ECE720T6: Trends in Reconfigurable Computing

Instructor: Nachiket Kapre (nachiket@uwaterloo.ca)

Motivation

Reconfigurable architectures such as FPGAs (Field Programmable Gate Arrays)
are enjoying a widespread renaissance in computing with big support from proces-
sor manufacturers like Intel [1], IBM [2] and even software vendors like Microsoft
[3]. FPGAs are programmable hardware circuits that can be fully customized to
the particular application thereby delivering accelerated performance, and energy
efficiency. With its acquisition of Altera for $16.7B, Intel now ships computing
chips dedicated for the cloud that combine a processor and an FPGA in the
same chip. FPGA cards designed through the Microsoft Catapult project for
Bing acceleration are being integrated into all machines in the massive Microsoft
Azure data center. Students entering the technology workforce must be prepared
to understand how FPGAs work, how they are programmed, and how to get the
best use out of these platforms for their requirements.

[1] “Intel Bets $16.7 Billion on the Massively Parallel Future of Computing” —
Motherboard.Vice 1st January 2016 — http://motherboard.vice.com/read/intel-
bets-167-billion-on-the-massively-parallel-future

[2] “IBM bets POWERS processor farm on hardware acceleration “ —
The Register 16th Nov 2015 — http://www.theregister.co.uk/2015/11/16/
ibm_ bets_power8 processor_farm_on_hardware acceleration/

[3] “Microsoft Bets Its Future on a Reprogrammable Computer Chip” — Wired
25th September 2016 — https://www.wired.com/2016,/09/microsoft-bets-future-
chip-reprogram-fly /

Content

This course will help you understand the foundational principles of FPGA
architecture, the compilation and CAD process for modern FPGAs, high-level
synthesis with OpenCL, communication overlay fabrics, and design strategies
and patterns for computational acceleration. In particular, we will explore topics
of contemporary interest such as machine learning that can influence both (1)
how we design FPGAs, and (2) how they can be accelerated using FPGAs. This
course will involve a combination of lectures, reading assignments, hands-on
active labs, and a class project. We will use and study tools such as ABC,
VTR (University of Toronto), IceStorm (Clifford Wolf/Vienna), InTime, and
hardware platforms such as Intel HARPv2, IBM SuperVessel cloud, Microsoft
Catapult, and development boards available locally at the University of Waterloo.
The course will asses students with fortnightly assignment submissions and an

associated final class project (report+oral). There will be a final exam for
this course which will be closely tied to the project execution. The fortnightly
submissions will also be aligned with the class projects chosen by the students.

Objectives

1. The organization of modern FPGA chips integrated heterogenous comput-
ing elements such as LUTs, FFs, DSPs, 10 blocks, and even lightweight
processors with rich connectivity between these elements through a pro-
grammable interconnect fabric. We will understand how this form of
organization came to be and why this communication-rich design style
represents a different, improved way to organize silicon resources than
conventional CPUs. We will also briefly investigate how this template
can be reused for other forms on computing such as quantum, and neural
architectures.

2. FPGAs are typically programmed in low-level languages such as VHDL,
or Verilog which are equivalent to painful assembly-level programming of
CPUs. These descriptions are compiled through a series of stages such
as synthesis, packing, placement, and routing. Each of these steps is an
NP-complete problem and often takes hours to days of compile time for
the largest FPGAs. We will study the underlying algorithms and study
opportunities for acceleration. Specifically, we will learn about algorithms
such as shortest path search, simulated annealing, set covering, and other
graph-oriented computations. Faster CAD flows will help broaden the
appeal of FPGAs to software developers used to the traditional rapid
edit-compile-debug loops available with high-level languages. We will
also discuss the idea of design space exploration and review tools and
automation that can support this engineering process.

3. To overcome some of the challenges of describing hardware at low-level
of abstraction using VHDL, and Verilog, many high-level approaches
have been proposed using C/C++ and OpenCL. In this class, we will
investigate (1) the use of OpenCL for Altera/Xilinx FPGAs and evaluate
machine learning (or other) application mappings as a case study, and (2)
understanding OpenCL specification for supporting soft processor overlays
on top of FPGAs. This will involve learning about the OpenCL language
specification and its applicability to the FPGA backend. We will assess the
benefits and limitations of the OpenCL model for FPGA acceleration, and
discuss ideas for overcoming them. If time permits, we will investigate the
design of compiler passes for OpenCL optimizations in the pocl compiler
framework.

4. Communication-rich FPGA architecture require the user design to expose
all available connectivity in the circuit to the mapping tools. Instead, we
can also use overlay NoCs (network-on-chip) on top of FPGA resources
to support packet-switched and time-multiplexed communication between
parts of the chip. We will study the different ways in which we can organize

these overlay networks, and associated challenges for design and workload
mapping to these NoCs. This is directly tied to the adoption of FPGAs in
data center systems such as the Intel HARP platform, or the Microsoft
Catapult boards.

5. We will investigate the use of machine learning to enhance the FPGA
CAD flow through better-quality predictive models, automated parameter
tuning for vendor CAD tools, and for high-level compilers such as OpenCL.
We will first learn about how to formulate machine learning problems and
the range of algorithmic choices we have at our disposal. Then, we will
apply these formulations to tackle CAD problems.

Assessment Criteria

Fortnightly (20% credit): There will be regular homework assignments and
reading tasks (once every two weeks). These assignments will be aligned with
the class project chosen by the students.

Mid-semester oral (10% credit): This component is a short progress update that
identifies the work that has been accomplished and work that still needs to be
completed. This will be delivered in the form of 15-minute team presentation.

End of semester report (10% credit): Students will submit a written report (4
pages) based on their class project that should be in the form of a conference
short paper. This will be in LaTeX with we will provide a template and build
instructions to you.

End of semester oral (10% credit): Students will also do a final oral project
presentation and a demo of their project. This will be delivered as a 20 minute
presentation + 10 minutes Q&A session per team. A presentation template and
examples of previous class presentations will be made available for reference.

Final exam (50% credit): Students will have a final exam for the course. The
contents of the final exam will be closely tied to the class project.

Details

Workload: 3 hours of lecture/week.

Project: The class projects must be chosen by the end of the second week of the
class in teams of two. We will provide a list of pre-designed topics and expected
outcomes to the student teams. Student teams may propose their own project
which may be allowed at the discretion of the instructor.

Learning Outcomes

At the end of the course, students should be able to: 1. Understand how modern
FPGAs are organized, parse FPGA data sheets to extract key specifications,
and identify suitable platforms based on application requirements. Extrapolate
the technology to novel domains such as quantum, neural, or others. 2. Perform
engineering tradeoffs in organization of the architectures, communication fabrics,
to optimize for area, delay, or power metrics. Briefly reason about important
criteria such as reliability, robustness, and fault tolerance. 3. Program, verify,
and characterize CAD algorithms for FPGAs through (1) modification of the
VTR or IceStorm codebase, or (2) bottom-up design of the algorithms. 4.
Document the class project in the language of a technical paper, and deliver a
high-quality group presentation.

Pre-Requisites (not mandatory)

Students should have taken these courses. While not a strict requirement, it
would be useful to have taken these courses.

ECE606 - Algorithms — The CAD algorithms we need for this course will build
upon those taught in ECE606. We will see how to adapt those algorithms to solve
the FPGA implementation problem. ECE621 — Computer Organization — this
course is important to help contrast the FPGA organization style vs. Traditional
CPU-based organizations. The more interesting FPGA devices are in fact hybrid
FPGA-CPU chips.

Co-Requisites (not mandatory)

Ideally, students should consider registering for the following concurrently offered
course. With prior arrangement with the instructor, this requirement may be
waived.

ECEG627 — RTL Digital Systems — Students should co-register for this Winter
course as they will learn the key concepts of VHDL programming. This course
will focus on OpenCL, but its important to understand how VHDL RTL design
flow works.

Syllabus

Topic

Introduction to FPGAs
FPGA Tools Demo
FPGA Logic Organization

Topic

FPGA Interconnect Design
CAD: Synthesis + Packing
CAD: Placement and Routing
HLS: Introduction to OpenCL
HLS: OpenCL Programming
Application Acceleration
Comm: FPGA NoCs

	ECE720T6: Trends in Reconfigurable Computing
	Motivation
	Content
	Objectives
	Assessment Criteria
	Details
	Learning Outcomes
	Pre-Requisites (not mandatory)
	Co-Requisites (not mandatory)
	Syllabus

