

Department of Electrical & Computer Engineering

ECE 662: Power System Analysis and Control Course Outline Fall 2025

Instructor:

Claudio A. Cañizares Office: EIT-4168 Cell: (519) 498-5944

e-mail: ccanizares@uwaterloo.ca
URL: www.power.uwaterloo.ca

Office hours: Wednesdays from 5 to 6 pm on Teams. However, some hours will be rescheduled due to

Prof. Cañizares' travel commitments.

TA: TBD

Lectures: Mondays from 2:30 to 5:30pm @ E5 4128, with a \sim 20 min break at \sim 1 ½ h.

Objectives:

- Understand the basic definitions, concepts, and controls associated with power flow, short circuits, and stability of power systems.
- Discuss in detail techniques and tools for power system analysis and their application, with a practical perspective.

Content:

No. of Hours	Topics	Sub-Topics
6	Review	 Basic power system elements and models: ◇ Generators. ◇ Transmission systems. ◇ Loads. ◇ FACTS. ◇ Renewable Energy Sources (RES).

3	Power Flow Analysis	 System model. Equations. Solution techniques: Newton-Raphson. Fast decoupled. Optimization. Contingency analysis. System model.
3	Short Circuit Analysis	 Faults: ◇ 3-phase. ◇ Single-phase-to-ground. ◇ Two-phase. ◇ Two-phase-to-ground. Matrix analysis.
3	Basic Stability Concepts	 Nonlinear systems: ♦ Ordinary Differential Equations (ODE). ♦ Differential Algebraic Equations (DAE). Equilibrium points: ♦ Definition. ♦ Linearization. ♦ Eigen analysis. Stability regions.
6	Voltage Stability and Control	 Definitions. Voltage collapse (long-term): ◇ Basic concepts. ◇ Tools: Continuation power flows; direct methods; indices. ◇ Control and protection: Compensation; secondary voltage regulation; under-voltage relays. ◇ System security and transmission congestion. ◇ Real blackout analysis. Voltage regulation (short-term): ◇ Basic concepts. ◇ Fault-Induced Delayed Voltage Recovery (FIDVR). ◇ Real blackout analysis.
3	Small-perturbation Stability and Control	 Definitions and basic concepts. Tools: Eigenvalue analysis. Control and protection: ♦ PSSS. ♦ FACTS. Real blackout analysis.
6	Transient Stability and Control	 Definitions and basic concepts. Tools: Time domain analysis. Direct methods (energy functions and equal area criterion). Real blackout analysis.

3	Frequency Stability and Control	 Definitions and basic concepts. Control and protection: Primary and secondary frequency regulation. Automatic Generation Control (AGC). Under-frequency relays. RES impact and controls Real blackout analysis.
1.5	Resonance Stability and Control	 Electrical. Torsional. Examples.
1.5	Converter Driven Stability and Control	Fast interactions.Slow interactions.Examples.

Recommended Text:

A. Gómez-Expósito, A. J. Conejo and C. A. Cañizares, Editors, *Electric Energy Systems: Analysis and Operation*, 2nd edition, CRC Press, June 2018, ISBN 9781315192246.

Other References:

- 1. A. R. Bergen and V. Vittal, *Power systems analysis*, Second Edition, Prentice-Hall, 2000.
- 2. J. Arrillaga and C. P. Arnold, Computer analysis of power systems, John Wiley, 1990.
- 3. P. Kundur, Power System Stability and Control, McGraw-Hill, 1994, ISBN 0-07-035958-X.
- 4. P. M. Anderson and A. A. Fouad, Power system control and stability, IEEE Press, 1994.
- 5. C. A. Cañizares, Editor, "Voltage stability assessment: concepts, practices and tools," IEEE-PES Power System Stability Subcommittee Special Publication, SP101PSS, May 2003.
- 6. Journal papers and technical reports (available on-line).
- 7. Course notes available at course website.

Requisites: Basic knowledge of power systems and modeling is required. Some basic familiarity with MATLAB is required.

Projects: Required if Auditing the course:

- 1. Power flow and short circuit analysis of the IEEE 14-bus test system using MATLAB and a power system analysis package TBD.
- 2. Stability analysis of the IEEE 14-bus test system using a power system analysis package TBD.

Marking: Projects (2) \rightarrow 50 % TBD Final Exam \rightarrow 50 % TBD

Important Notes:

- Academic Integrity: Please read www.uwaterloo.ca/academicintegrity/
- Grievance: Please read Policy 70, Student Petitions and Grievances, Section 4, at www.adm.uwaterloo.ca/infosec/Policies/policy70.htm.
- Discipline: Please read Policy 71, Student Discipline, at www.adm.uwaterloo.ca/infosec/Policies/policy71.htm, and Guidelines for the Assessment of Penalties at www.adm.uwaterloo.ca/infosec/guidelines/penaltyguidelines.htm.
- Appeals: A student who believes he/she has a ground for an appeal should refer to Policy 72 (Student Appeals) at www.adm.uwaterloo.ca/infosec/Policies/policy72.htm.