Accurate Measurement of Small Execution
Times — Getting Around Measurement Errors

(Extended Technical Report)

Carlos Moreno, Sebastian Fischmeister

Department of Electrical and Computer Engineering
University of Waterloo. Waterloo, Canada.

E-mail: {cmoreno,sfischme}@uwaterloo.ca

Abstract

Engineers and researchers often require accurate measurements
of small execution times or duration of events in a program. Er-
rors in the measurement facility can introduce important chal-
lenges, especially when measuring small intervals. Mitigating
approaches commonly used exhibit several issues; in particular,
they only reduce the effect of the error, and never eliminate it.
In this technical report, we propose a technique to effectively
eliminate measurement errors and obtain a robust statistical es-
timate of execution time or duration of events in a program. The
technique is simple to implement, yet it entirely eliminates the
systematic (non-random) component of the measurement error,
as opposed to simply reduce it. Experimental results confirm the
effectiveness of the proposed method.

This technical report is an extended version of the letter sub-
mitted to IEEE Embedded Systems Letters on May 2016, revised
version submitted on November 2016, accepted for publication on
January 2017.

1 Motivation

Software engineers and researchers often require accurate
measurements of small execution times or duration of events
in a program. These measurements may be necessary for
example for performance analysis or comparison. In the
context of safety-critical real-time systems, engineers often
need to use a measurement-based approach to determine the
worst-case execution time (WCET). In both scenarios, ob-
taining execution times analytically by inspecting the assem-
bly code is increasingly difficult with modern architectures,
and often the most practical alternative is actual measure-
ment during execution. Undocumented proprietary mecha-
nisms often aggravate the issue, leaving measurement as the
only feasible alternative.

Measurement errors and uncertainties introduce an im-
portant difficulty, especially when measuring short durations
of events in a program. For example, a basic approach to
measure the execution time of a given function or fragment
of code F is the following:

time start = get_current_time()
Execute F

time end = get_current_time()
// execution time = end - start

Unfortunately, the resulting measurement includes the
actual execution time of F plus an unknown amount
of time corresponding to the internal processing time of
get_current_time(). With modern OSs, invocation of the
get_current_time() facility can even involve a context switch
to kernel mode and back. This unknown overhead comprises
a systematic (non-random) component and a noise (random)
component. The systematic error is in general related to the
execution time of the get_current_time() facility, whereas the
random component can be due to a variety of factors such
as measurement based on clock ticks or scheduling issues,
or even electrical noise in the case of measurement based on
pin-toggling. Though our work addresses both, our focus
is on the systematic error, which is the one that commonly
used approaches fail to effectively eliminate.

Some of the common mitigating approaches only reduce
the effect of these errors and never completely eliminate it.
In our example, a typical mitigation approach consists of
executing F multiple times, as shown below:

time start = get_current_time()
Repeat N times:
Execute F
time end = get_current_time()
// execution time = (end - start) / N

The execution time that we obtain is subject to the mea-
surement error divided by IV; by choosing a large enough N,
we can make this error arbitrarily low. However, this ap-
proach has several potential issues: (1) repeating N times
can in turn introduce an additional unknown overhead, if
coded as a for loop. Furthermore, this is subject to un-
certainty in that the compiler may or may not implement
loop unrolling, meaning that the user could be unaware of
whether this overhead is present; (2) the efficiency of the
error reduction process is low; that is, we require a large
N (thus, potentially large experiment times) to significantly
reduce the error; and (3) re-executing F may require re-
initialization through some call to an additional function,
which then introduces a new uncertainty:

time start = get_current_time()
Repeat N times:
initialize_parameters()
Execute F
time end = get_current_time()
// execution time = (end - start) / N

In this case the measured time corresponds to
the execution time of F plus the execution time of
initialize parameters() and it is not possible to determine
either of the two values.

Other mitigating approaches include profiling the execu-
tion time of the get_current_time () facility. For example, mea-
sure the execution time of a null fragment, and the measured
average value corresponds to the systematic error or over-
head in get_current_time():

Repeat N times:
start = get_current_time()
end = get_current_time()
sum = sum + (end - start)

overhead = sum / N

This approach, however, can be ineffective for modern
architectures where low-level hardware aspects such as cache
and pipelines can cause a difference in the execution time
of get_current_time() when executed in succession vs. when
executed with other code in between calls.

Pin-Toggling Assisted Measurements

Embedded engineers often measure execution time by ob-
serving a signal at the output of some pin. They instrument
the code with an output port instruction to toggle a pin
right before execution of F and again right after F com-
pletes execution. The time between the two edges in the
signal provides a measurement of the execution time of F.

Though this mechanism in general yields substantially
higher accuracy, it is still subject to the same types of mea-
surement errors discussed above. Figure 1 illustrates the
sources of error in this scenario. At time ty the software

| | | i
& T & T Te & T &
to t t

Figure 1: Measurement Errors in Pin-Toggling

starts execution of the pin toggling, consuming a tg, amount
of time. Then, the hardware begins to produce the signal;
it will take a tz, amount of time for the signal to actually
change (i.e., produce the edge); this is due to the propaga-
tion delay in the internal digital circuitry, plus the propaga-
tion time of the analog signal. Notice that it is reasonable to
assume that the time it takes for the pin to toggle from 0 to
1 may be different from the time it takes to toggle from 1 to
0, and thus we use ¢z, and ty, to consider this distinction.
Simultaneously to this hardware reaction time, the software
may take a certain amount of time, denoted tg,, to complete
the pin-toggling procedure and resume execution. After this
time has elapsed, at time ¢1, execution of F begins, taking
T. to complete execution. After execution of F, at time %o,
the software toggles the pin again, and the same timing pat-
tern repeats (notice that the software related times are the
same, unlike the hardware propagation times).

The measured time TC, from edge to edge in the external
signal, is then

T. = (to+ts, +tm,)— (t1—ts, +tm,)

- Te+t51 +t52 +(tH2 _tHl) (1)
We notice a systematic error € = tg, + ts, + (g, —ty,). In
this case, tg, could be small or even negligible, but tg, is
necessarily non-zero, and most likely much larger than ¢y, .
Thus, it is virtually guaranteed that e # 0.

Like in the case of software-based measurements, it may
be difficult to model this error by measuring the time with
a null function F (i.e., executing the pin-toggle instruction
immediately after the previous one, with nothing executed in
between). The analog stage of signal propagation in general
has a filtering effect (a smoothing of the signal) that could
distort the edges’ shapes. This could indeed considerably
change the values of ¢y, and ¢y, and make this modeling
procedure extremely inaccurate.

2 Related Work

To the best of our knowledge, no concrete effective ap-
proaches have been suggested to get around these issues
related to measurement errors. Some common ideas and
themes seem to be present, some of them oriented to mea-
suring variations in timing parameters through simple sta-
tistical processing (see for example [1]). The effect of out-
liers is a recurrent theme; outliers in the measurements may
be caused by hardware effects such as cache and pipeline
artifacts, and software effects such as OS-level scheduling.
Typical approaches involve statistics that are immune to the
effect of outliers, such as taking the median.

Jain [2] and Laplante [3] both discuss performance anal-
ysis including estimation of execution times and statistical
analysis of experimental data. Oliveira et. al [4] proposed
a system where statistically rigorous measurements are ex-
tracted under carefully controlled environment, effectively
getting around some of the issues that can disrupt the pa-
rameters being measured. The authors also presented a
study where the effect of the environment is investigated [5].
These works, however, focus on the extraction and analysis
of experimental data for performance evaluation, and not on
the actual measurement of execution times.

Stewart [6] covers basic techniques for measuring execu-
tion time and applicability to WCET and performance anal-
ysis. Lilja [7] also covers some of the basic techniques. It
provides a good set of definitions, terminology, and model-
ing of measurement errors and their sources. In particular,
[7] presents a good discussion on the notions of accuracy
(related to the difference between measured and true val-
ues of the parameter), precision (related to the difference
between multiple measurements), and resolution (related to
the quantization effect of the measured value; in particular,
the size of the quantum). [7] also discusses the relation
of these parameters to the modeling techniques that pro-
vide statistical descriptions of measurement errors. CPU

clock cycle counters in modern processors (e.g., Intel [8] and
ARM [9]) can provide high resolution, but they don’t neces-
sarily avoid the measurement artifacts that reduce accuracy
and precision in the measurements.

In the context of WCET analysis, hybrid approaches [10]
use static analysis to determine WCET in terms of execu-
tion times of fragments. These times are measured with pin-
toggling instrumentation, assisted by a special logic-analyzer
hardware. Our proposed approach exhibits important ad-
vantages over the pin-toggling instrumentation approach,
yet it can benefit from the static analysis component that
can compensate for complex hardware features that intro-
duce a relationship where execution paths affect the execu-
tion times being measured.

3 Getting Around Measurement
Errors

For the purpose of simplifying the presentation, we first dis-
regard any random error in the measurement (measurement
noise) and only consider the systematic error. The next
sections discuss the effect of the measurement noise.

For N consecutive executions of F, the measured execu-
tion time T' corresponds to:

T = NT.+e¢ (2)
where T, is the execution time of F and € is the overhead
from the invocations of get_current_time(). Equation (2) in-
volves two unknowns, making it impossible to determine Ty.

The key observation is that with an additional measure-
ment for a different number of consecutive executions, we
obtain two independent equations for the two unknowns T,
and e (since € is the systematic error, common to all mea-
surements). This allows us to completely eliminate the effect
of € and thus determine the actual execution time of F:

7& =]VijL +e€

15 =]Vé]% +e€

T —T5
> T, = 2 3
Nl_NQ ()

3.1 Differential Measurements

We first show a simple implementation of this idea that elim-
inates the systematic error and can reduce the effect of mea-
surement noise. The implementation derives directly from
Equation (3), choosing Ny = 1 and Ny = 2. The resulting
measurement, as discussed above, eliminates the systematic
error but is subject to noise. By repeating this differen-
tial measurement multiple times, we can reduce the effect
of the noise to an arbitrarily low level by choosing a suffi-
ciently large number of repetitions. We remark that coding
these repetitions as a for loop is not an issue, since the loop
overhead occurs outside of the measurements. The idea is
illustrated by the pseudocode below:

Repeat N times:

time T1 = get_current_time()
Execute F
time T2 = get_current_time()
Execute F
Execute F
time T3 = get_current_time()

total += (T3 - T2) - (T2 - T1)
// execution time = total / N

This technique is simple to implement, and by choosing a
sufficiently large IV, we can make the effect of the noise ar-
bitrarily low. However, as our experimental results confirm,
the technique presented in the next section produces mea-
surements with higher precision for the same total number
of measurements. This differential measurements technique
is simple and is suitable if the total running time of the
experiments/measurements is not a critical factor.

4 Straight Line Fitting

We now present a technique that is more efficient in terms
of reduction of the noise for a given total number of mea-
surements. Without loss of generality, we assume a zero-
mean model for the measurement noise.! In the simpler case
where no re-initialization is necessary before each invocation
of F, a statistical estimate of T, can be obtained through a
straight line fitting given the multiple points (N, Tk), where
T}, is the measured time when executing F Nj times. An in-
teresting aspect is that we only need to determine the slope
of this line, which corresponds to T,, the parameter that we
want to measure.

We can set up a scheme where M measurements are taken,
where the first time we measure one execution of F, then
two executions, then three, and so on until measuring M
executions of F. Following the above notation (Ng,T%),
this would correspond to the case where N = k, with
1<k M.

Since we do not require a large number of repetitions for
F (i.e., M can be a relatively low value), it is feasible to exe-
cute this sequence without requiring a for loop. This avoids
the issue of introducing additional unknown overhead, as
mentioned in Section 1.

The straight line y = ax + b for a set of M points (zx, yi)
is given by [11]:

) M M M
o <M ;Ikyk —ZIk ;%)

a = (4)
k=1
Al M M M
b = D (Zmi Zyk —Zxk kaZ/k) (5)
k=1 k=1 k=1 k=1
M M 2
with D £ M af — (Zxk>
k=1 k=1

In our case, we obtain the value of T, (correspond-
ing to the slope, a) substituting z; (= Ni) = k and

1 Any non-zero mean — a non-random parameter — can be seen as
part of the systematic error e

yr = Tx. Figure 2 shows an example with M = 20 us-
ing POSIX’s clock gettime() to measure a ~40ns execution
time (best-fitting line is y = 40.4z + 18.8). The execu-

) T
e Measurements +
Best-fitting Line -------
& 800 | o
= o
@ e
E 600 |- ot |
= o
a3 400 |
§ »_,.+"'*
[} et
200 - + |
AT
L
0 ! . ‘ ‘
° 10 15 20

Measurement #
Figure 2: Example of Straight Line Fitting

tion was on a workstation running Ubuntu Linux 14.04 on
an Intel Core i7 at 3.5GHz. We executed several times be-
fore measurements to “warm up” the system (cache memory,
frequency scaling, OS buffers, etc.).

4.1 Robustness of the Measurement

One of the important advantages of our method is its ro-
bustness against sporadic measurements with large errors.
These could be caused, for example, by a timer or I/0O in-
terrupt that occurs while executing the function F. The
typical approach of using the median of multiple measure-
ments does indeed provide robustness against these occa-
sional large deviations, but it cannot do anything about the
systematic error. Averaging multiple medians of multiple
sets of measurements becomes expensive in terms of the re-
quired experimental time for a given level of accuracy, and it
still only reduces the systematic error, instead of eliminating
it.

A key advantage for our technique is that when perform-
ing the line-fitting process, the mean square deviation of
the points from the best-fitting line quantifies how well the
straight line models the measurements; if the line closely
models the points, then the measurements are of good qual-
ity. Thus, if one (or a small number) of the measurements
is subject to a large error, one can easily identify them, as
one or a few points will exhibit a deviation from the straight
line much larger than the median deviation;? thus, this or
these few points can be discarded and the straight line is
determined with the remaining points. Figure 3 shows an
example, including the best fitting line considering all points
and the best fitting line discarding the outlier. We notice
that the remaining points are well aligned (as measured by
the mean square deviation from the line), suggesting that
the slope of this line is indeed a good approximation of the
execution time.

The differential measurements technique described in Sec-
tion 3.1 also exhibits robustness with respect to outliers.
The measurements are already immune to the systematic
error €; taking the median of multiple samples introduces

2 Since the mean deviation is affected by the points with large
deviations, the median provides a more robust mechanism in this case.

T T T
Measurements +
Fiting line for all points ~----
Fitting line discarding noisy point ------- -

1000
800 [o

600 - + e 4

400 [

200 [

Figure 3: Robustness of the Measurement

immunity to outliers. Even better, we could discard the top
and bottom percentiles of measurements and compute the
average of the remaining values; this has the benefit that it
can produce final measurements with finer resolution than
that of the individual (“raw”) measurements.

5 Overdetermined System of Equa-
tions

If the function or fragment F requires each invocation to be
preceded by some initialization function, then our measure-
ment corresponds to T, 4 T;, where T; is the execution time
of the initialization function, leading again the problem that
we can only determine the sum of these two values.

The key observation in this case is that the above problem
occurs because the multiple equations are not independent.
This linear dependency in the equations is a consequence
of the initialization function being executed exactly once
per execution of F. If at round k& we execute F N times
and initialize parameters() M) times (My > Ny), then the
measured time T} corresponds to:

T = NI, + MiTi + e+ 6 (6)

where ¢y, is the random error (noise) for the k-th measure-
ment.

With suitable choices for N and M}, to ensure that the
equations are independent, we obtain a system of linear
equations. To reduce the effect of measurement noise, we
take K > 3 measurements to obtain an overdetermined sys-
tem:

N, M, 1 T T
NQ M2 1 . T: — T2

R I . (7)
Ng Mg 1 Tk

If we let A denote the K x 3 matrix on the left-hand side
of Equation (7), and b the K-element column vector on the
right-hand side, then the optimal solution in the least-square
error sense is given by [11]:

1e
Ti =
€

(A'A)”" (A'D) 8)

Equation (8) need not be computed explicitly; rather, we
premultiply A and b by A’ in the original system to obtain
a system with a 3 x 3 matrix on the left-hand side and a 3-
element column vector on the right-hand side. We then use
some suitable method such as Gauss-Jordan elimination to
determine a solution [11]. Furthermore, since we are only
interested in the value of T,, and considering that we have
a system of size 3, a closed-form solution for T is feasible
and efficient.

The values of N.’s and M}’s should be chosen to ensure
that the matrix A’ A is nonsingular. Like in Section 4,
we could choose N = k. Given that each My > Ng, a
suitable choice for the values of the My’s is M7 = N7 = 1
and My = N+ 1 for k£ > 1. It is easy to verify that this
leads to a nonsingular A’ A.

5.1 Measuring Execution Time for Multi-
ple Blocks

The approach of the overdetermined system of equations can
also be suitable when measuring the execution time of multi-
ple blocks of code, for example the blocks in the control-flow
graph (CFG) of a given fragment.

A typical approach in this case is instrumenting the code
to toggle a pin at the beginning of each block. However, the
instrumentation disrupts the measurements in a way that
may be significant, depending on the application.

The idea of the overdetermined system of equations can
be applied to this situation; for each execution of the pro-
gram, we either simulate it or create an instrumented version
that is executed off-line and prints the execution trace for
the given input. This output reveals the number of times
that each block executed; with a measurement of the execu-
tion time for the entire program or function, we obtain one
equation.

Let NV,]iz) denote the number of times that block k£ executed
at the i*" round with input data D;. Let T} denote the
execution time for block k and T the total execution time
at the i*" round. Then, if we have B blocks:

NOT 4+ NPTy + - + NOTp =T® (9)
If we execute M rounds, with M > B, we obtain an overde-
termined system of equations. Depending on the values of
N,iz), the system may or may not have a solution; running
a large number of rounds, M >> B increases the likelihood
of obtaining a solvable (non-singular) system:

N N® oo ND T, yasy
NO N@ NO T T
L ; = | . | o

Depending on the CFG, we may unconditionally obtain a
non-solvable system, even for large values of M. Figure 4
shows an example of a CFG that exhibits this issue. In this
example, it is clear that regardless of input data or state,

-
e | o |- oa |

Figure 4: Example of a CFG that Produces a Non-Solvable
System

entry and exit blocks will each execute exactly once in all
instances. Thus, we obtain duplicate columns leading to a
singular system; this corresponds to the intuition that every
equation involves the sum of the execution times of these
blocks, and we do not have enough information to split this
sum into the individual values.

In cases like this, the solution is simple: perform the
measurements with one of the two “problematic” blocks ex-
cluded. We recall that the total execution time will be mea-
sured with either clock facilities or pin toggling, depending
on the execution environment. Thus, we can measure total
execution time from the beginning of the entry block to the
beginning of the exit block (i.e., excluding exit block from
the measurement). With this, the system is no longer singu-
lar, assuming that the loop block executes variable number
of times on different instances. This is presumably easy to
control through manipulation of the input data. Once the
execution times of the entry and loop blocks are determined,
we repeat the experiment including the exit block and easily
determine its execution time (since the other two elements
are no longer part of the unknowns in the system).

Though we presented a simple example, the idea can be
in principle applied to more complex scenarios with more
elaborate CFGs, as we will show in Section 6.2. As a last
resort, the CFG can always be split into smaller subgraphs
and we work individually with those.

The example can be extended to a more complex situa-
tion, where for example we could have a sequence of con-
ditionals interleaved with unconditional blocks. Figure 5
shows a simple example where we can see that blocks 0, 3,
and 6 will execute the same number of times regardless of
input data or state.

Block 1

Block 2

Block 6

Block 0

Figure 5: Example of a CFG With Multiple Correlated
Blocks

In this case, we could merge the columns corresponding
to those, and this produces a solution where the sum of the
execution times of these three blocks are a single unknown.
Once we determine this sum, we can take additional mea-
surements and work individually on determining each of the
merged execution times. Measuring the individual blocks
execution times is relatively simple: for example, for the
CFG shown in Figure 5, we could place a goto or some
other “exit” control-flow statement after the last instruc-

tion of block 0 (or at the beginning of both blocks 1 and
2). This gives us one equation where the execution time for
block 0 is involved without blocks 3 and 6, allowing us to
determine Ty. Once we have Ty, we now repeat the same
procedure for block 3, and so on, until we have determined
all of the missing execution times.

One general difficulty remains, and it is that of ensuring
that every block in the CFG is exercised during the execu-
tions. This depends on the inputs, and the problem of de-
termining the inputs that produce a given outcome is known
to be an NP-complete problem [12]. However, this is not a
problem in practice, if we ensure that the sizes of the CFGs
are reasonably small. In real-life systems, with code pro-
duced with reasonable quality standards, functions should
never be excessively large. This means that we can safely
assume that the CFGs of individual functions will have rea-
sonable size.

Pin-Toggling Measurement Errors

Measurements based on pin-toggling can of course be com-
bined with any of the methods presented in the previous
sections to eliminate any systematic error and reduce the
effect of random variations. Notice, however, that measur-
ing from rising to falling edge produces a different value with
respect to measurement from falling to raising edge. Thus,
we should toggle the pin in a consistent manner throughout
multiple measurements. That is, always toggle from A to
—A before executing F and from —A to A after execution,
where A € {0,1}. to avoid some of the measurements includ-
ing tg, — tm, as part of the error and other measurements
including tg, — tm, .

6 Experimental Setup and Results

This section describes the experimental setup used to test
our techniques. The experiments were performed using
an AVR Atmega2560 [13] 8-bit microcontroller running at
1 MHz with the clock signal generated by a crystal.

We performed a calibration phase to compensate for the
variations in the frequency of the crystals: a hardware timer
divides the system clock frequency to produce 1-second in-
tervals that were measured and used as a 1 second reference.
Since deviations in the crystals (typically no more than 100
or 200 ppm) are due to manufacturing tolerance and tem-
perature variations, we assume that these frequencies remain
exactly the same throughout all the experiments, since the
devices were warmed up and thus their temperatures did not
change enough to have an observable effect on the frequency
of the crystals.

In both experiments, the time measurements were based
on pin-toggling. We digitized the signal through a PC sound
card. The model used was the HT Omega Claro Halo [14],
with 24-bit resolution and 192 kHz sampling rate. Once the
signal was digitized, we measured the position of an edge
(and thus, edge-to-edge times) by looking for the inflection
point (the point where the second derivative changes sign)
between two neighboring peaks. Figure 6 shows an example

of the smoothed edge due to the effect of the bounded band-
width in the analog signal, producing an inflection point in
the transition. The inflection point can be easily determined

Signal Value

Inflection point

Figure 6: Example of Inflection Point at Edge in Limited-
Bandwidth Signal

using the numerical approximations of the derivatives [11].
We also used second-order interpolation to determine the
zero-crossing point of the second derivative. Thus, we ob-
tain the position of the inflection point with sub-sample res-
olution.

In terms of notational convention, we adopt the terminol-
ogy presented in [7]: accuracy relates to the difference be-
tween the measurement and the true value; precision relates
to the variation between multiple measurements of the same
value; and resolution relates to the size of the quantization
step.

6.1 Differential and Straight-Line Fitting
Measurements
Table 1 shows the results of our measurements using our

differential and straight-line fitting techniques, as well as
the conventional technique of multiple measurements. We

Technique ‘ Execution Time (us) ‘ Std. Deviation (us)
Line fitting 1x — 10x 99.986 0.125
Line fitting 1x — 20x 100.001 0.044
Differential 55x 99.834 0.237
Differential 210x 100.009 0.121
Differential 1000x 100.003 0.05
Direct (1x) 108.521 1.119
Executing 10x 100.808 0.135
Executing 20x 100.412 0.068
Executing 55x 100.154 0.024
Executing 100x 100.087 0.012
Executing 210x 100.004 0.004

Table 1: Execution Time for a Reference 100 us Time

measured the execution time of an assembler-coded routine
that takes exactly 100 us (exactly 100 clock cycles).

The results are consistent with the intuition that the line-
fitting technique eliminates the systematic error while the
commonly used technique of measuring the time for mul-
tiple executions only divides the error by the number of
executions. Indeed, we observe in Table 1 the inverse pro-
portionality relation between the error and the number of

measurements for the direct multiple measurement approach
(=8 for 1 measurement, ~0.8 for 10 measurements, ~0.4
for 20 measurements, etc.). The differential measurement
technique also provides good accuracy, but we see that its
precision (as suggested by the variance in the measurements)
is low compared to the straight-line fitting method for the
same total number of measurements. Increasing the number
of measurements in the differential technique can lower this
variance, as shown by the results for this technique with 1000
repetitions. Since the differential measurement method is
arguably simpler to implement, practitioners could choose
it if the experiment duration is not too high.

Though the results show a higher precision in the conven-
tional method, its accuracy is so low that the intervals de-
termined by the variance do not include the true value. The
only exception is the last row, corresponding to the highest
number of repetitions. An analysis of the reasons for this
outcome is beyond the scope of this technical report; how-
ever, the proposed methods still show higher performance:
we recall that a large number of repetitions in this con-
ventional method makes the measurement less robust with
respect to outliers, since the probability of measurements
with large deviations increases with the number of repeti-
tions. It also makes it hard to code without a for loop, which
would further reduce the accuracy. Neither of these are is-
sues with our proposed straight-line fitting or differential
measurement methods.

Figure 7 shows a log-log plot of the measurement errors
matched against the theoretical ¢/N error for N measure-
ments. It is assumed from the observations that € = 8.5 us.
This confirms the effect of the systematic measurement error

100

T
Measurements +
epsion /x --=--

001 L L L
1 10 100

Number of executions

Figure 7: Measurement Error Over Multiple Measurements

€ over multiple measurements. Notice that we show these
results only as confirmation that the measurements exhibit
the expected characteristics, and we do not recommend it
as a technique to recover the value of e. We can of course
use a curve-fitting procedure to fit the samples to a curve
y = a + b/x, where a corresponds to the required measure-
ment and b corresponds to €. However, such procedure
requires far too many measurements to produce a value of €
with good accuracy.

6.2 Execution Time for CFG Basic Blocks

We implemented the technique described in Section 5 us-
ing one of MiBench [15] functions. We chose adpcm_coder
given its non-trivial CFG. Given the CFG structure, some
groups of blocks are bound to execute the same number of
times. In those cases, we combined them to obtain the sum
of their execution times. This corresponds to identifying
sets of identical columns in the resulting matrix and leaving
only one instance for each set; the corresponding unknown
represents the sum of the execution times (which, if not com-
bined, would lead to a singular matrix given the repeated
columns). (in the example in Figure 5, one such set would
be blocks 0, 3, and 6). Each measurement was done over
1000 executions of the function, each time with different
input data. We took 100 measurements, which produced
reasonably tight 95% confidence intervals. Notice that this
setup accounts for randomness in the equations’ coefficients
that result from an individual experiment, and also for the
measurement noise. Table 2 shows the results for all the

Basic Block | Execution Time (us)

BBO et al. 52.01 £ 0.044
BBI et al. 98.98 £ 0.003
BB2 7.997 £ 0.005
BB4 6.994 £ 0.006
BB6 4.998 + 0.003
BBS 3.000 £ 0.004
BB18 9.987 £+ 0.016

Table 2: Execution Time for CFG Blocks

unknowns; the first two values correspond to the sum of
several blocks. In all cases, the + figures correspond to the
95% confidence intervals. Though we only verified blocks
BB2, BB4, BB6, and BBS8 against the assembler code, the
fact that all of the values are extremely close to integer val-
ues, with tight confidence intervals, suggests that the results
exhibit a good accuracy. We recall that execution times are
quantized with 1 us resolution, since the Atmega2560 MCU
instructions all execute in an integer number of clock cycles.

7 Conclusions

In this technical report, we proposed a practical approach
to perform precise measurements of short execution times
or events in programs or embedded systems. The approach
is simple and exhibits robustness with respect to outliers.
Experimental results confirm the validity and applicability
of the technique.

Acknowledgements

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada and the On-
tario Research Fund.

References

[1]

D. Brumley and D. Boneh, “Remote Timing Attacks
are Practical,” Proceedings of the 18th USENIX Secu-
rity Conference, 2003.

R. Jain, The Art of Computer Systems Performance
Analysis: Techniques for Fxperimental Design, Mea-
surement, Stmulation, and Modeling. Wiley, 1991.

P. A. Laplante, Real-Time Systems Design and Analy-
sis, Third ed. Wiley-IEEE Press, 2004.

Oliveira et al., “DataMill: Rigorous Performance Eval-
uation Made Easy,” International Conference on Per-
formance Engineering, 2013.

A. Oliveira, J.-C. Petkovich, and S. Fischmeister, “How
Much Does Memory Layout Impact Performance? A
Wide Study,” Proceedings of the International Work-
shop on Reproducible Research Methodologies, 2014.

D. B. Stewart, “Measuring Execution Time and Real-
Time Performance,” in Embedded Systems Conference

(ESC), 2001.

D. J. Lilja, Measuring Computer Performance — A
Practitioner’s Guide. ~ Cambridge University Press,
2004.

G. Paoloni, “How to Benchmark Code Execution Times
on Intel TA-32 and TA-64 Instruction Set Architectures
(White Paper),” 2010.

(9]

[10]

[11]

[12]

[13]

“ARM1156T2F-S —
(§3.2.36),” 2007.

Technical Reference Manual

Rapita Systems Ltd., “RapiTime Explained — Whitepa-
per,” https://www.rapitasystems.com/system/files/
RapiTime%20Explained.pdf.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, Numerical Recipes in C, Second ed.
Cambridge University Press, 1992.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein, Introduction to Algorithms, Third ed. The
MIT Press, 2009.

Atmel Corporation, “AVR 8-bit
and 32-bit Microcontrollers,” 2012,

http://www.atmel.com/products/microcontrollers/avr.

HT Omega, “Claro Halo — Online specifications.” [On-
line]. Available: http://www.htomega.com/clarohalo.
html

Guthaus, M. R. et al., “MiBench: A free, commercially
representative embedded benchmark suite,” in IFEFE
International Workshop on Workload Characterization.
IEEE Computer Society, 2001.

