

Department of Electrical & Computer Engineering

ECE6601PD: Power System Components and Modeling Course Outline Fall 2024

Instructor:

Claudio A. Cañizares Office: EIT-4168, Univ. Waterloo Campus Phone: (519) 498-5944 e-mail: <u>ccanizares@uwaterloo.ca</u> URL: <u>www.power.uwaterloo.ca</u> Office hours: TBA

TA:

Pablo Verdugo Office: EIT-4151, Univ. Waterloo Campus Phone: (548) 994-0906 e-mail: pverdugorivadeneira@uwaterloo.ca Office hours: TBA

Online Lectures: TBA, with a 20 min break midway through. Due to travel commitments, some lectures might have to be rescheduled in October and November.

Objectives:

- Learn in detail the basic structure, functional characteristics and protection schemes of the main components that make up a powers system, in particular generators, transformers, transmission lines, cables, loads, HVDC, Flexible AC Transmission System (FACTS) controllers, and Renewable Energy Sources (RES).
- Understand the modeling and simulation of these components for detailed electromagnetic transients analyses, as well as phasor models for power flow and stability studies.

Content:

Weeks	Topics	Sub-Topics	
4	Generation Plant	 Power system overview. Supply technologies. Generation plant components. Synchronous machine. Dynamic models of generators for stability analysis: Subtransient model. Transient model. Basic control models Steady state model. Sequence (symmetrical component) models. Generator-system dynamic behavior. Overview of protections. 	
2	Transformers	 Single phase: Detailed model. Phasor models. Three phase: Connections. Models. Sequence (symmetrical component) models. Special Transformers: Three-winding transformers. Zig-zag transformers. Autotransformers. Saturation and inrush currents. Controls: Load tap changers (LTCs). Phase shifters. Overview of protections.	
2	Transmission Lines and Cables	 Transmission Lines: Single phase: Distributed parameter model. Phasor lumped model. Three phase: Distributed parameter model. Reduced models. Sequence (symmetrical components) models. Underground cables. Overview of protections. 	

2	Loads	 RLC loads. Induction motors: Detailed model. Phasor models. Aggregate load models: Impedance models. Power models. Power models. Induction motor power models. Sequence (symmetrical components) models. Overview of protections.
1	HVDC	 Basic structure and operation. Commutation. Harmonics. DC links. Controls. Fundamental frequency, reduced model. Steady state model. Faults and protections
1	FACTS	 Shunt, series and phase-shifting compensation. Thyristor Control: Thyristor Controlled Reactor–Fixed capacitor (TCR-FC). Static Var Compensator (SVC). Thyristor Controlled Series Capacitor (TCSC). Thyristor Controlled Voltage Regulator (TCVR) and Thyristor Controlled Phase Angle Regulator (TCPAR). Voltage-Sourced Converters (VSC): VSC operation. Shunt Static Synchronous Compensator (STATCOM). Series Static Synchronous Compensator (SSSC). Unified Power Flow Controller (UPFC). Interline Power Flow Controller (IPFC). Convertible Static Compensator (CSC). Hybrid Power Flow Controller (HPFC) HVDC light. D-FACTS: DSTATCOM. DSMES.
	RES	 Solar PV Generation (SPVG). Wind-turbine Generation (WG). Battery Energy Storage System (BESS). Examples.

References:

- 1. J. Arrillaga and N. R. Watson, *Computer Modeling of Electrical Power Systems*, 2nd edition, John Willey, 2001, ISBN 0-471-87249-0. (Simplified models of generators and HVDC.)
- 2. N. G. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE Press, 2000. (FACTS.)

- 3. J. Arrillaga, *High Voltage Direct Current Transmission*, 2nd edition, IET, 1998. (HVDC.)
- 4. Transmission and Distribution Reference Book, 5th edition, ABB, 1997. (Transformers and some protections.)
- 5. *Electromagnetic Transients Program Reference Manual (EMTP Theory Book)*, BPA, 1986. (Generators and transmission lines, and some transformer and load models.)
- 6. P. Kundur, *Power System Stability and Control*, McGraw-Hill, 1994, ISBN 0-07-035958-X. (Generator models.)
- 7. P. Anderson, Power System Protection, IEEE, 1998, ISBN 9780470545591. (Protections.)
- 8. A. Gómez-Expósito, A. J. Conejo and C. A. Cañizares, Editors, *Electric Energy Systems: Analysis and Operation*, 2nd edition, CRC Press, June 2018, ISBN 9781315192246. (Simplified models of all elements.)
- 9. C. A. Gross, *Power System Analysis*, 2nd edition, John Wiley, 1986. (Simplified models of lines and transformers.)
- 10. J. Yin et al., *Unified Power Flow Controller Technology and Application*, Academic Press, Elsevier, 2017. (UPFC examples.)
- 11. Journal papers, technical reports and websites (available on-line).
- 12. Course notes available at course website.
- **Requisites:** Basic knowledge of power systems and modeling is required. Good knowledge of MATLAB is required.
- MT Assgn.: Based on problems presented and discussed during lectures regarding the various topics discussed in class. Some problems will require the use of MATLAB.

Projects:

- 1. Detailed and phasor modeling and simulation of a generator using MATLAB.
- 2. Detailed and phasor modeling and simulation of a transmission line and load using MATLAB.

Marking:	Projects (2)	\rightarrow	40 % (TBA)
	Midterm Assign.	\rightarrow	10 % (TBA)
	Final Exam	\rightarrow	50 % (TBA)

Important Notes:

- Academic Integrity: Please read www.uwaterloo.ca/academicintegrity/
- Grievance: Please read Policy 70, Student Petitions and Grievances, Section 4, at www.adm.uwaterloo.ca/infosec/Policies/policy70.htm.
- Discipline: Please read Policy 71, Student Discipline, at www.adm.uwaterloo.ca/infosec/Policies/policy71.htm, and Guidelines for the Assessment of Penalties at www.adm.uwaterloo.ca/infosec/guidelines/penaltyguidelines.htm.
- Appeals: A student who believes he/she has a ground for an appeal should refer to Policy 72 (Student Appeals) at www.adm.uwaterloo.ca/infosec/Policies/policy72.htm.