ECE6610PD POWER ELECTRONIC CONVERTERS: DESIGN AND APPLICATIONS Fall 2021

COURSE INSTRUCTOR:

Mehrdad Kazerani, PhD, P.Eng., SMIEEE Professor Department of Electrical & Computer Engineering University of Waterloo 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1 Tel: 519-888-4567, Ext. 33737 Fax: 519-746-3077 <u>mkazerani@uwaterloo.ca</u> www.power.uwaterloo.ca

Teaching Assistant: TBD

Live Lectures Schedule: TBD

Study Material:

- Detailed lecture slides will be made available for download from LEARN before live lectures.
- Other related materials will also be made available to participants, when appropriate.

Lectures:

• There will be 12 3-hour lectures in the course.

Marking Scheme:

- Written final exam: 60%
- Assignments: 40%

SUMMARY:

This course covers a wide range of topics in power electronics including: power semiconductor devices (an overview), power converter topologies for ac-to-dc, dc-to-dc, dc-to-ac and ac-to-ac conversions, multi-converter and multi-level converter topologies, control techniques in power converters, modeling and controller design of power converters, applications of power converters, implementation aspects of power converters (snubber circuits, gate/base-drive circuits, thermal management, and series/parallel combinations of switches), and computer simulation of power electronic systems.

OBJECTIVES:

- Understand the operating characteristics of power semiconductor devices.
- ◆ Learn about topologies, control techniques, and applications of power converters.
- ◆ Learn about modeling, controller design and implementation aspects of power converters.
- ◆ Learn to use a standard power electronic simulation package.

MAJOR TOPICS:

- 1. Power Semiconductor Devices
- 2. Power Converter Topologies, Control Techniques and Applications
- 3. Modeling, Controller Design and Implementation Aspects of Power Converters

DETAILED PLAN:

12 LECTURE SESSIONS

Topics	No. of Lecture Sessions	Sub-Topics
Introduction to Power Electronics	1 Week 1	 Evolution and Scope Application Examples Waveform Quality Input and Output Low-Pass Filters
Power Semiconductor Devices and Computer Simulation of Power Electronic Systems	1 Week 2	 Diode SCR (Thyristor) Controllable Switches Introduction to Wide-Band-Gap Devices Switch Losses Introduction to Power Electronic Circuit Simulation using PSIM

Power Converters: Topologies, Design, Modeling and Control Techniques	1 Week 3	 Line-Frequency Diode Rectifiers Single-Phase and Three-Phase Diode Rectifiers Applications
	2 Week 4 & Week 5	 Line-Frequency Phase-Controlled Converters Single-Phase & Three-Phase Phase-Controlled Converters Applications
	2 Week 6 & Week 7	 Switch-Mode DC-to-DC Converters Topologies Control Techniques: Hysteresis, Pulse-Width Modulation, Phase-Shift Modulation Modeling Controller Design Applications
	3 Week 8, Week 9 & Week 10	 DC-to-AC Converters (Inverters) Voltage- and Current-Sourced Converter Topologies Control Techniques: Hysteresis, Pulse-Width Modulation, Square-Wave Control, Selective Harmonic Elimination, Space Vector Modulation Modeling Multi-Converter and Multi-Level Converter Topologies Applications
Implementation Aspects of Power Converters	2 Week 11 & Week 12	 Snubber Circuits and soft switching Thermal Management Gate/Base-Drive Circuits Series and Parallel Switch Combinations

REFERENCES:

- 1. Mohan, Undeland and Robbins, *Power Electronics: Converters, Applications, and Design*, 3rd Edition, John Wiley & Sons, Inc., 2003. (main)
- 2. D.W. Hart, *Power Electronics*, McGraw Hill, 2011. (supplementary)
- 3. M.H. Rashid, *Power Electronics: Circuits, Devices, and Applications*, 3rd Edition, Pearson-Prentice Hall, 2003. (supplementary)
- 4. R.S. Ramshaw, *Power Electronics Semiconductor Switches*, 2nd. Edition, Chapman & Hall, 1993. (supplementary)
- 5. Conference and Journal papers.

PREREQUISITES:

- Basic understanding of circuit analysis and control theory
- Familiarity with electric machines and power systems