a set by enumerating elements is set-builder nota-
tion. An example of the specification of a set using set-builder notation is as
follows: {x | x is an integer > 0 and ≤ 5}. Of course, that specifies the set
{1, 2, 3, 4, 5}. As the example suggests, in set-builder notation, we use the
vertical bar, “ | ” to specify conditions on the members of the set.

The complement of the empty set, ∅, is the set of everything, which is called
the universal set, or simply, the universe and is denoted U . We need to
be careful with what we include in U , i.e., what “everything” means in this
context, as our discussions on Russell’s paradox below indicate. Typically,
we associate our discussions with a domain of discourse, and the domain of
discourse specifies what U is. For example, our domain of discourse may be
all natural numbers, in which case U would be the set of all natural numbers.
As another example, our domain of discourse may be all people, in which case
U would be the set of all people. The domain of discourse, and therefore what
U is, is typically clear from context.

Special sets We now identify sets that we and others refer to frequently.
The set of natural numbers, denoted N is {1, 2, . . .}. The set of whole num-
bers, W = {0, 1, 2, 3, . . .}. The set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
The set of positive integers, Z+ = {1, 2, 3 . . .} = N. The set of non-negative
integers, Z+

0 = {0, 1, 2, . . .} = W. The set of negative, and non-positive inte-
gers are similarly specified, and denoted Z− and Z−0 , respectively. The set of
real numbers is denoted R, and correspondingly, we have the of positive real
numbers, R+, the set of non-negative reals R+

0 , the set of negative reals, R−,
and the set of non-positive reals, R−0 .

The set of rational numbers, denoted Q, can be defined using the set-builder
notation as follows: Q = {p/q | p ∈ Z, q ∈ Z+, p and q have no factor, or
divisor, in common other than 1. Such a specification using the set-builder
notation brings us to the issue of care we need to take when using the set-
builder notation.

33

Russell’s paradox A set is a collection of items. A set itself can be per-
ceived as an item. Therefore, it is possible to specify a set of sets. For
example, {{1}, ∅, {1, 2, 3, 4, 5}} is a set of sets of integers, which has three
members. An immediate question that then arises is: can a set be a member
of itself? It does not seem meaningful to allow this, and therefore we may
mandate that no set is allowed to be a member of itself.

However, it turns out that this by itself does not preclude contradictions that
can occur in the specification of a set. A particular contradiction is Russell’s
paradox, which is demonstrated by the following specification of a set using
set-builder notation.

Let S = {x | x is a set such that x 6∈ x}

That is, S is the set of all sets that do not contain themselves. Now, we ask:
does S contain itself?

• If the answer is ‘yes,’ then:

S ∈ S =⇒ S is a set that does not contain itself =⇒ S 6∈ S

Thus, we have a contradiction.

• If the answer is ‘no,’ then:

S 6∈ S =⇒ S is a set that does not contain itself =⇒ S ∈ S

Thus, we again have a contradiction.

A thorough discussion on “clean” specifications of sets and other constructs
is beyond the scope of this course. The above discussion on Russell’s paradox
reveals, however, that care must be taken. In our case, a quick “hack” is to
restrict the manner in which the set-builder notation is used. We require
that when specifying a set using the set-builder notation, it must look like
the following:

{x ∈ A | conditions on x}

That is, we must specify of what superset A this set being specified is a subset.
(See below for definitions of super- and subsets.) And the conditions that

34 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

appear after “ | ” are then used to specify which members of A are members of
this set. Under these requirements, the earlier specification, S = {x | x 6∈ x}
is no longer allowed.

And if we specify, for example, S = {x ∈ A | x 6∈ x}, we no longer have a
paradox. Because suppose S = {x ∈ A | x 6∈ x} is our specification of S, and
we again ask: is S ∈ S?

• If the answer is ‘yes,’ then:

S ∈ S =⇒ S ∈ A ∧ S 6∈ S =⇒ S 6∈ S

Thus, we have a contradiction.

• If the answer is ‘no,’ then:

S 6∈ S =⇒ S 6∈ A ∨ (S ∈ A ∧ S 6∈ S)

Now, if S ∈ A, then S ∈ A ∧ S 6∈ S =⇒ S ∈ S, a contradiction.

Thus, we have a possibility without a contradiction, and that is that S 6∈ A.
Which implies S 6∈ S, and the answer to the question “is S ∈ S?” is “no.”

Set relationships and operations We now continue with our discussions
on basic notions regarding sets.

A is a subset of B, denoted A ⊆ B, if every member of A is a member of B.
That is, A ⊆ B ⇐⇒ (x ∈ A =⇒ x ∈ B). We say that A is a strict subset
of B, denoted A ⊂ B, if A is a subset of B, but is not equal to B. That is,
A ⊂ B ⇐⇒ (A ⊆ B ∧ A 6= B).

We say that A is a superset of B, denoted A ⊇ B if and only if B ⊆ A. We say
that A is a strict superset of B, denoted A ⊃ B if and only if A ⊇ B∧A 6= B.

Claim 13. For any two sets A,B, (A = B) ⇐⇒ (A ⊆ B ∧ A ⊇ B).

Proof. By deduction.

A = B ⇐⇒ (x ∈ A ⇐⇒ x ∈ B)

⇐⇒ ((x ∈ A =⇒ x ∈ B) ∧ (x ∈ A ⇐= x ∈ B))

⇐⇒ (A ⊆ B ∧ A ⊇ B)

35

For two sets A,B, their union, denoted A ∪ B is the set with the property:
x ∈ A ∪B ⇐⇒ (x ∈ A ∨ x ∈ B).

Their intersection, denoted A∩B is the set with the property: x ∈ A∩B ⇐⇒
(x ∈ A ∧ x ∈ B).

Their difference, denoted A \B or A−B, is the set {x ∈ A | x 6∈ B}.

Venn diagrams and their limitations We can visualize some set rela-
tionships and operations using Venn diagrams. Examples of Venn diagrams
for intersection, union, subset and difference between two sets are shown
below.

A B

A \ B

A B

A ∩ B

A B

A ∪ B

A
B

B ⊆ A

Venn diagrams are certainly useful to gain an understanding of what’s going
on in some limited situations with sets. However, they are not a proof strat-
egy for several reasons. One is that they do not deal well with special cases,
e.g., if one of the sets is empty, or the universe. They also do not scale to
assertions, for example, that involve n sets, where n is some natural number.
And they are not necessarily useful to intuit somewhat complex assertions,
for example, the following from the final exam in Spring ’18: “prove that for
sets A,B, (A \B = B) =⇒ (A = ∅).” Therefore, while Venn diagrams are
useful to get an idea of what’s going on, it is important to be able to work
more abstractly, and be able to work with the proof strategies we discuss in
this course.

We now present some properties of set operations.

Claim 14. For any two sets A,B, A \B = A \ (A ∩B).

36 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

Proof.

y ∈ A \ (A ∩B) ⇐⇒ y ∈ A ∧ (y 6∈ A ∩B) (3.1)

⇐⇒ y ∈ A ∧ (y 6∈ A ∨ y 6∈ B) (3.2)

⇐⇒ (y ∈ A ∧ y 6∈ A) ∨ (y ∈ A ∧ y 6∈ B) (3.3)

⇐⇒ false ∨ (y ∈ A ∧ y 6∈ B) (3.4)

⇐⇒ y ∈ A ∧ y 6∈ B (3.5)

⇐⇒ y ∈ A \B (3.6)

Rationale for each line in the above proof:

(3.1) definition of set difference.

(3.2) y ∈ A ∩ B ⇐⇒ (y ∈ A ∧ y ∈ B). Now, we negate each side, and we
have: ¬(y ∈ A ∩B) ⇐⇒ ¬(y ∈ A ∧ y ∈ B). Which is the same as:
y 6∈ A ∩B ⇐⇒ (y 6∈ A ∨ y 6∈ B).

(3.3) ∧ distributes over ∨.

(3.4) φ ∧ ¬φ ⇐⇒ false.

(3.5) (false ∨ φ) ⇐⇒ φ.

(3.6) definition of set difference.

We can establish several properties of ∪ and ∩, for example, that they are
commutative and associative, and how they work for the special sets, ∅ and
U . An interesting property is the manner in which ∪ and ∩ distribute over
one another.

Claim 15. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof. The proof is pretty much directly from the distributivity of ∨ over
∧. This is not a coincidence — ∪ between sets has a very similar seman-
tics to ∨ between propositions, and ∩ between sets is similar to ∧ between

37

propositions. The proof is as follows:

x ∈ A ∪ (B ∩ C) ⇐⇒ (x ∈ A) ∨ (x ∈ B ∩ C)

⇐⇒ (x ∈ A) ∨ (x ∈ B ∧ x ∈ C)

⇐⇒ (x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C)

⇐⇒ (x ∈ A ∪B) ∧ (x ∈ A ∪ C)

⇐⇒ x ∈ (A ∪B) ∩ (A ∪ C)

Similarly, we can show that ∩ distributes over ∪, i.e., A ∩ (B ∪ C) = (A ∩
B) ∪ (A ∩ C).

We can generalize the notion of union and intersection to more than just
between two sets. Given a set X , we define

⋃
X = {y ∈ X | X ∈ X} .

For X 6= ∅, let X ∈ X . Then, we define:

⋂
X = {x ∈ X | ∀X ′ ∈ X , x ∈ X ′} .

For example,
⋃{{1, 2}, {2, 3}, {3, 4}} = {1, 2, 3, 4}, and

⋂{{1, 2, 3}, {2, 3, 4},
{3, 4, 5}} = {3}.

Claim 16. Suppose X = {X1, . . . , Xn} for some n ∈ N, n > 0. Then,⋃X = X1 ∪X2 ∪ . . . ∪Xn, and
⋂X = X1 ∩X2 ∩ . . . ∩Xn.

The claim can be proved by induction on n.

The complement of a set A, denoted A is A = U \A, where U is the universal
set. Thus, as special cases, we have: ∅ = U , and U = ∅. As an example
of the complement of a set, suppose U = Z, the set of integers. Then,
Z+ = Z \ Z+ = Z−0 , i.e., the set of all negative integers and zero.

Complement for sets is akin to negation in propositional logic.

Claim 17.
(
A
)

= A.

38 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

Proof.

x ∈
(
A
)
⇐⇒ x ∈ U \ A
⇐⇒ x ∈ U ∧ x 6∈ A
⇐⇒ x ∈ U ∧ x 6∈ (U \ A)

⇐⇒ x ∈ U ∧ ¬(x ∈ U \ A)

⇐⇒ x ∈ U ∧ ¬(x ∈ U ∧ ¬(x ∈ A))

⇐⇒ x ∈ U ∧ (x 6∈ U ∨ x ∈ A)

⇐⇒ (x ∈ U ∧ x 6∈ U) ∨ (x ∈ U ∧ x ∈ A)

⇐⇒ false ∨ (x ∈ U ∧ x ∈ A)

⇐⇒ x ∈ U ∧ x ∈ A
⇐⇒ x ∈ U ∩ A ⇐⇒ x ∈ A

Ordered pairs and Cartesian product An ordered pair of two items, x
and y, denoted 〈x, y〉 is defined as:

〈x, y〉 =

{
{{x}} if x = y
{{x}, {x, y}} otherwise

The main point of an ordered pair is to impose an ordering between the two
items x and y; that is, if x 6= y, then 〈x, y〉 6= 〈y, x〉. This is captured by the
following claim.

Claim 18. Given two ordered pairs, 〈x1, y1〉, 〈x2, y2〉,

(〈x1, y1〉 = 〈x2, y2〉) ⇐⇒ ((x1 = x2) ∧ (y1 = y2))

Proof. For the “ =⇒ ” direction: we assume 〈x1, y1〉 = 〈x2, y2〉 and consider
two cases.

• x1 = y1 or x2 = y2. The two cases are the same, so we address the
former only. x1 = y1 =⇒ 〈x1, y1〉 has one member only, which
implies x2 = y2, as otherwise, 〈x2, y2〉 has two members. Furthermore,
〈x1, y1〉 = {{x1}} = {{x2}} = 〈x2, y2〉, and therefore, x1 = x2 = y1 =
y2 =⇒ (x1 = x2) ∧ (y1 = y2).

39

• x1 6= y1 or x2 6= y2. The two cases are the same, so we address the
former only. 〈x1, y1〉 = {{x1}, {x1, y1}} = {{x2}, {x2, y2}} = 〈x2, y2〉.
Thus, {x1} = {x2} =⇒ x1 = x2. And {x1, y1} = {x2, y2} =⇒ y1 =
y2 as well.

The “⇐= ” direction is proven similarly.

Ordered pairs are used when the ordering of two items is important, which
means that making them members of a set does not suffice, as a set is un-
ordered. For example, we may want ordered pairs of 〈parent, child〉, and
then the ordered pair 〈Alice,Bob〉 is different from 〈Bob,Alice〉, because the
former says that Alice is a parent of Bob, while the latter says that Bob is a
parent of Alice.

Now that we have a characterization of ordered pairs, we can define the
Cartesian product. The Cartesian product of two sets, A,B, denoted A×B
is defined as:

A×B = {〈x, y〉 | x ∈ A and y ∈ B}

For example, if A = {1, 2, 3}, B = {a, b}, then A×B = {〈1, a〉, 〈1, b〉, 〈2, a〉,
〈2, b〉, 〈3, a〉, 〈3, b〉}.

A special case of a Cartesian product is that of a set with itself. For example,
if A = {1, 2, 3} as above, then A × A = {〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 2〉,
〈2, 3〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉}. The Cartesian product provides us a nice way to
define the set of rational numbers. Q = Z × Z+; that is, Q is the set of all
ordered pairs 〈integer, positive integer〉.

A particularly interesting and useful notion is that of a relation on the sets
A,B. A relation, R, on A,B is: R ⊆ A × B. The intent with a relation is
to model a relationship between items in A and items in B. R is required to
be a subset only of A×B; this allows for only some items in A to be related
to items in B. For example, suppose A = {−1, 0, 1}, B = 〈1, 2, 3〉. Then
R = {〈−1, 1〉, 〈1, 1〉} is a relation, which we may call the “is the square of”
relation. That is, 〈x, y〉 ∈ R only if y = x2.

Relations play a particularly important role in modern computing. A re-
lational database is an approach to storing information by perceiving the
information as comprising relations on sets. Before we discuss relational

40 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

databases, we first generalize the notions of ordered pairs and Cartesian
products.

An n-tuple is an ordered sequence, 〈x1, x2, . . . , xn〉, of n items. When the
number of items is inferred from context, or does not matter, we refer to
such a structure as simply a tuple. Two tuples, 〈x1, . . . , xn〉 and 〈y1, . . . , ym〉
are said to be equal, or the same, denoted, 〈x1, . . . , xn〉 = 〈y1, . . . , ym〉 if two
conditions are met: (i) n = m, and, (ii) x1 = y1, . . . , xn = yn. Note that (ii)
is the length-n counterpart of Claim 18.

Now, we can define the Cartesian product of n sets, A1 × A2 × . . . × An =
{〈x1, . . . , xn〉 | x1 ∈ A1, . . . , xn ∈ An}. And we can then define a relation on
A1, . . . , An; R ⊆ A1× . . .×An is such a relation. Rather than a relationship
between items from only two sets, such a relation expresses a relationship
between items from the n sets.

A relational database comprises tables. Each such relational table is a rela-
tion as we define above. For example, here at the University of Waterloo,
the registrar likely maintains a relational database where the tables are a
relation R ⊆ I×N ×Y , where I is the set of IDs, N is the set of names, and
Y is the set of years of entry. We can now query such tables; for example,
we can ask what the ID of a particular student is, given her name, and how
many students entered the university in the year 2018.

Another example of the use of relations is a social network, such as Facebook.
The “is a Facebook friend of” may be seen as a relation that is a subset of
U × U , where U is the set of all users in Facebook. Facebook may impose
additional properties on such relations. For example, the “is a Facebook
friend of” relation may be symmetric: Alice is a Facebook friend of Bob only
if Bob is a Facebook friend of Alice. We discuss relations more at the end of
this chapter.

Intervals Another notation that is associated with sets is that of intervals.
For example, [−5.3, 4.82] represents the set of all real numbers between −5.3
and 4.82, inclusive. There are three kinds of intervals:

• [a, b] where a, b ∈ R is called a closed interval. It represents the set
{r ∈ R | a ≤ r ≤ b}.

• (a, b] and [a, b), where a, b ∈ R are called a half-open intervals. The

41

former represents the set {r ∈ R | a < r ≤ b}, and the latter represents
{r ∈ R | a ≤ r < b}.
• (a, b) where a, b ∈ R is called an open interval. It represents the set
{r ∈ R | a < r < b}.

Sometimes, when we want the convenience of the above notation but want
to restrict ourselves to subsets of reals, we intersect an interval with a set.
For example, we could represent the set of all integers between −10 and 8,
which excludes −10, but includes 8, as (−10, 8] ∩ Z. Of course, that set is
{−9,−8, . . . ,−1, 0, 1, . . . , 8}.

Powerset Given a set A, the powerset of A is the set of all subsets of A.
We denote it as P(A). For example, if A = {1, 2, 3}, then P(A) = {∅, {1},
{2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. We can establish lots of properties
of the powerset; following is an example.

Claim 19. A ∈P(X) ∧B ∈P(X) =⇒ A ∪B ∈P(X).

Proof.

A ∈P(X) ∧B ∈P(X)

⇐⇒ (A ⊆ X) ∧ (B ⊆ X)

⇐⇒ (x ∈ A =⇒ x ∈ X) ∧ (x ∈ B =⇒ x ∈ X)

⇐⇒ (x /∈ A ∨ x ∈ X) ∧ (x 6∈ B ∨ x ∈ X)

⇐⇒ (x /∈ A ∧ x 6∈ B) ∨ (x ∈ X)

⇐⇒ ¬(x ∈ A ∨ x ∈ B) ∨ (x ∈ X)

⇐⇒ (x ∈ A ∨ x ∈ B) =⇒ x ∈ X
⇐⇒ (x ∈ A ∪B) =⇒ x ∈ X
⇐⇒ A ∪B ⊆ X ⇐⇒ A ∪B ∈P(X)

Functions A function from a set A to a set B is a relation, F ⊆ A×B such
that every a ∈ A appears as the first component in exactly one ordered pair
in F . For example, given A = {1, 2, 3}, B = {x, y}, the relation F = {〈1, x〉,
〈2, x〉, 〈3, y〉}, is a function from A to B.

Apart from this perspective of a function as a particular kind of relation,
there are other ways to perceive a function that are meaningful. One is

42 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

the perspective that the function is a mapping of each item in A to exactly
one item in B. This perspective can be visualized for the above example as
follows.

1

2

3

x

y

The notion of a function is quite fundamental, and surprisingly powerful.
It plays an important role in many aspects of electrical and computer engi-
neering. Many algorithms, for example, compute functions. And algorithmic
problems can be expressed as problems of computing functions. As an ex-
ample, consider the problem of sorting, in non-decreasing order, an array of
integers. This can be seen as the problem of mapping an array of integers to
its sorted permutation (or rearrangement), and such a mapping is a function,
because every such array is associated with a unique sorted permutation.

Functions are often represented using lower-case letters, e.g., f , and to em-
phasize that f is a function from A to B, we write f : A→ B. The set A is
called f ’s domain, and the set B is called its codomain. We write domain(f)
and codomain(f) to refer to the domain and codomain, respectively, of a
function f . We observe that the mindset behind such notation is to perceive
the mnemonics domain and codomain as functions. Each maps a function to
a set.

If f maps a ∈ A to b ∈ B, we write this as f(a) = b. To specify the manner
in which f maps a particular a ∈ A to b ∈ B, we use “7→.” For example, a
function, f , whose domain and range are the set of integers, and which maps
every integers to double that integer is written as:

f : Z→ Z, f : a 7→ 2a

If f : A → B is a function under which f(a) = b for some a ∈ A, b ∈ B, we
call b the image of a under f . We call a the preimage of b under f . The set of
all images is called the range of the function; we denote it as range(f). That

43

is, range(f) = {b ∈ codomain(f) | ∃a ∈ domain(f) such that f(a) = b}. As
that specification for the range indicates, range(f) ⊆ codomain(f).

For example, suppose domain(f) = {1, 2, 3}, codomain(f) = {p, q, r, s}, and
f(1) = f(3) = p, f(2) = q, then range(f) = {p, q}.

If range(f) = codomain(f), then we say that f is surjective, onto or a surjec-
tion. If f maps every a ∈ domain(f) to a unique b ∈ codomain(f), then we
say that f is injective, into, an injection or one-to-one. That is, f is injective
if, for every a1, a2 ∈ domain(f), it is the true that:

f(a1) = f(a2) =⇒ a1 = a2

If f is injective, then we can define another function, which we call the inverse
of f , denoted f−1, as follows:

f−1 : range(f)→ domain(f), f−1 : f(x) 7→ x

An injective function is also called invertible for exactly the reason that its
inverse exists and can be defined as above. A special case of an invertible
function f is when f is both injective and surjective. In this case f is called a
bijection. Figure 3.1 shows, pictorially, examples of these kinds of functions.

Injections, surjections and bijections are related to one another, for example,
as expressed by the following claims.

Claim 20. If f : A→ B is a bijection, then so is f−1, and f−1
−1

= f .

Proof. Because f is a surjection, range(f) = B. Thus, f−1 : B → A. From
the definition of f−1, f−1 is a surjection. To show that f−1 is an injection
as well, assume otherwise, for the purpose of contradiction. Then, there
exist some b1, b2 ∈ B with b1 6= b2 such that f−1(b1) = f−1(b2). But as
B = range(f), there exist a1, a2 ∈ A such that f(a1) = b1, f(a2) = b2. Also,
as f is a function, b1 6= b2 =⇒ a1 6= a2.

But, from the definition of f−1, a1 = f−1(b1), a2 = f−1(b2). Thus, we have
a contradiction to the assumption that f−1(b1) = f−1(b2). Therefore, f−1 is
an injection.

To prove that f−1
−1

= f , we need to prove that for all a ∈ A, f−1
−1

(a) =
f(a). Let g = f−1. Then, from the definition of f−1:

g : B → A, g : f(a) 7→ a

44 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

1

2

3

x

y

Surjection, not
an injection

1

2

x

y

z

Injection, not
a surjection

Bijection

1

2

x

y

z3

1

2

x

y

z3

Neither an injection
nor a surjection

Figure 3.1: Injections, surjections and bijections

Then, f−1
−1

= g−1, where:

g−1 : A→ B, g−1 : g(b) 7→ b

Now suppose f(a) = b for some a ∈ A, b ∈ B. Then, f−1(b) = g(b) = a. And
f−1

−1
(a) = g−1(a) = b = f(a), as desired.

Claim 21. Suppose f : A → B is an injection. Then f−1 : range(f) → A is
a bijection.

Proof. From the definition of range(f), f−1 is a surjection. To show that f−1

is an injection, assume otherwise, for the purpose of contradiction. Then,
there exist b1, b2 ∈ range(f) with b1 6= b2 such that f−1(b1) = f−1(b2). But,
from the definition of f−1, f−1(b1) = a1 for some a1 ∈ A such that f(a1) = b1,
and similarly for b2 and a2. Thus, a1 = a2, yet f(a1) = b1 6= b2 = f(a2),
which contradicts the assumption that f is a function.

Claim 22. There exists an injection f : A→ B if and only if there exists a
surjection g : B → A.

45

Proof. “only if”: suppose such an f exists. Then by Claim 21 above, there
exists f−1 : range(f) → A which is a bijection. Now pick some a ∈ A and
define g as follows.

g : B → A, g : b 7→
{
f−1(b) if b ∈ range(f)
a otherwise

Then g is a surjection because range(f) ⊆ B.

“if”: suppose such a g exists. Then, for every a ∈ A, there exists some b ∈ B
such that g(b) = a. Let G : A →P(B), G : a 7→ {b ∈ B | g(b) = a}, where
P(B) is the powerset of B. For every a ∈ A, pick some b ∈ G(a), and denote
the choice as ba. Then, f : A→ B, f : a 7→ ba is an injection.

46 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

Cardinality of sets

The cardinality of a set intends to capture the notion of the number of
members the set contains. We specify it based on the existence of particular
kinds of functions from a set to a subset of the set of natural numbers,
N = {1, 2, 3, . . .}.

Suppose, for some n ∈ N, we refer to the subset {1, 2, . . . , n} of N as Nn. We
say that a set S 6= ∅ is finite if there exists some n ∈ N for which there exists
a bijection f : S → Nn.

For example, the set S = {−3, 0, 1, 3, 4} is finite, because there is a bijection,
f : S → N5. Such an f may be: f(−3) = 5, f(0) = 1, f(1) = 3, f(3) =
2, f(4) = 3.

Claim 23. If there exists an injection f : S → Nn for some n ∈ N, S 6= ∅,
then S is finite.

Proof. We need to prove that there exists a bijection g : S → Nm, for some
m ∈ N. We do so by construction. Define g as follows.

g : s 7→





1 if f(s) = min
s′∈S
{f(s′)}

g(s′) + 1 otherwise, for s′ ∈ S with
f(s′) = max

s′′∈S
{f(s′′) | f(s′′) ∈ {1, 2, . . . , f(s)− 1}}

We claim that the above g is a bijection from S toNm, wherem = maxs∈S{g(s)}.
We can prove this by, for example, induction on n.

We say that a set S 6= ∅ is infinite if it is not finite.

Claim 24. N is infinite.

Proof. Assume otherwise, for the purpose of contradiction. Then, there exists
some n ∈ N such that there is a bijection f : N → Nn. Now let m =
max
1≤i≤n

{
f−1(i)

}
. Now, m ∈ N =⇒ m+ 1 ∈ N. Let f(m+ 1) = j ∈ Nn. Then,

as f is a bijection, f−1(j) = m + 1 > m, a contradiction to the assumption
that m is the maximum across all f−1(i)’s.

47

Thus, from the standpoint of the cardinality of a non-empty set, we have two
classes: finite and infinite. And we have an example of the former and the
latter. From the standpoint of the latter, the following claim should be easy
to prove: if S is infinite and T ⊇ S, then T is infinite. We have a similar
claim from the existence of functions as well: if S is infinite and there exists
an injection from S to T , then T is infinite. Thus, starting from N, we can
infer that some of the sets we know are infinite, e.g., Z,Q and R.

We now further classify within infinite sets. We say that a set S 6= ∅ is
countably infinite if there exists a bijection f : S → N. If S 6= ∅ is either
finite or countably infinite, we say that it is countable. If S 6= ∅ is not
countable, we say that it is uncountable or uncountably infinite.

Claim 25. For S 6= ∅, if there exists an injection f : S → N, then S is
countable.

Proof. Let f be some injection from S to N. Then, we have two cases:

• there exists some n ∈ N such that f is an injection from S to Nn. Then,
by Claim 23, S is finite and therefore countable.

• no such n exists. Then, we construct a bijection g as in the proof for
Claim 23 from S to N. This establishes that S is countably infinite and
therefore countable.

We now establish that there exist sets that are not countable. We show this
by contradiction; the particular proof strategy is called “diagonalization,”
and is useful in other contexts as well, to show non-existence.

Claim 26. (0, 1), i.e., the set of reals between 0 and 1, is uncountable.

Proof. We assume that every real r ∈ (0, 1) can be represented in decimal as
0.n1 n2 n3 . . ., where each ni ∈ {0, . . . , 9}. That is, a non-terminating string
of digits after the decimal point. Let f be any function f : N→ (0, 1). Then,

48 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

we claim that f cannot be surjective. Thus, no bijection from (0, 1) to N can
exist, and therefore (0, 1) is uncountable.

To show that f is not a surjection, consider how f maps each of 1, 2, . . . to
some member of (0, 1).

f(1) = 0.n1,1 n1,2 n1,3 . . .

f(2) = 0.n2,1 n2,2 n2,3 . . .

. . .

f(i) = 0.ni,1 ni,2 . . . ni,i . . .

. . .

Where each ni,j ∈ {0, . . . , 9}. Now, we specify a new r ∈ (0, 1) as follows.
r = 0.n1 n2 . . . where:

ni =

{
1 if ni,i > 5
7 otherwise

We claim there exists exists no j ∈ N such that f(j) = r. Specifically, for
every j ∈ N, nj,j 6= nj. Therefore, f(j) 6= r.

As (0, 1) is uncountable, so are all of its supersets. Specifically, R is un-
countable. Note that the proposition, “((S is uncountable) ∧ (T ⊇ S)) =⇒
(T is uncountable)” is subject to proof, but the proof should be easy to carry
out.

Some countably infinite sets We now establish that some sets with
which we are familiar are indeed countable, perhaps counterintuitively.

Claim 27. Z+
0 = {0, 1, 2, . . .} is countable.

Proof. Let f be the following function.

f : Z+
0 → N, f : z 7→ z + 1

Then f is a bijection that establishes that Z+
0 is countable.

Claim 28. Z = {. . . ,−2,−1, 0, 1, . . .} is countable.

49

Proof. Let f : Z→ N be as follows.

f(i) =

{
2|i|+ 1 if i ≤ 0,where | · | is absolute value
2i otherwise

We claim that f above is a bijection. Given any i, j ∈ Z, with i 6= j, we
have the following three cases. (i) Both i, j ≤ 0. Then, f(i) = −2i + 1 6=
−2j + 1 = f(j). (ii) Both i, j > 0. Then, f(i) = 2i 6= 2j = f(j). (iii)
i ≤ 0, j > 0. Then, f(i) is odd and f(j) is even, and therefore f(i) 6= f(j).

Thus, f is an injection. To show that f is a surjection, suppose i ∈ N. Then,
we have two cases. (i) i is even. Then i = f(i/2). (ii) i is odd. Then,
i = f((1− i)/2). Thus, f is surjective.

Claim 29. N× N is countable.

Proof. A natural way to prove the claim is by construction; i.e., we devise
a bijection from N × N to N. We can do this in many ways. Following is a
strategy. We group pairs, 〈i, j〉 ∈ N× N, systematically, and then map each
pair to a natural number. The following table suggests such a grouping and
mapping to natural numbers.

Group # Pair(s) # pairs Map to
1 〈1, 1〉 1 1
2 〈1, 2〉, 〈2, 2〉, 〈2, 1〉 3 2, 3, 4

3
〈1, 3〉, 〈2, 3〉, 〈3, 3〉

5 5, . . . , 9〈3, 1〉, 〈3, 2〉
4

〈1, 4〉, . . . , 〈3, 4〉, 〈4, 4〉
7 10, . . . , 16〈4, 1〉, . . . , 〈4, 3〉

.

k
〈1, k〉, . . . , 〈k − 1, k〉, 〈k, k〉

2k − 1 (k − 1)2 + 1, . . . , k2〈k, 1〉, . . . , 〈k, k − 1〉
.

Based on the above table, consider the following function f : N× N→ N:

f(i, j) =

{
(j − 1)2 + i if i ≤ j
(i− 1)2 + i+ j otherwise

We now need to prove that f is indeed a bijection. We first observe that
(max{a, b} − 1)2 + 1 ≤ f(a, b) ≤ (max{a, b})2. We can prove this by a case

50 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

analysis.

Case 1: a ≤ b. In this case, max{a, b} = b, and f(a, b) = (b − 1)2 + a. And
f(a, b) ≥ (b − 1)2 + 1 because a ≥ 1. And f(a, b) ≤ b2 because f(a, b) =
b2 − 2b+ 1 + a = b2 − (b− 1)− (b− a) ≤ b2 because b ≥ 1 and b ≥ a.

Case 2: a > b. In this case, max{a, b} = a, and f(a, b) = (a − 1)2 + a + b.
And f(a, b) ≥ (a − 1)2 + 1 because a + b ≥ 1. And f(a, b) ≤ a2 because
f(a, b) = a2−2a+ 1 +a+ b = a2−a+ 1 + b = a2− (a− (b+ 1)) ≤ a2 because
a > b =⇒ a ≥ b+ 1.

Now, to prove that f is injective, assume 〈a, b〉 6= 〈c, d〉, for a, b, c, d ∈ N. We
seek to prove that f(a, b) 6= f(c, d). We consider two cases.

Case 1: max{a, b} 6= max{c, d}. Let max{a, b} = p,max{c, d} = q. Then,
f(a, b) ∈ {(p− 1)2 + 1, . . . , p2}, f(c, d) ∈ {(q − 1)2 + 1, . . . , q2}, in which
case f(a, b) 6= f(c, d), because

p 6= q =⇒
{

(p− 1)2 + 1, . . . , p2
}
∩
{

(q − 1)2 + 1, . . . , q2
}

= ∅

Case 2: max{a, b} = max{c, d}. We consider two subcases.

• Case (a): a ≤ b. Then, max{a, b} = b and f(a, b) = (b − 1)2 + a. We
consider two subcases.

– Case (i): c > d. Then, max{c, d} = c, c = b and f(c, d) =
(b − 1)2 + b + d. And f(a, b) = f(c, d) =⇒ (b − 1)2 + a =
(b− 1)2 + b+ d =⇒ a = b+ d. This is impossible because a ≤ b
and d ≥ 1, and therefore, a < b+ d.

– Case (ii): c ≤ d. Then, max{c, d} = d, d = b and f(c, d) =
(b−1)2+c. And f(a, b) = f(c, d) =⇒ (b−1)2+a = (b−1)2+c =⇒
a = c, which contradicts the assumption that 〈a, b〉 6= 〈c, d〉.

• Case (b): a > b. Then, max{a, b} = a and f(a, b) = (a − 1)2 + a + b.
We consider two subcases.

– Case (i): c > d. Then, max{c, d} = c, c = a and f(c, d) =
(a − 1)2 + a + d. And f(a, b) = f(c, d) =⇒ b = d. This
contradicts the assumption that 〈a, b〉 6= 〈c, d〉.

51

– Case (ii): c ≤ d. Then, max{c, d} = d, d = a and f(c, d) =
(a − 1)2 + c. And f(a, b) = f(c, d) =⇒ (a − 1)2 + a + b =
(a− 1)2 + c =⇒ a+ b = c, which is impossible because c ≤ a = d
and b ≥ 1.

Thus, f is injective. To prove that f is surjective, pick some n ∈ N. We seek
to show that there exists some 〈a, b〉 ∈ N× N such that f(a, b) = n.

For every n ∈ N, there exists m ∈ N such that n ∈ {(m− 1)2 + 1, . . . ,m2}.
Thus, n = (m − 1)2 + p, for some p ∈ {1, . . . , 2m− 1}. We observe that if
p ≤ m, then from the definition of f , n = f(p,m), and if m < p ≤ 2m − 1,
then n = f(m, p−m). Thus, f is surjective.

Claim 30. Q is countable.

Proof. Recall that Q = {〈n,m〉 ∈ Z× Z+}. We can compose the bijection
from Z to N that is used to establish that Z is countable with the bijection
from N×N to N to establish that N×N is countable to establish that Z×Z
is countable. Now, as Q ⊆ Z× Z, Q is countable as well.

Returning to set-cardinality and associated notation, given a set S, its car-
dinality is denoted |S|. We have distinguished: the empty set, finite sets,
countably infinite sets and uncountable sets.

• |∅| = 0, i.e., the cardinality of the empty set is 0.

• If S is not empty, and is countable, let n ∈ N for which there exists a
bijection f : S → Nn. Then, |S| = n.

• We denote |N| = ℵ0, which is read “aleph zero.” That is, we introduce a
special symbol to represent the cardinality of N. Note that this implies,
for example, that |Q| = |Z| = ℵ0.

We can also compare cardinalities. Recall that the empty set is unique. That
is, if sets A and B are both the empty set, then A = B. For non-empty sets
A,B, we say that |A| = |B| if and only if there exists a bijection f : A→ B.
If there exists an injection g : A → B then, we say that |A| ≤ |B|. And if
there exists an injection h : A → B, but no surjection, then |A| < |B|. So,
for example, if A is finite, then |A| < ℵ0 < |R|. The symbols “≥” and “>”
can be defined as analogues of “≤” and “<,” respectively.

52 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

Relations

We now revisit relations. Recall that a relation between sets A1, A2, . . . , An

is a subset of A1 × A2 × . . . × An. A special case is n = 2, i.e., a relation
between two sets. Another special case is when all the sets A1, . . . , An are
the same. The notion of a relation naturally captures what we think of as
relationships.

In our discussions in this portion of the book, we restrict ourselves to binary
relations, i.e., subsets of A×B. So when we simply say “relation,” we mean a
binary relation. In particular, we focus on the case that A = B, i.e., relations
of the form R ⊆ A×A for some set A. We often write A×A as A2, and call
a relation R ⊆ A2 a “relation on the set A.”

For example, suppose we have a set of people, P = {Alice,Bob,Carol,Dave,Eve}.
We may now specify a relation, ParentOf ⊆ P × P , where ParentOf =
{〈Alice,Bob〉, 〈Alice,Carol〉, 〈Bob,Dave〉, 〈Eve,Carol〉}. Presumably what we
seek to express via the set of ordered pairs ParentOf is that Alice is a parent
of both Bob and Carol, Bob is a parent of Dave and Eve is a parent of Carol.

We use the above example to make several observations about relations in
general.

• A relation may or may not be a strict subset of the cartesian prod-
uct of the underlying sets. In our example above, |P × P | = 25, and
|ParentOf| = 4.

• A relation may or may not be a function. The relation ParentOf is not
a function. We observe that Alice maps to both Bob and Carol.

• A relation may or may not be symmetric. A symmetric relation, R ⊆
A2 is one which satisfies the following property:

∀〈x, y〉 ∈ A2, 〈x, y〉 ∈ R ⇐⇒ 〈y, x〉 ∈ R

We observe that 〈Alice,Bob〉 ∈ ParentOf, but 〈Bob,Alice〉 6∈ ParentOf.
Indeed, ParentOf above is asymmetric. A relation R ⊆ A2 is said to be
asymmetric if:

∀〈x, y〉 ∈ A2, 〈x, y〉 ∈ R =⇒ 〈y, x〉 6∈ R

53

An immediate question that arises is whether R is symmetric if and
only if R is not asymmetric, i.e., whether the notion of symmetric
is the complement of the notion of asymmetric. We can deploy our
understanding of logic to intuit this.

Based on the definition of symmetry above, R ⊆ A2 is not symmetric
if:

¬
(
∀〈x, y〉 ∈ A2, 〈x, y〉 ∈ R ⇐⇒ 〈y, x〉 ∈ R

)

⇐⇒ ∃〈x, y〉 ∈ A2, ¬(〈x, y〉 ∈ R ⇐⇒ 〈y, x〉 ∈ R)

⇐⇒ ∃〈x, y〉 ∈ A2, ¬((〈x, y〉 6∈ R ∨ 〈y, x〉 ∈ R) ∧ (〈y, x〉 6∈ R ∨ 〈x, y〉 ∈ R))

⇐⇒ ∃〈x, y〉 ∈ A2, ((〈x, y〉 ∈ R ∧ 〈y, x〉 6∈ R) ∨ (〈y, x〉 ∈ R ∧ 〈x, y〉 6∈ R))

That is, for R to not be symmetric, all we need is a pair 〈x, y〉 ∈ R
such that 〈y, x〉 6∈ R. Whereas asymmetric requires this for every

pair 〈x, y〉 ∈ R. So, for example, consider R ⊆ {1, 2, 3}2 where R =
{〈1, 2〉, 〈2, 1〉, 〈1, 3〉}. Then R is not symmetric because 〈1, 3〉 ∈ R, yet
〈3, 1〉 6∈ R. R is also not asymmetric because both 〈1, 2〉, 〈2, 1〉 ∈ R.

There is another notion that is in customary use in this context; the
notion of antisymmetry. A relation R ⊆ A2 is said to be antisymmetric
if:

∀〈x, y〉 ∈ A2, 〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R =⇒ x = y

Unlike a relation that is symmetric, an antisymmetric relation cannot
contain both 〈x, y〉 and 〈y, x〉 when x 6= y. Unlike a relation that is
asymmetric, an antisymmetric relation does not preclude both 〈x, y〉
and 〈y, x〉 from being in the relation.

The ParentOf relation above is antisymmetric: for distinct 〈x, y〉, it is
never the case that both 〈x, y〉 and 〈y, x〉 are in ParentOf. Thus, the
premise in the implication in the definition of antisymmetry is always
false for ParentOf, and therefore the implication holds true.

The relation R over {1, 2, 3} above, on the other hand, is not antisym-
metric: both 〈1, 2〉 and 〈2, 1〉 are in R, yet 1 6= 2. Thus, this R is

54 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

an example of a relation that is neither symmetric nor antisymmetric.
There can also exist relations that are both symmetric and antisymmet-
ric. Consider, for example, S ⊆ {1, 2, 3}2, where S = {〈1, 1〉, 〈3, 3〉}.
Then, S is both symmetric and antisymmetric.

What about asymmetry and antisymmetry? We observe that if a rela-
tion R over A is asymmetric, then R is antisymmetric, but the converse
is not necessarily true. We state a claim for an “if and only if” relation-
ship between asymmetry and antisymmetry once we discuss notions of
reflexivity below.

• A relation, R ⊆ A2, may be reflexive. We say that such an R is reflexive
if:

∀x ∈ A, 〈x, x〉 ∈ R

We can also define irreflexivity ; we say that R ⊆ A2 is irreflexive if:

∀x ∈ A, 〈x, x〉 6∈ R

It should not be difficult to see that some relation R ⊆ A2 may be
neither reflexive nor irreflexive. E.g., R ⊆ {1, 2}2 where R = {〈1, 1〉} is
neither reflexive nor irreflexive. This R is not reflexive because 2 ∈ A
and yet 〈2, 2〉 6∈ R, and it is not irreflexive because 〈1, 1〉 ∈ R.

Is it possible that a relation R on a set A is both reflexive and irreflex-
ive? This is not possible if A 6= ∅. However, if A = ∅, R = ∅, then R is
both reflexive and irreflexive.

The notion of reflexivity also helps us clarify the distinction between
asymmetry and antisymmetry.

Claim 31. Suppose R ⊆ A2. Then R is asymmetric if and only if R
is antisymmetric and irreflexive.

Proof. “ =⇒ ”: we prove the contrapositive. We have two cases:

55

1. R is not antisymmetric.

R is not antisymmetric

⇐⇒ ¬
(
∀〈x, y〉 ∈ A2, 〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R =⇒ x = y

)

⇐⇒ ∃〈x, y〉 ∈ A2, ¬(〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R =⇒ x = y)

⇐⇒ ∃〈x, y〉 ∈ A2, ¬(〈x, y〉 6∈ R ∨ 〈y, x〉 6∈ R ∨ x = y)

⇐⇒ ∃〈x, y〉 ∈ A2, 〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R ∧ x 6= y

=⇒ ∃〈x, y〉 ∈ A2, 〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R
⇐⇒ ∃〈x, y〉 ∈ A2, ¬(〈x, y〉 6∈ R ∨ 〈y, x〉 6∈ R)

⇐⇒ ∃〈x, y〉 ∈ A2, ¬(〈x, y〉 ∈ R =⇒ 〈y, x〉 6∈ R)

⇐⇒ ¬
(
∀〈x, y〉 ∈ A2, 〈x, y〉 ∈ R =⇒ 〈y, x〉 6∈ R

)

⇐⇒ R is not asymmetric

2. R is not irreflexive.

R is not irreflexive

⇐⇒ ¬(∀x ∈ A, 〈x, x〉 6∈ R)

⇐⇒ ∃x ∈ A, 〈x, x〉 ∈ R
⇐⇒ ∃〈x, y〉 ∈ A2, x = y ∧ 〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R
=⇒ ∃〈x, y〉 ∈ A2, 〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R
⇐⇒ ∃〈x, y〉 ∈ A2, ¬(〈x, y〉 6∈ R ∨ 〈y, x〉 6∈ R)

⇐⇒ ∃〈x, y〉 ∈ A2, ¬(〈x, y〉 ∈ R =⇒ 〈y, x〉 6∈ R)

⇐⇒ ¬
(
∀〈x, y〉 ∈ A2, 〈x, y〉 ∈ R =⇒ 〈y, x〉 6∈ R

)

⇐⇒ R is not asymmetric

“⇐= ”: we assume that R is antisymmetric and irreflexive.

R antisymmetric ∧R irreflexive

⇐⇒
(
∀〈x, y〉 ∈ A2, 〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R =⇒ x = y

)
∧(

∀〈x, y〉 ∈ A2, x = y =⇒ 〈x, y〉 6∈ R
)

=⇒ ∀〈x, y〉 ∈ A2, 〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R =⇒ 〈x, y〉 6∈ R
⇐⇒ ∀〈x, y〉 ∈ A2, 〈x, y〉 6∈ R ∨ 〈y, x〉 6∈ R ∨ 〈x, y〉 6∈ R
⇐⇒ ∀〈x, y〉 ∈ A2, 〈x, y〉 6∈ R ∨ 〈y, x〉 6∈ R
⇐⇒ ∀〈x, y〉 ∈ A2, 〈x, y〉 ∈ R =⇒ 〈y, x〉 6∈ R
⇐⇒ R is asymmetric

56 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

• A relation R ⊆ A2 may be transitive. We say that R ⊆ A2 is transitive
if:

∀〈x, y, z〉 ∈ A3, 〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R =⇒ 〈x, z〉 ∈ R

For example, the ParentOf relation above is not transitive, because
〈Alice,Bob〉 ∈ ParentOf, and 〈Bob,Dave〉 ∈ ParentOf, but 〈Alice,Dave〉
6∈ ParentOf. Similarly, the R ⊆ {1, 2, 3}2 we specified above, where
R = {〈1, 2〉, 〈2, 1〉, 〈1, 3〉} is not transitive, because 〈1, 2〉, 〈2, 1〉 ∈ R,
but 〈1, 1〉 6∈ R. However, the following relation S ⊆ {1, 2, 3}2 where
S = {〈1, 2〉, 〈1, 3〉}, is transitive.

Now that we have discussed types of relations, we discuss situations that
they show up. Comparison operators between, for example, integers, are a
good example of where such relations such up. The comparator, “≤,” for
example, can be seen as a relation between two integers, i.e., ⊆ Z2. Denote
the relation induced by “≤” between integers as the relation RZ,≤. That is:

RZ,≤ =
{
〈x, y〉 ∈ Z2 | x ≤ y

}

We observe that RZ,≤ is:

• Reflexive: because ∀x ∈ Z, x ≤ x and therefore ∀x ∈ Z, 〈x, x〉 ∈ RZ,≤.

• Antisymmetric: because ∀〈x, y〉 ∈ Z2, x ≤ y ∧ y ≤ x =⇒ x = y.

• Transitive: because ∀〈x, y, z〉 ∈ Z3, x ≤ y ∧ y ≤ z =⇒ x ≤ z.

There is a special name for a set and an operator that induce a relation that
is reflexive, antisymmetric and transitive, like Z and ≤ above. And that is
a partial order, a partially ordered set or a poset. We usually denote a poset
as a pair of the set and the operator, e.g., we would say, “〈Z,≤〉 is a poset.”

The reason we call out posets specially is that they show up in various con-
texts, and we are able to establish additional properties about them. Another
example of a poset is 〈S,⊆〉, where S is a set.

As a contrast, consider the relation that is induced on Z by “<.” That is,
consider the relation RZ,<:

RZ,< =
{
〈x, y〉 ∈ Z2 | x < y

}

57

We observe that RZ,< is:

• Irreflexive: because ∀x ∈ Z, x 6< x.

• Asymmetric: because ∀〈x, y〉 ∈ Z2, x < y =⇒ y 6< x.

• Transitive: because ∀〈x, y, z〉 ∈ Z3, x ≤ y ∧ y ≤ z =⇒ x ≤ z.

A relation that is irreflexive, asymmetric and transitive is called a strict
partial order. Another example of a strict partial order is the relation induced
by “⊂” on a set S.

Also interesting is a relation that is reflexive, symmetric and transitive. Such
a relation is called an equivalence, and as its name suggests such a relation
induces a kind of equality that is less strict than actual equality, but is useful
in many contexts.

As an example, consider the relation between integers that is induced by the
modulo operator, “mod,” which is defined as follows.

For x ∈ Z, y ∈ Z+, x mod y = r, where r ∈ {0, 1, . . . , y − 1} such that

∃q ∈ Z, x = q · y + r

For example, 29 mod 8 = 5 and −29 mod 8 = 4.

Consider the relation induced on Z by “mod 4.” That is, let RZ, mod 4 be:

RZ, mod 4 =
{
〈x, y〉 ∈ Z2 | x mod 4 = y mod 4

}

We observe that RZ, mod 4 is:

• Reflexive: ∀x ∈ Z, x mod 4 = x mod 4.

• Symmetric: ∀〈x, y〉 ∈ Z2, x mod 4 = y mod 4 =⇒ y mod 4 = x mod
4.

• Transitive: ∀〈x, y, z〉 ∈ Z3, x mod 4 = y mod 4 ∧ y mod 4 = z mod
4 =⇒ x mod 4 = z mod 4.

58 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

So RZ, mod 4 is an equivalence, and what that conveys is that under mod 4,
all integers that have the same value modulo 4 are not necessarily the same,
but “equivalent” in this specific context.

Such an equivalence relation induces so called equivalence classes on the un-
derlying set. For example, under “ mod 4,” the integers in {. . . ,−7,−3, 1, 5, 9, . . .}
are equivalent to one another, in that they are all the same modulo 4. We use
the following symbol to indicate equivalent: “≡ mod 4,” e.g. we would write
“−7 ≡ mod 4 5 to indicate that −7 is equivalent to 5 under the “mod 4” re-
lation. Such a set, i.e., {. . . ,−7,−3, 1, 5, 9, . . .} in this example, is called an
equivalence class.

We observe that “mod 4” induces four equivalence classes on Z:

{. . . ,−8,−4, 0, 4, 8, . . .}
{. . . ,−7,−3, 1, 5, 9, . . .}
{. . . ,−6,−2, 2, 6, 10, . . .}
{. . . ,−5,−1, 3, 7, 11, . . .}

As the members of each such class are equivalent to one another, we can
simply pick a representative of each class to represent the entire class. From
the standpoint of notation, we write this as [0] mod 4, to refer to the set that is
the equivalence class to which 0 belongs under “mod 4.” That is, [0] mod 4 =
{. . . ,−4, 0, 4, 8, . . .}.

We observe that [0] mod 4 = [116] mod 4, and [0] mod 4 6= [6] mod 4. In fact, given
an equivalence R ⊆ A2, suppose [x0]R, [x1]R, . . . , [xn]R are the equivalence
classes induced by R. Then:

• The equivalence classes are pairwise disjoint. That is, for every i, j
with i 6= j, [xi]R ∩ [xj]R = ∅, and,

• The union of the equivalence classes is the set A, i.e.,
⋃

1≤i≤n
[xi]R = A.

That is, the equivalence classes partition the underlying set A.

As another example, for the set of all students that are currently enrolled
in Waterloo-ECE, the year + term + cohort can be seen as an equivalence

59

relation. That is, Alice and Bob are in the same equivalence class if and only if
they are in the same year, term and cohort. The class reps are representatives
of each such equivalence class, and there is nothing special about them in
the sense that they are perceived as members of the equivalence class, and
any member of an equivalence class is a valid representative. The union of
all equivalence classes is the set of all students in Waterloo-ECE.

As another example, consider the following way of modeling trust and a
group of acquaintances.

• Everyone trusts him/herself, i.e., we assume trust is reflexive, and,

• If a trust b and b trusts c, then a trusts c, i.e., we assume trust is
transitive.

• We have a set of acquaintances: A(lice), B(ob), C(arol), D(ave), E(dith)
and F (rank). And it turns out:

– A trusts B,C,D.

– B trusts A,C, F .

– C trusts A,B.

– D trusts E.

– E trusts D.

Let T ⊆ {A, . . . , F}2 be the above trust relation. Then, T is not an equiva-
lence: for example, 〈B,F 〉 ∈ T , but 〈F,B〉 6∈ T , that is, T is not symmetric.
Also, 〈A, T 〉 is not a poset: for example, 〈A,B〉 ∈ T, 〈B,A〉 ∈ T , yet A 6= B,
that is, T is not antisymmetric.

However, consider the following subset of T , M ⊆ T , which we can think
of as “mutually trusting.” M = {〈x, y〉 ∈ T | 〈y, x〉 ∈ T}. Then, M is an
equivalence, and it induces three equivalence classes: (i) A ≡M B ≡M C,
i.e., [A]M = [B]M = [C]M = {A,B,C}, (ii) D ≡M E, i.e., [D]M = [E]M =
{D,E}, and, (iii) F , i.e., [F]M = {F}.

Now suppose we define a relation between those equivalence classes, C ={
〈[x], [y]〉 ∈ {[A]M , [D]M , [F]M}2 | 〈x, y〉 ∈ T

}
.

For example, 〈[A]M , [A]M〉 ∈ C because 〈A,A〉 ∈ T , because T is reflexive.

60 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

And 〈[A]M , [D]M〉 ∈ C, because 〈A,D〉 ∈ T . But, 〈[D]M , [A]M〉 6∈ C, because
〈D,A〉 6∈ T .

Now, 〈{[A]M , [D]M , [F]M}, C〉 is a poset. That is, C is reflexive, transitive
and antisymmetric. And it is meaningful to visualize the poset as follows.

[A]M

[D]M [F]M

In the picture above, an edge “—” indicates unidirectional trust from an
entity that is on the lower side of the edge to the upper side. For example,
the edge from [A]M to [D]M indicates that everyone in the equivalence class
[A]M trusts someone in the equivalence class [D]M .

Thus the picture above indicates that the folks in the equivalence class [A]M
are the most trusting from amongst {A, . . . , F}. The equivalence classes
[D]M and [F]M are incomparable to one another; indeed, the lack of an edge
between them expresses that they are “islands” of trust, isolated from one
another.

Another good example of the use of relations is in the context of social net-
works. Facebook, for example, employs a relation, “FriendOf.” A semantics
of FriendOf is that if 〈Alice,Bob〉 ∈ FriendOf, then Alice can, for example,
view photos that Bob posts. FriendOf is reflexive, in that Alice can view her
own photos. It is also symmetric. However, it is not necessarily transitive.
Facebook of course has other relations it employs as well. For example, it is
possible for a user to “tag” another user in a photo. And “IsTagged” can be
viewed as a relation between users that has particular semantics, e.g., with
regards to whether a user can view particular photos.

Graphs Graphs provide a useful way to visualize and process (e.g., via
algorithms) relations. A graph is an ordered pair, 〈V,E〉, where each of V,E
is a set. The set V is called a set of vertices or nodes. The set E is called a
set of edges. The set V is a set of identifiers, e.g., V = {1, 2, 3}. The set E is
a relation on V , i.e., E ⊆ V 2. E.g., E = {〈1, 1〉, 〈1, 2〉, 〈3, 1〉}. This example

61

graph can be visualized as follows.

1

2

3

As the picture indicates, we typically draw a vertex as a labelled circle, and
an edge as a line segment with an arrowhead that indicates the ordering
within the ordered pair.

Depending on the semantics of the relation, E, we can now ask questions
that may be meaningful in the particular context. For example, suppose in
the above example, the vertices 1, 2, 3 represent cities, and an edge 〈x, y〉
represents the fact that a transportation company is willing to deliver goods
from x to y. Then, we observe that the transitive closure of the above
graph, i.e., the minimum set of edges we would add to the graph so the
relation is then transitive, tells us between which cities we can employ the
transportation company provided we have a way to cache the goods in an
intermediate city. For example, the transitive closure would include the edge
〈3, 2〉, but not the edge 〈2, 3〉.

As another example, following is a graph, call it G = 〈V,E〉, that expresses
the trust relationships between V = {A, . . . , F} that we discussed above.
We distinguish two kinds of edges: the solid edges are the “explicit” trust
relationships – those that we mention under the third bullet above, in our
specification of the trust relationships. The dotted edges are from our as-
sumption that the relation is also reflexive and transitive; that is, the dotted
edges result from computing the reflexive closure and the transitive closure

62 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

of the explicit trust relationships.

B

A

C

D

EF

Now, we observe that sets of vertices that are strongly connected comprise
an equivalence class in M , “mutually trust,” that we discuss above. Two
vertices, u, v are said to be strongly connected to one another if there is a
path from u to v, and from v to u. We observe, for example, that this is
indeed the case between the vertices in {A,B,C}. And if there is a dotted
or solid edge 〈u, v〉, but no edge 〈v, u〉, then every vertex in [u]M has an edge
to at least one vertex in [v]M , but not vice versa.

From the standpoint of implementation, there are two customary ways to
implement a graph. One is as an adjacency matrix, and the other is as an
adjacency list. An adjacency matrix, call it J , is |V | × |V |, i.e., has |V | rows
and |V | columns, with one row and one column for every u ∈ V . An entry
J [u, v] = 1 if 〈u, v〉 ∈ E, otherwise J [u, v] = 0. Thus, an adjacency matrix
of the above graph of the solid edges only is the following.

A B C D E F





A 0 1 1 1 0 0
B 1 0 1 0 0 1
C 1 1 0 0 0 0
D 0 0 0 0 1 0
E 0 0 0 1 0 0
F 0 0 0 0 0 0

An adjacency list, call it L, is an array of size |V | for each u ∈ V , in which

63

the entry u is a linked list. An adjacency list for the above graph, for the
solid edges only is the following.

A •−−−→ B −→ C −→ D −→/

B •−−−→ A −→ C −→/

C •−−−→ A −→ B −→/

D •−−−→ E −→/

E •−−−→ D −→/

F •−−−→/

64 CHAPTER 3. SETS, FUNCTIONS AND CARDINALITY

Chapter 4

Combinatorics

This chapter addresses combinatorics, ways in which items can be chosen
from a set. We will deal with finite sets only. We begin with some examples,
which illustrate the different kinds of problems we deal with.

Example 1. A committee comprises a chairperson, an outreach coordinator
and a treasurer. There are 10 candidates, and one person may serve more
than one role. In how many different ways can the committee be constituted?

For each of the three positions, we have all 10 candidates available. Thus,
the total number of ways is 103 = 1000.

Example 2. Suppose we have the same situation as Example 1, but one
person may serve at most one role. In how many different ways can the
committee be constituted?

We have 10 ways to choose a chairperson. Once we choose a chairperson,
we have 9 ways in which we can choose the outreach coordinator, and then 8
ways in which we can choose the treasurer. Thus, the total number of ways
is 10× 9× 8 = 720.

Example 3. A committee comprises three officers, each of whom must be a
different person, and there are 10 candidates. In how many different ways
can the committee be constituted?

In this case, we no longer distinguish the officers’ roles, e.g., as chairperson,
outreach coordinator and treasurer. But three distinct people must be chosen
from the set of 10. One way to count is to repeat the approach of Example 2

65

66 CHAPTER 4. COMBINATORICS

above, and then account for the number of possibilities that should be treated
as the same.

Example 2 tells us that there are 720 ways, if we distinguish each officer’s
role. Suppose we have chosen a person, call her Alice to serve as officer 1,
Bob to serve as officer 2 and Carol to serve as officer 3. This is the same as,
for example, choosing Bob as officer 1, Carol as officer 2 and Alice as officer
3.

Denoting Alice as a, Bob as b and Carol as c, the number of different rear-
rangements of 〈a, b, c〉 is six: 〈a, b, c〉, 〈a, c, b〉, 〈b, a, c〉, 〈b, c, a〉, 〈c, a, b〉 and
〈c, b, a〉. Thus, to count all 6 of those ways as the same, we divide; i.e., our
solution is 720/6 = 120.

That is, the 720 different ways can be perceived as 120 groups of 6 each, where
within each group, we have the same set of three officers.

Example 4. A committee comprises three officers, not all of whom need to
be distinct individuals. There are 10 candidates. In how many different ways
can the committee be constituted?

In this case, we can either choose (i) one person to serve all three roles, (ii)
two persons, one of whom serves two roles and the other one role, or, (iii)
three persons. In case (ii), we need to distinguish which person serves two
roles, i.e., for example, if the two chosen people are Alice and Bob, then we
count Alice serving two roles and Bob one role as distinct from the situation
that Bob serves two roles and Alice serves one role.

In case (i), we have 10 different ways. In case (ii), we have 10 × 9 = 90
different ways. And in case (iii), we have 120 different ways, which we
deduced in Example 3 above. Thus, the total is 220 different ways.

The four examples above correspond to the four broad classes of selection we
address. In Example 1, the selection is ordered with replacement. That is,
the order of the choices matters, i.e., first vs. second vs. third, or chairperson
vs. outreach coordinator vs. treasurer. But once a choice is made, e.g., of
chairperson, the set from which we choose is replenished, i.e., the chosen one
is replaced with a replica of that person.

In Example 2, the selection is ordered without replacement. The ordering

67

matters, e.g., if Alice is chosen as chairperson and Bob as outreach coordi-
nator, that is different from Alice being chosen as outreach coordinator and
Bob as chairperson. Also, the original set is not replenished once a choice
is made. E.g., if Alice is chosen to be chairperson, then she is no longer
available to serve any other role.

In Example 3, the selection is unordered without replacement. The “un-
ordered” refers to the fact that all the members of the subset that is our
selection are made simultaneously. There is no longer a first selection, then a
second and so on. It is without replacement in that once a selection is made,
the original set is not replenished.

In Example 4, the selection is unordered with replacement. The selection is
unordered in that the subset that is our selection is contituted in one shot,
and not one member of it at a time. However, there are limitlessly many
replicas of each member in the original set from which we select the subset.

Principles

We now discuss the several underlying principles that help us navigate these
sorts of questions regarding the number of possibilities in a particular setting.

“And” vs. “or” The first principle we discuss is a recognition of the use of
“and” vs. “or” in the context of counting the number of different ways to make
a selection. “And” is of course akin to conjunction, “∧,” in propositional
logic, and intersection, “∩,” between sets. “Or” is a bit more subtle in
this context. It is not “inclusive or,” which is akin to disjunction, “∨,” in
propositional logic, and union, “∪,” between sets. Rather, it is “mutually
exclusive or,” which some folks represent using a new propositional logic
operator “⊕.” Its semantics, expressed in English, is, “one or the other,
but not both.” Using ¬,∨ and ∧, a ⊕ b ⇐⇒ (a ∨ b) ∧ (¬(a ∧ b)) ⇐⇒
(a ∧ ¬b) ∨ (b ∧ ¬a) ⇐⇒ (a ∨ b) ∧ (¬a ∨ ¬b).

“And” is typically used as part of putting together a selection. And when
we use “and,” we usually multiply the pieces that are and-ed together. “Or”
is used to distinguish two different selections. And when we use “or,” we
usually add the different possibilities.

68 CHAPTER 4. COMBINATORICS

Example 5. Jack has three books to read, Book 1, 2 and 3. He decides to
either pick two of them, one to read during the day and the other at bedtime,
or one only, to read during the day and at bedtime. How may different
possibilities do we have for Jack’s decision?

This problem has both “and” and “or” components that can be called our
clearly. The number of different possibilities can be expressed as:

Jack can pick:

(A) (one book for daytime AND another for bedtime)

OR

(B) (one book for both day- and bedtime)

The number of possibilities corresponding to (A) is 3×2, i.e., a multiplication
to correspond to the AND. The number of possibilities corresponding to (B)
is 3. And we add the number of possibilities for (A) and (B) to correspond
to the OR between them. So the solution is: 3× 2 + 3 = 9.

Pigeonhole principle The pigeonhole principle is: if we have n pigeon-
holes and more than n pigeons, then there must be a pigeonhole that houses
more than one pigeon. It is called a “principle” because it is considered so
self-evident that we do not bother proving it. However, can prove it by, for
example, contradiction. Assume that we have n piegonholes, more than n
pigeons, and that every pigeonhole has at most one pigeon. Then, if we sum
the total number of pigeons across all pigeonholes, that sum ≤ n, which
contradicts the assumption that we have more than n pigeons.

The pigeonhole principle is useful in counting possibilities in certain situa-
tions.

Example 6. How many people do we need in a group so we can guarantee
that the birthdays of at least two of them fall in the same month?

Answer: 13. Because we have 12 “pigeonholes.”

Example 7. We have 30 books that we want to put in 20 bags, each of which
can hold all 30 books, if needed. Then, we know that there exists a bag with
at least two books. And that is the strongest assertion we can make.

69

Example 8. In every set M of n ≥ 2 integers, there exist distinct a, b ∈ M
such that the difference a− b is divisible by n− 1.

A special case of the above assertion is Claim 6 from Chapter 2, under “Proof
techniques”: given any set {a, b, c} of integers, at least one of the differences
a− b, b− c, c−a must be divisible by 2, i.e., even. Another example is: given
a set of 12 integers, at least one of the pairwise differences is divisible by 11.

For the original, general assertion, we can think of the “pigeonholes” as being
0, . . . , n − 2, which is every value any integer can be modulo n − 1. Thus,
given n integers, there must exist at least two, i, j, such that i mod (n− 1) =
j mod (n− 1) ⇐⇒ (i− j) is divisible by n− 1.

Exponentiation When we make an ordered selection with replacement,
we have repeated multiplications of the same number, i.e., exponentiation.
An example is Example 1. Another example is the following.

Example 9. The children at a school are taking field trips every day of the
five days the following week, and need a teacher to act as chaperone for each
trip. There are six teachers from which to choose a chaperone for each field
trip. What is the total number of possiblities of assigning a chaperone to each
field trip?

The problem does not preclude the same teacher acting as chaperone for mul-
tiple field trips. Therefore, the total number of possibilities is 65.

Example 10. The set of bit strings of length n, for some n ∈ N, is:

{0, 1} × . . .× {0, 1}︸ ︷︷ ︸
n times

= {0, 1}n

The number of bit strings of length n is |{0, 1}n| = 2n. The number of bit
strings of length n that all begin and end with the same bit =

(
2
1

)
× 2n−2 =

2n−1. The number that begin and end with different bits = 2n − 2n−1 =
2n−1(2− 1) = 2n−1. The number that have no consecutive bits the same = 2,
because our choice of the first bit immediately gives us a choice for all n bits.

Factorial Recall that the factorial of n, denoted n!, for n ∈W = {0, 1, 2, . . .}
is defined using a recurrence as follows:

n! =

{
1 if n = 0
n× (n− 1)! otherwise

70 CHAPTER 4. COMBINATORICS

The factorial function corresponds to the number of rearrangements of n
distinct items. That is, if we have a set of n distinct items, the number of
different ways in which they can be arranged is n!.

Example 11. Eight friends go to a movie and buy tickets with assigned
seating. The number of different ways in which they can occupy those seats
is 8! = 40, 320.

Example 12. Bob has three different shirts and two different suits. How
many different arrangements do we have in which he can hang them in his
closet? What if every shirt is to be to the left of all the suits?

The answer to the first question is 5! because we have 5 items and 5! different
ways to order them. The answer to the second is 3!× 2!. As a sanity check,
we observe that 5! > 3!×2!, which is what we would expect, because the second
situation is more constrained than the first.

Example 13. How many different ways do we have to arrange 8 different
math books, 5 different physics books and 7 different chemistry books such
that all books of each subject are to be together?

Answer: 3!× 8!× 5!× 7!. The 3! is for the order of the subjects.

Example 14. How many rearrangements the letters does “BANANA” have?

If all its letters were distinct, “BANANA” we would have 6!. However, in
any such arrangement, a rearrangement of the A’s and/or N ’s yields the
same rearrangement of “BANANA.” Thus, the solution is:

6!

3! 2!

Permutation Given a set of n items, a permutation, or more specifically,
a k-out-of-n permutation, is an arrangement of k of the n items from the
set. For example, if the set S = {1, 2, 3}, then there are six 2-out-of-3
permutations: 〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉.

A special case is when k = n, i.e., an n-out-of-n permutation, which is
also simply called a permutation of the n items. We represent a k-out-of-n
permutation as P (n, k). And we can intuit what P (n, k) is as follows. We

71

have n ways to pick the first item in the sequence, n − 1 ways to pick the
second, . . . , and n− k + 1 wants to pick the kth item. Thus:

P (n, k) =
n!

(n− k)!

Note that built into this notion of a permutation is that it is a kind of selection
without replacement. Indeed, it is ordered selection without replacement.
For example, Example 2 is exactly P (10, 3).

Example 15. The number of 4-letter strings where each letter is one of the
26 in the English alphabet is P (26, 4).

Example 16. In how many different ways can be place 8 identical black
pawns and 8 identical white pawns on a standard 8× 8 chess board such that
each pawn is in a square by itself?

If the pawns were all distinct from one another, then our solution would be
P (64, 16). Given that we have two sets of 8 identical pawns each, we need
to “factor” out duplicate arrangements. Once we have chosen the squares in
which the 8 black pawns go, any rearrangement of those black pawns within
those same squares is treated as the same arrangement. Thus, our solution
is:

P (64, 16)

8! 8!

Example 14 and the above example are instances of what we can call gen-
eralized permutation. If we have n1 indistinguishable items of Type1, n2 of
Type2, . . . , nk of Typek, and n1 + . . .+ nk = n, then the number of ways to
arrange them is:

n!

n1!n2! . . . nk!

Combination A k-out-of-n combination is a simultaneous, unordered se-
lection of k items from a set of n items. We represent it as

(
n
k

)
, which is

read as “n choose k.” We can think of such a selection as first, an ordered

72 CHAPTER 4. COMBINATORICS

selection, i.e., P (n, k), and then dividing by k! so selections that should be
counted as the same are indeed counted as the same.

That is,
(
n
k

)
= P (n, k)/k!, because the k! rearrangements (permutations) of

the k chosen items from n are all to be treated the same. Thus:(
n

k

)
=

n!

(n− k)! k!

(
n
k

)
corresponds to unordered selection without replacement. An example is

Example 3, in which we ask in how many different ways we can choose 3
distinct officers from 10 people. The answer is

(
10
3

)
.

Another example is Example 16, which we can approach as follows. We first
pick the 16 squares on which the pawns are to be placed. Then, from amongst
those 16, we choose 8 for the black pawns. Thus, the solution is:

(
64

16

)
×
(

16

8

)

We can (and should) double-check that this yields the same solution as our
approach using permutations does.

From permutations :

P (64, 16)

8! 8!
=

64!

48! 8! 8!

From combinations :(
64

16

)
×
(

16

8

)
=

64!

16! 48!
× 16!

8! 8!
=

64!

48! 8! 8!

Example 17. In how many different ways can we arrange 8 identical copies
of “Pride & Prejudice” and 5 identical copies of “Sense & Sensibility” on a
shelf?

One way to look at this is to observe that we have 13 slots to fill on the shelf,
and we choose 8 of them, unordered, for “Pride & Prejudice.” This should
be (and is) equivalent to choosing 5 of the slots for “Sense & Sensibility.” So
the solution is: (

13

8

)
=

(
13

5

)

73

The above example is a good illustration of the intuition behind the fact that(
n
k

)
=
(

n
n−k
)
. Picking k items from a set of n is identical to picking the n− k

items to leave out. A special case is
(
n
0

)
=
(
n
n

)
= 1. That is, there is only one

way to choose nothing from a set of size n, and this is the same number of
ways in which we can choose everything from the set. We present one more
example, before we discuss the binomial theorem.

Example 18. In how many different ways can a pack of 52 distinct cards be
dealt in to four hands of 13 cards each?

We first select 13 cards, unordered, for the first hand from all 52. For the
second hand, we select 13 cards from the remaining 39, and so on. So the
solution is:

(
52

13

)
×
(

39

13

)
×
(

26

13

)
×
(

13

13

)

We first observe that simplifying the above solution yields:

52!

13! 39!
× 39!

13! 26!
× 26!

13! 13!
× 13!

13! 0!

=
52!

13! 13! 13! 13!

This makes sense. This corresponds to every permutation of the 52 cards,
but within each group of 13, we treat them as unordered.

Another aspect is that in the above mindset, the hands themselves are or-
dered. Otherwise, we would divide the above by 4!.

We now present the binomial theorem. As a clarification of terminology, a
polynomial in n variables, x1, . . . , xn is a summation of terms, each of the
form c × xc11 × xc22 × . . . × xcnn , where c is a constant integer, and each ci is
a constant non-negative integer. A monomial is a polynomial that has one
term only, and a binomial is a polynomial that has two terms only. The
binomial theorem identifies the terms of (x + y)n, where x, y are variables,
and n ∈ N = {1, 2, . . .}.

74 CHAPTER 4. COMBINATORICS

Claim 32 (Binomial theorem). For n ∈ N,

(x+ y)n =
n∑

i=0

(
n

i

)
xiyn−i

For example,

(a− b)3 =

(
3

0

)
a0(−b)3 +

(
3

1

)
a1(−b)2 +

(
3

2

)
a2(−b)1 +

(
3

3

)
a3(−b)0

= −b3 + 3ab2 − 3a2b+ a3

Proof. By induction on n. For the base case, the left hand side of the equation
is x+ y. The right hand side is

(
1
0

)
x0y1 +

(
1
1

)
x1y0 = x+ y.

For the step:

(x+ y)n = (x+ y)(x+ y)n−1

= (x+ y)
n−1∑

i=0

(
n− 1

i

)
xiyn−1−i

= (x+ y)
n∑

i=1

(
n− 1

i− 1

)
xi−1yn−i

=
n∑

i=1

(
n− 1

i− 1

)
xiyn−i +

n∑

i=1

(
n− 1

i− 1

)
xi−1yn−i+1

=
n∑

i=1

(
n− 1

i− 1

)
xiyn−i +

n−1∑

i=0

(
n− 1

i

)
xiyn−i

=

(
n− 1

0

)
x0yn +

(
n−1∑

i=1

((
n− 1

i− 1

)
+

(
n− 1

i

))
xiyn−i

)
+

(
n− 1

n− 1

)
xny0

=

(
n

0

)
x0yn +

(
n−1∑

i=1

((
n− 1

i− 1

)
+

(
n− 1

i

))
xiyn−i

)
+

(
n

n

)
xny0

75

And, we have:
(
n− 1

i− 1

)
+

(
n− 1

i

)
=

(n− 1)!

(i− 1)! (n− i)! +
(n− 1)!

(n− 1− i)! i!

=
(n− 1)!

(i− 1)! (n− i− 1)!

(
1

n− i +
1

i

)

=
(n− 1)!

(i− 1)! (n− i− 1)!

(
n

(n− i) i

)

=
n!

(n− i)! i! =

(
n

i

)

Thus, the coefficients are given exactly by the combinations. An example of
an application of the binomial theorem is expressed by the following claim.

Claim 33. Given a finite set S of n ∈ N members, the number of subsets of
S, i.e., the cardinality of P(S), is 2n.

Proof. We ask how many subsets of size 0, 1, . . . , n the set S has. And these
correspond exactly to unordered selection of items from S. That is, S has(
n
0

)
= 1 subset of size 0,

(
n
1

)
= n subsets of size 1, . . . ,

(
n
n

)
= 1 subset of size

n. Thus, the total number of its subsets is:

n∑

i=0

(
n

i

)

=
n∑

i=0

(
n

i

)
1i1n−i

= (1 + 1)n = 2n

As a final disussion point about combinations, before we introduce the notion
of multichoose below, we revisit Example 4. Recall that that was an example
of unordered selection with replacement: we seek the number of ways in which
three officers can be chosen from a pool of 10, where an individual is allowed
to occupy more than one officer position.

One way to think about this, which results in re-posing the question as one
about combinations, is the following. Each officer position is an identical

76 CHAPTER 4. COMBINATORICS

“ball.” Each of the 10 candidates is a “bin.” We ask in how many ways we
can have the 10 bins contain the 3 balls, such that each bin contains between
0 and 3 balls. To visualize the bins, we can think of 9 partitions, which
results in 10 bins. For example, the following picture depicts the 9 partitions
which result in 10 bins, with the first bin containing one ball, and the fifth
bin containing the other two. This would be one of the ways in which the
bins can contain the balls.

To further converge towards a way of counting the different possibilities, the
balls-and-bins situation in the above picture can be thought of as a bit-string,
i.e., string of 0’s and 1’s. For example, the scenario above is the bit-string
011110011111. And what we are asking is: how many bit-strings of length
12 do we have that contain exactly three 0’s?

The answer to that question is a simple combination: we pick three of the
12 bit positions to be a 0. That is, the solution is:

(
12

3

)
=

12× 11× 10

3× 2
= 220

Multichoose The above example illustrates multichoose: unordered selec-
tion with replacement. k-out-of-n multichoose is represented as:

((
n

k

))

And it turns out that there is a simple formula for it based on combination:

((
n

k

))
=

(
n+ k − 1

k

)

In Example 4, n = 10, k = 3, and so
((
10
3

))
=
(
10+3−1

3

)
=
(
12
3

)
.

77

Example 19. We have decided to add 5 dashes of powdered spice to a dish.
We have available to us bags of 9 different powdered spices. How many ways
are there to select those 5 dashes from the 9?

This is unordered selection with replacement, because we assume that we have
a limitless amount of each spice available, or at least a sufficient amount of
each of the 9 spices for 5 dashes. Thus, the solution is:

((
9

5

))
=

(
9 + 5− 1

5

)

Example 20. In a large basket, we have a medley of apples, oranges and
pears. We reach in and pick 4 pieces of fruit. How many different possibilities
do we have of sets of the 4 pieces of fruit?

The solution is:
((

3

4

))
=

(
3 + 4− 1

4

)
=

(
6

4

)
= 15

The above example illustrates an important point about multichoose. In k-
out-of-n multichoose, it is certainly possible that k > n. This makes sense,
because it is selection with replacement. Therefore, even though we have only
n < k distinct items, we can pick more than n items because the items are
replenished, i.e., it is with replacement. This is different from, for example,
combinations and permutations. In both those cases, for k-out-of-n, it must
be the case that k ≤ n. In those cases, the selection is without replacement.

Principle of inclusion-exclusion We begin with an example question:
among 100 students, 75 take a math course, 50 take a physics course, and 45
take both. How many take at least one of those two courses?

The principle of inclusion-exclusion is useful is answering questions such as
these. It is based in the following observations, and their corresponding
generalizations. For finite sets, it is true that:

|A ∪B| = |A|+ |B| − |A ∩B|
|A ∪B ∪ C| = |A|+ |B|+ |C| − (|A ∩B|+ |A ∩ C|+ |B ∩ C|) + |A ∩B ∩ C|

78 CHAPTER 4. COMBINATORICS

Example 21. Among 100 students, 75 take a math course, 50 take a physics
course, and 45 take both. How many take at least one of those two courses?

Let M be the set each of whom takes a math course, and P that takes the
physics course. We seek |M ∪ P |. And by the formula above, it is 75 + 50−
45 = 80.

And therefore, the number that take neither is 100− 80 = 20.

79

Discrete Probability

We now introduce probability, which captures the notion of the likelihood
that an event may occur. We begin with the notion of an experiment which
is something we conduct or happens, and has one or more outcomes. Each
outcome in the context of an experiment is called an elementary event. A
sample space is a set of elementary events.

For example, our experiment may be a toss of a two-sided coin, which has
one of two possible outcomes, heads or tails. We could associate the symbol
H with the elementary event that is the former, and T with the elementary
event that is the latter. The set {H,T}, then, is a sample space. Similarly,
we may associate the toss of a 6-sided die with the sample space {1, 2, . . . , 6},
where each of its members represents the elementary event that the die lands
on that number.

Note: in this course, we deal with space spaces that are finite, and therefore
countable, only. Some of the following notions rely on this assumption.

An event is a subset of a sample space. For example, given the sample
space {HH,HT, TH, TT}, that is the set of elementary events associated
with tossing two coins, the subset {HH,HT, TH} is an event; it is the event
that we get at least one heads. A sample space is a subset of itself, and is
therefore an event, which we can call the certain event. The emptyset, ∅,
is the null event. Given a sample space S and two events A,B ⊆ S, we
say that the events A and B are mutually exclusive if A ∩ B = ∅. E.g., in
tossing two coins, the event that we get no tails, {HH}, is mutually exclusive
from the event that the first toss is a tails, {TH, TT}. We can think of each
elementary event s ∈ S as an event {s}; the elementary events are mutually
exclusive from one another.

Probability A probability distribution, Pr, is a function from the powerset
of a sample space S to the real numbers R that satisfies the following axioms,
which are called the probability axioms.

1. Pr{A} ≥ 0 for every event A ⊆ S.

2. Pr{S} = 1. (This is why we call S the certain event.)

80 CHAPTER 4. COMBINATORICS

3. For pairwise mutually exclusive events A1, . . . , An,

Pr{A1 ∪ A2 ∪ . . . ∪ An} = Pr{A1}+ Pr{A2}+ . . .+ Pr{An}

Note: we choose to write Pr{·} rather than Pr(·), i.e., with the customary
round backets that we use for functions, merely to emphasize that while Pr{·}
is a function, it is a function that happens to be a probability distribution.

We call Pr{A} the probability of the event A. For example, suppose we
associate the sample space S = {1, 2, . . . , 6} with the roll of a 6-sided die.
And suppose Pr{1} = Pr{2} = . . . = Pr{5} = 1/10, and Pr{6} = 1/2.
Then, such a Pr can be a probability distribution. (We need to assert, in
addition, that Axiom 3 is satisfied.)

A probability distribution is said to be discrete if it is defined over a sam-
ple space that is countable. As our note above says, in this course, we deal
with finite, and therefore countable, sample spaces only. Thus, all probabil-
ity distributions with which we deal are discrete. In a discrete probability
distribution over a sample space S, for an event A ⊆ S:

Pr{A} =
∑

s∈A
Pr{s}

Given the above probability axioms, we can establish a number of claims for
a discrete probability distribution, Pr.

Claim 34. Pr{∅} = 0.

Proof. Assume otherwise for the purpose of contradiction, i.e., assume Pr{∅} >
0. We observe that if S is the sample space, then S ∩ ∅ = ∅, that is, S and ∅
are mutually exclusive. Therefore, Pr{S ∪ ∅} = Pr{S} = Pr{S}+Pr{∅} > 1,
a contradiction to the axiom Pr{S} = 1.

Claim 35. If A ⊆ S is an event, then Pr
{
A
}

= 1− Pr{A}.

Proof. A = S \ A. And A ∩ A = ∅. Therefore, Pr
{
A ∪ A

}
= Pr{S} = 1 =

Pr
{
A
}

+ Pr{A} =⇒ Pr
{
A
}

= 1− Pr{A}.
The above claim can be useful in intuiting the probability of an event by
considering its complement. For example, for the events associated with the

81

toss of two coins, suppose each of the elementary eventsHH,HT, TH, TT has
equal probability of 1/4. Then, Pr{at least one heads} = 1−Pr{no heads} =
1− Pr{TT} = 1− 1/4 = 3/4.

Claim 36. For events A,B with A ⊆ B, it is true that Pr{A} ≤ Pr{B}.

Proof. B ⊇ A =⇒ B = A∪(B\A) =⇒ Pr{B} = Pr{A}+Pr{B \ A} =⇒
Pr{B} ≥ Pr{A}.

Claim 37. Pr{A ∪B} = Pr{A}+ Pr{B} − Pr{A ∩B}.

Proof.

A = (A \ (A ∩B)) ∪ (A ∩B)

=⇒ Pr{A} = Pr{A \ (A ∩B)}+ Pr{A ∩B}

B = (B \ (A ∩B)) ∪ (A ∩B)

=⇒ Pr{B} = Pr{B \ (A ∩B)}+ Pr{A ∩B}

=⇒ Pr{A}+ Pr{B} − Pr{A ∩B} =

Pr{A \ (A ∩B)}+ Pr{B \ (A ∩B)}+ Pr{A ∩B} =

Pr{A ∪B}

A corollary to the above claim is: Pr{A ∪B} ≤ Pr{A}+ Pr{B}.

Uniform probability distribution Given a sample space S = {s1, . . . , sn},
if Pr{s1} = . . . = Pr{sn}, we call such a Pr a uniform probability distribu-
tion. Given such a uniform distribution over a sample space S, and an event
A ⊆ S, we have a relatively simple formula for Pr{A}:

Pr{A} =
|A|
|S|

82 CHAPTER 4. COMBINATORICS

Example 22. Suppose we toss three coins, with each outcome equally likely.
What is the probability that we have at least two heads?

If S is the same space, then |S| = 23. The event A mentioned above occurs
when we have either (i) exactly two heads, or, (ii) all three are heads. The
number of ways in which (ii) can happen is 1. The number of ways in which
(i) can happen is

(
3
2

)
. So:

Pr{A} =

(
3
2

)
+ 1

23
=

1

2

Example 23. We have a basketful of apples, oranges, pears and peaches.
We reach in and take two pieces of fruit in a manner that every multiset of
two pieces of fruit is equally likely. What is the probability that we end up
with two different kinds of fruit?

Let A be the event that we end up with two different kinds of fruit. Then,
Pr{A} = 1 − Pr

{
A
}

, where A is the event that we end up with two of the

same kind of fruit. The number of ways in which A can happen is 4, because
we have 4 different kinds of fruit.

All that remains is for us to intuit the size of the same space, call it S, which
is all possible multisets of size 2. Our situation corresponds to unordered
selection with replacement, and so:

Pr{A} = 1− Pr
{
A
}

= 1−
∣∣A
∣∣
|S| = 1− 4((

4
2

))

= 1− 4(
4+2−1

2

) = 1− 4

10
=

3

5

It is somewhat interesting to sanity-check the solution in the above example
by changing the number of different kinds of fruit in the basket, call it d.
The example considers the case that d = 4. The following table gives us the

83

probability of picking two different pieces of fruit for different values of d.

d Pr{A} = 1− d

((d
2))

1 1− 1

(1+2−1
2)

= 1− 1
1

= 0

2 1− 2

(2+2−1
2)

= 1− 2
3

= 1/3

3 1− 3

(3+2−1
2)

= 1− 3
6

= 1/2

4 1− 4

(4+2−1
2)

= 1− 4
10

= 3/5

5 1− 5

(5+2−1
2)

= 1− 5
15

= 2/3

6 1− 6

(6+2−1
2)

= 1− 6
21

= 5/7

7 1− 7

(7+2−1
2)

= 1− 7
28

= 3/4

The table suggests that as the number of kinds of fruit increases in the basket,
the probability of picking two different kinds of fruit increases. This of course
appeals to the common sense.

Conditional probability and independence Conditional probability
addresses situations that we already have some prior knowledge about some
outcomes. Consider the following game, which is from a TV show called
“Let’s Make a Deal.”

There are three curtains, numbered 1, 2 and 3. Behind one of them is a
desirable prize. Behind the other two, there is nothing. The game goes as
follows. You are first asked to pick one of the curtains. The host then draws
back one of the other curtains that does not contain the prize; we know that
there is at least one. The host them gives you the opportunity to change
your choice to the other curtain that remains closed.

Should we change our choice? Is it rational to do so?

We can pose this as a problem of intuiting the probability of winning if we
switch our choice, given our a priori knowledge that the curtain that the host

84 CHAPTER 4. COMBINATORICS

drew back does not contain the prize. If this probability is higher than 1/3,
we should switch; otherwise, there is no rational reason to switch. The value
1/3 comes from our assumption that initially, we have a uniform distribution,
i.e., the probability that the prize is behind any one of the curtains is 1/3.

The above problem is called “The Monty Hall problem,” after the host of the
game show. We revisit it after our discussions on conditional probability. A
simpler example is: suppose we toss two coins, with every elementary event
equally likely, and you know that one of them lands heads. So that is our a
priori knowledge. What is the probability that both land heads?

The fact that one of the coins lands heads eliminates the event TT , that both
land tails. So, the only possible events are HH,HT, TH. And therefore, the
conditional probability in question is 1/3.

The conditional probability of an event A given that an event B occurs, i.e.,
Pr{B} 6= 0, read as “the probability of A given B” is:

Pr{A | B} =
Pr{A ∩B}

Pr{B}

One way to understand the above formula is that we normalize the probability
that both A and B occur by the probability that B occurs. For example, for
our coin toss example above, A is the event that both coins land heads, and
B is the event that one of them lands heads. And we have:

Pr{A | B} =
Pr{A ∩B}

Pr{B} =
Pr{A}
Pr{B} =

1/4

3/4
=

1

3

We exploited the fact that A ∩B = A, because A ⊆ B.

We say that events A and B are said to be independent if Pr{A ∩B} =
Pr{A}Pr{B}. This is equivalent, if Pr{B} 6= 0, to: Pr{A | B} = Pr{A}.

Example 24. Suppose we toss a coin once and then again, in a manner
that every elementary event, HH,TT,HT, TH, is equally likely. Let A be
the event that the first toss lands heads. And B be the event that the two

85

tosses land differently. Are the events A and B independent?

We compare Pr{A} with Pr{A | B}.

Pr{A} = 1/2

Pr{A | B} =
Pr{A ∩B}

Pr{B} =
Pr{HT}

Pr{HT, TH} =
1/4

2/4
=

1

2

Thus, the events A and B are indeed independent.

Example 25. You have a coin that you fear may be biased. That is, it lands
heads with some probability p ∈ (0, 1), and tails with probability 1 − p. You
do not know what p is, except that it is neither 0 nor 1. Devise a way to get
a fair coin toss.

Consider the following approach. We repeatedly toss the coin twice till the
two outcomes are different. Then we adopt the first of the two tosses as our
result.

Why does this work? With every two tosses, we have the sample space S =
{HH,HT, TH, TT}. And we observe that Pr{HT} = Pr{TH} = p(1 − p).
That is, we have the same probability for the two events that correspond to
different outcomes for the two tosses.

Example 26. A standard pack of 52 cards includes 12 “face cards” – Queens,
Kings and Jacks. Suppose you draw two cards uniformly at random from
such a standard pack, and notice that the first is not a face card. What is
the probability that the second is a face card?

Let A be the event that the first is not a face card, and B be the event that
the second is. We seek Pr{B | A}.

Pr{B | A} =
Pr{B ∩ A}

Pr{A} =
(40× 12)/(52× 51)

40/52

=
40× 12× 52

52× 51× 40
=

12

51

This makes sense, because once we remove a non-face card, we have a 12/51
chance of drawing a face card. Also, the events A and B are not independent.

86 CHAPTER 4. COMBINATORICS

Because:

Pr{B} = Pr
{

(B ∩ A) ∪
(
B ∩ A

)}

= Pr{B ∩ A}+ Pr
{
B ∩ A

}

=
40× 12

52× 51
+

12× 11

52× 51

=
12× (40 + 11)

52× 51

=
12

52
6= 12

51
= Pr{B | A}

In the above example, does it make sense that Pr{B}, the probability that
the second card that is chosen, is 12

52
? We observe that this is the same

probability that, if we choose one card uniformly at random from the pack of
52, it is a face card. What if, for example, we pick 10 cards, one after another
uniformly at random, and ask what the probability is that the eighth is a
face card? The answer, as per the above mindset, should still be 12

52
.

We argue that this does make sense based on the following reasoning. Sup-
pose we shuffle the cards thoroughly and lay them out left to right on a table.
The leftmost card then, can be seen as corresponding to our first pick, the
second card from the left as our second pick, and so on. Now, if we ask what
the probability is that any one of them is a face card, it is 12

52
. Thus, if we

uniformly at random pick n cards out of the 52, and ask what the probability
is that the kth of those cards is a face card, for 1 ≤ k ≤ n, the answer is the
same, 12

52
.

We now articulate Bayes’s theorem, which relates Pr{A | B} and Pr{B | A}.
It is useful, for example, when one of those probabilities is easier to intuit
than the other.

Claim 38 (Bayes’s theorem). Suppose Pr{A} 6= 0,Pr{B} 6= 0. Then:

Pr{A | B} =
Pr{A}Pr{B | A}

Pr{B}

87

Proof.

Pr{A | B} =
Pr{A ∩B}

Pr{B}

Pr{B | A} =
Pr{A ∩B}

Pr{A}
=⇒ Pr{B}Pr{A | B} = Pr{A}Pr{B | A}

=⇒ Pr{A | B} =
Pr{A}Pr{B | A}

Pr{B}

Example 27. We revisit Example 26 and ask, instead, what Pr{A | B} is,
i.e., the probability that the first card we draw is not a face card, given that
the second is.

Pr{A} =
40

52

Pr{B} =
12

52

Pr{A | B} =
Pr{A}Pr{B | A}

Pr{B} ∵ Bayes

=
40/52× 12/51

12/52
=

40× 12× 52

52× 51× 12

=
40

51

Example 28. We address the Monty Hall problem that we introduced earlier.
Recall that the problem is as follows. There are three curtains behind one of
which is a prize. We initially pick a curtain, and Monty then opens one of the
other curtains that does not contain the prize. He then gives us the option
of switching our choice to the third curtain before he reveals behind which
curtain the prize is. The question is: should we switch? Or more specifically,
does our probability of winning increase by switching?

Assume that we choose Curtain 1 initially and then Monty opens curtain 2.
Consider the following two events:

• P1 is the event that the prize is behind Curtain 1.

88 CHAPTER 4. COMBINATORICS

• R2 is the event that after we have initially chosen Curtain 1, Monty
opens Curtain 2.

Then, we are interested to know Pr{P1 | R2}. Because, if Pr{P1 | R2} < 1/2,
that would be a good rationale to switch to Curtain 3.

We leverage Bayes to determine Pr{P1 | R2}. For that, we need to determine
Pr{P1},Pr{R2} and Pr{R2 | P1}. Pr{P1} = 1/3 because the prize is equally
likely to be behind any of the three curtains. Pr{R2 | P1} = 1/2 because if
the prize is behind Curtain 1, given that we have chosen Curtain 1 initially,
Monty can open either Curtain 2 or 3, and we assume he picks one with
equal probability.

As for Pr{R2}, we know that it is 0 if the prize is behind Curtain 2. Also,
Monty cannot open Curtain 1 as we chose it initially. So the only way the
event R2 can occur is if the prize is behind Curtain 3. And this occurs with
probability 1/2 because the prize may be behind either Curtain 1 or 3 with
equal probability. So:

Pr{P1 | R2} =
Pr{P1}Pr{R2 | P2}

Pr{R2}

=
1/3× 1/2

1/2
= 1/3

Therefore, we should switch to Curtain 3, because the probability that the
prize is behind Curtain 3 is 1− 1/3 = 2/3.

Example 29. Suppose we have two coins, one of which is fair, and the
other always comes up heads. Suppose we pick one of those coins uniformly
at random and toss it three times, and it so happens that it comes up heads
all of the three times. What is the probability that we happened to pick the
coin that always comes up heads?

Let A be the event that we pick the coin that always comes up heads. Let B
be the event that all three tosses of the chosen coin come up heads. We seek
Pr{A | B}.

We leverage Bayes, for which we need to know Pr{A},Pr{B} and Pr{B | A}.

89

Pr{A} = 1/2, and Pr{B | A} = 1. To determine Pr{B}, we observe:

Pr{B} = Pr{B ∩ A}+ Pr
{
B ∩ A

}

= Pr{A}Pr{B | A}+ Pr
{
A
}

Pr
{
B | A

}

= 1/2× 1 + 1/2× 1/8

= 9/16

So our solution:

Pr{A}Pr{B | A}
Pr{B} =

1/2× 1

9/16
=

8

9

We expect that the more tosses we make that are all heads, the higher the
probability that we have chosen the biased coin. Of course, if we see even one
tails, we immediately know that we have chosen the fair coin.

Expectation We conclude our discussions on discrete probability with the
notion of expectation, or the expected value of a discrete random variable.

Given a sample space S over which we specify a probability distribution, Pr,
a discrete random variable X is a function from the sample space to a real
number, X : S → R.

For example, suppose we toss a coin thrice, and I am to lose $2 for every
tails, and win $10 for every heads. Then, we can specify a discrete random
variable, call it W , which is my total winnings. The sample space is {H,T}×
{H,T} × {H,T}. The range of W is {−6, 6, 18, 30}.

As we deal with only discrete random variables in this course, we drop the
qualifier “discrete,” henceforth. Given a random variable X, we define the
event X = x to be the set {s ∈ S | X(s) = x}. In our above example, the
event W = 18 is {THH,HTH,HHT}. And then:

Pr{X = x} =
∑

s∈S:X(s)=x

Pr{s}

In our above example, if the coin is fair, then Pr{W = 18} = 3/8.

The expected value, expectation or mean of a random variable X : S → R is

90 CHAPTER 4. COMBINATORICS

denoted E[X], and defined as:

E[X] =
∑

x∈R
x · Pr{X = x}

=
∑

s∈S
X(s) · Pr{s}

As the formula suggests, the expectation of X is a weighted average, where
each of the values X can take is weighted by the probability with which X
takes that value.

For example, in our above coin-toss game, the expectation of the random
variable W , assuming that the coin is fair, is:

E[W] = −6× 1

8
+ 6× 3

8
+ 18× 3

8
+ 30× 1

8

=
1

8
(−6 + 18 + 54 + 30) = 12

The idea behind the expected value is exactly what we associate with the
term “expectation.” That is, if we play the coin-toss game, we expect to win
$12. And interesting observation is that the expectation is not necessarily
one of the values that the random variable can take. That is, in our above
example, there is no situation in which we actually win $12, as our winning
from playing the game once is one of −6, 6, 18 or 30.

Example 30. We toss a fair 6-sided die whose faces are numbered 1, . . . , 6.
What is the expectation of the toss?

If T is a random variable that is the value the die lands, we have:

E[T] =
1

6
(1 + 2 + . . .+ 6) =

21

6
= 3.5

The expectation can be used to make decisions that we can argue are rational.
Consider the following example.

Example 31. You need to put in $15 upfront to play the following game.
We toss a fair coin twice. You earn $4 for every tails and $10 for every
heads. Would you play this game?

One way to rationally answer this question is to define an appropriate random
variable and compute its expected value. Let X be a random variable that is

91

our earnings after the two tosses. If E[X] ≥ 15, we agree to play the game.
If not, we do not play the game.

We observe:

E[X] = 8× 1

4
+ 14× 1

2
+ 20× 1

4
= 14

So, if we play the game in the above example, we expect to lose money. This
is exactly the kind of set up we see in Casinos. It is not quite true that “the
house always wins.” Rather, if we play a game in the Casino, we expect to
lose money. Of course, we may win as well, and the house may lose. But the
expectation captures the long-term trend. That is, provided the Casino is
able to stay in business long enough and has sufficiently many visitors, it is
highly likely to make a profit. Of course, if the odds are too skewed in favour
of the house, no one would visit.

In the above example, we can ask what the probability is that we win more
than $15 so we do not lose money. And the answer is of course that the only
way is if we land both heads, which happens with probability 1/4 only.

Example 32. We revisit Example 25, in which we are given a biased coin,
which lands heads with probability p ∈ (0, 1), and tails with probability 1− p.
Our algorithm to ensure a fair coin toss is: repeatedly toss the coin twice till
we see two different results. Choose the first of the two as the result of our
fair coin toss.

As we discuss there, this works because Pr{HT} = Pr{TH}. However, a
concern may be the number of times we may have to repeatedly toss the coin
before we finally have a result for our fair coin toss. How many could it be?

Of course, in the worst-case, we may never stop – we may get so unlucky
that both consecutive coin tosses always have the same result. But what if we
ask how many consecutive pair of tosses we expect to have to make before we
are able to stop?

Let T be the corresponding random variable. We can intuit E[T] from our
definition of expectation. We observe that T takes on values in N, i.e., 1, 2, . . .
That is, we may stop after the first pair of coin tosses, or the second, and so
on. The only reason we engage in a second pair of coin tosses is that we got
the same results for both tosses in the first pair. The probability with which

92 CHAPTER 4. COMBINATORICS

we get the same result in a pair of tosses is p2 + (1 − p)2, i.e., both tails or
heads, with each event being mutually exclusive.

So we have the following for E[T], with explanations for the lines with equa-
tion numbers following.

E[T] = 1× 2p(1− p) +

2×
[
p2 + (1− p)2

]
× 2p(1− p) +

3×
[
p2 + (1− p)2

]2 × 2p(1− p) +

4×
[
p2 + (1− p)2

]3 × 2p(1− p) +

. . .

=
∞∑

i=1

i×
[
p2 + (1− p)2

]i−1 × 2p(1− p)

= 2p(1− p)
∞∑

i=1

i×
[
p2 + (1− p)2

]i−1

= 2p(1− p)
∞∑

i=1

∞∑

j=i

[
p2 + (1− p)2

]j−1
(4.1)

= 2p(1− p)
∞∑

i=1

[p2 + (1− p)2]i−1
1− [p2 + (1− p)2] (4.2)

=
2p(1− p)

1− [p2 + (1− p)2]
∞∑

i=1

[
p2 + (1− p)2

]i−1

=
2p(1− p)

[1− (p2 + (1− p)2)]2
(4.3)

=
2p(1− p)

[2p(1− p)]2
(4.4)

=
1

2p(1− p)

Explanations: for clarify, adopt a = p2 + (1− p)2.

(4.1) We seek 1 × a0 + 2 × a1 + 3 × a2 + 4 × a3 + . . . We rewrite this as
(a0 + a1 + a2 + a3 + . . .) + (a1 + a2 + a3 + . . .) + (a2 + a3 + . . .) + . . .
This is exactly what the double summation expresses.

93

(4.2) The inner summation is what is called a geometric series. It is of the
form ai−1 + ai + ai+1 + ai+2 + . . . We can intuit what that summation
is as follows:

S = ai−1 + ai + ai+1 + ai+2 + . . .

aS = ai + ai+1 + ai+2 + . . .

S − aS = ai−1

=⇒ S =
ai−1

1− a
(4.3) We again have a geometric series, except that the first term in the

summation is a0 = 1.

(4.4) 1 − [p2 + (1− p)2] = 2p(1 − p). We can intuit this by looking at
the binomial expansion of [p+ (1− p)]2, or simply by observing that
2p(1− p) = Pr{HT, TH} = 1− Pr{HH,TT} = 1−

[
p2 + (1− p)2

]
.

As an example, suppose p = 1/2, that is, the coin is fair. Then, the number
of pairs of tosses we expect to have to make before we have a result for our
fair coin toss is: 1

2p(1−p) = 2.

If the coin is more skewed, e.g., p = 1/8, then the expected number of pairs
of tosses is 1

2×1/8×7/8 = 32
7

, which is between 4 and 5. It makes sense that our
expected number of pairs of tosses increases as the coin gets more skewed.
We get the minimum when the coin is fair, i.e., 2 pairs of tosses only.

In Example 32 above, we could have saved ourselves a whole lot of work on
the math if we had been a bit more creative with the random variable we
defined, paired with some additional observations about the expected value
of random variables.

The first observation is the so-called linearity of expectation: if X, Y are
random variables, then E[X + Y] = E[X] + E[Y]. The second is about so-
called indicator random variables. An indicator random variable is a random
variable which takes one of two values only: 0 or 1. Then, if X is an indicator
random variable, E[X] = Pr{X = 1}.

To prove the linearity of expectation, we recall that a random variable is
a function, and rely on how we define addition for functions. We restrict

94 CHAPTER 4. COMBINATORICS

ourselves to functions whose codomain is the real numbers. Given functions
f : A→ R, g : A→ R, we define the function (f + g) : A→ R as (f + g)(a) =
f(a) + g(a).

Claim 39. If X : S → R, Y : S → R are random variables where S is a
sample space, then E[X + Y] = E[X] + E[Y].

Proof.

E[X] =
∑

s∈S
X(s) · Pr{s}

E[Y] =
∑

s∈S
Y (s) · Pr{s}

E[X + Y] =
∑

s∈S
(X + Y)(s) · Pr{s}

=
∑

s∈S
(X(s) + Y (s)) · Pr{s}

=
∑

s∈S
((X(s) · Pr{s}) + (Y (s) · Pr{s}))

=
∑

s∈S
X(s) · Pr{s}+

∑

s∈S
Y (s) · Pr{s}

= E[X] + E[Y]

Note that the above can be generalized to several random variables. That is:

E

[
n∑

i=1

Xi

]
=

n∑

i=1

E[Xi]

Claim 40. If X is an indicator random variable, i.e., takes on the value 0
or 1 only, then E[X] = Pr{X = 1}.
Proof. As X takes on the value 0 or 1 only:

E[X] = 0 · Pr{X = 0}+ 1 · Pr{X = 1}
= Pr{X = 1}

95

We now return to Example 32. Consider the following alternative way of
intuiting the expected number of pairs of tosses till we are able to return the
result of a fair coin toss.

Suppose we carry out n pairs of such tosses. We first ask in how many
we expect to have TH or HT . We then ask what n must be so that this
expectation is at least 1. We proceed as follows, assuming that we carry out
n pairs of tosses. Define n random variables, X1, . . . , Xn as follows:

Xi =

{
1 if the ith pair is TH or HT
0 otherwise

Let R be a random variable that is the number of such pairs of tosses for
which we are able to return a result. Then:

R =
n∑

i=1

Xi

=⇒ E[R] = E

[
n∑

i=1

Xi

]

=
n∑

i=1

E[Xi]

=
n∑

i=1

Pr{Xi = 1}

=
n∑

i=1

2p(1− p)

= 2p(1− p)
n∑

i=1

1

= 2np(1− p)

And so,

E[R] ≥ 1 ⇐⇒ 2np(1− p) ≥ 1 ⇐⇒ n ≥ 1

2p(1− p)

96 CHAPTER 4. COMBINATORICS

The notion of an indicator random variable is related closely to the notion
of a Bernoulli trial. A Bernoulli trial is an experiment which has one of two
outcomes only: success or failure. And, if p is the probability of success in
a Bernoulli trial, the expected number of trials before a success is 1/p. This
can be proved easily by leveraging an appropriately defined indicator random
variable. Our experiment in Example 32 can be seen as a Bernoulli trial:
success is a pair of coin tosses with different outcomes. As the probability of
success is 2p(1− p), the expected number of trials before a success is 1

2p(1−p) .

Example 33. We revisit the situation in Example 29. We have a fair coin,
and a coin that always lands heads. Suppose we pick one of the two uniformly
at random, toss it, and repeat both of those steps till we get tails. What is
the expected number of tosses?

We adopt the notion of a Bernoulli trial. That is, success is when we get a
tails from our randomly chosen coin. If we are able to intuit the probability
of success, call it p, then 1/p is the expectation we seek.

Thus, the success event is when: (i) we choose the fair coin, and, (ii) a toss
results in tails. And this probability is 1/2 × 1/2 = 1/4, and therefore, our
expected number of tosses is 4.

The approach in the above example may be used to distinguish the coins.
Following is another approach. We toss both coins simultaneously till one of
them lands tails. We would then have immediately identified which coin is
which. What is the expected number of tosses of each coin in this approach?

The expectation in this case is the same as the expected number of tosses
of the fair coin till it lands tails. We can perceive this as a Bernoulli trial:
we toss the fair coin, and success is that it lands tails. The probability of
success, then, is 1/2, and therefore the expectation is 2. Thus, we expect
to have to toss each coin twice before we identify which is which. Thus, the
total number of tosses is 4.

We conclude with an example from algorithms. Suppose you are given a set
of n distinct integers, where n is odd. You are asked for an algorithm to
find the median of those integers. The median is the middlemost value from

97

amongst the members of the set. E.g., the median of {−42, 17, 4, 5, 6} is 5.

Consider the following randomized algorithm. We pick a number from the
set, call it i, uniformly at random from amongst the n numbers. We then
check whether i is indeed the median. We can do this, for example, by
comparing i to every other number, and counting how many are smaller
than i. The number of integers in the set that is smaller than i is (n− 1)/2
if and only if i is the median. If we find out that i is not the median, we
repeat the entire process. That is, we pick an integer uniformly at random
and test it. (Of course, we may again pick i.)

This algorithm may not seem good, but it is simple, and somewhat surpris-
ingly good in expectation. We can ask, for example, how many trials, i.e.,
random pick and subsequent check, we expect to make before we find the
median. To answer this, we perceive a random pick as a Bernoulli trial.
Success is if we picked the median. The probability of success, then, is 1/n.
Therefore, the expected number of trials before success is n.

— Mahesh Tripunitara

