
Evaluation of User Interface Transcoding

Systems

Guido Menkhaus and Sebastian Fischmeister

Software Research Lab, Department of Computer Science
University of Salzburg, A-5020 Salzburg, Austria

{lastname}@SoftwareResearch.net

Abstract. Users access the Web through an increasingly diverse set of
devices, such as mobile telephones, personal digital assistants, notebooks
and tablet PCs. Services and content need to be accessible by anyone,
anywhere, anytime, and anyhow. Device independent authoring is the
goal of service providers. This paper presents an abstract model in form
of a finite state machine (FSM). The FSM is the basis for the comparison
of user interface transcoding systems (UITS). Based on this abstract
model we identify the strengths and weaknesses of these approaches on
an architectural level.

1 Introduction

The success of small gadget devices has lead to a diversification and multipli-
cation of markup language [1]). Thus, a large amount of recent work in human
computer interaction has been devoted to the establishment of principles for
device independent user interface development and device independent content
delivery; especially for the Web [2–4]. The explosion of the variety of devices for
Internet access with widely different properties in UI capacity directed research
on transcoding systems that focused on “1-to-n” relation and “n-to-n” relations
between design time and presentation time description. The aim of these sys-
tems is to create a single description to serve a multitude of platforms or to
make existing descriptions available to more than the originally intended class
of devices.

The trend of systems using a single UI description languages targeting a
single platform to a more extended interpretation has engendered a multitude
of approaches to device independent UI description and device dependent user
interface transcoding systems. Both type of systems fall in the category of UITSs.
This paper proposes an abstract model for data conversion tailored to UITS. The
abstract model tries to present a foundation for understanding, classifying and
comparing UITSs.

The remainder of the paper is organized as follows: Section 2 discusses the
context of this paper. A finite state machine (FSM) describing transcoding ar-
chitectures is presented in Section 3. Section 4 evaluates systems of different
transcoding configurations. A conclusion closes the paper after a discussion in
Section 5.



2 Guido Menkhaus and Sebastian Fischmeister

2 Context and Motivation

The reference model for UI management systems that has been widely accepted
is the Arch Slinky meta-model [5]. It proposes a structural and functional de-
composition into the following five components: functional core, functional core
adapter, dialog, logical interaction, and physical interaction component. UI man-
agement systems support two-way communication between the functional core
and the physical interactor. Since transcoding architectures deal primarily with
the communication interoperability from the functional core to the physical in-
teractor, the discussion is focused on this aspect.

Considering the situation where there is a single class of physical interaction
components and a single functional core i.e., a “1-to-1” relation, there is only
need for a dialog component that controls task sequencing and rendering data for
the unique physical interaction component. However, given the case of multiple
physical interactors and a single functional core, i.e., an “n-to-1” relation, the
dialog component becomes more complex.

This situation is common in mobile computing: A growing number of net-
working enabled devices with different of UIs capabilities emerged on the market.
Obviously, authors of Web-based applications cannot afford to develop content
aiming at a single type of physical interactor. The objective is to create a single
description to serve a multitude of platforms or to make existing descriptions
available to more than the originally intended class of devices. The cardinal
question that needs to be solved is: How to enable content to be converted into
various physical interactor-dependent formats? It is obvious that the dialog com-
ponent occupies a central role in content delivery to different devices. Thus, the
dialog component becomes the application node that connects otherwise incom-
patible UI descriptions and physical interactors via transcoding. UI transcoding
or conversion refers to the tasks of filtering and translating or converting content
from one representation to another [2].

3 Abstract Model for UIT Systems

This section elaborates the architecture of transcoding systems using an FSM
(Figure 1). Different transition paths through the FSM correspond to different
architectural configurations.

3.1 Transcoding Finite State Machine

The FSM consists of five states. States are denoted as circles. Sin is the initial
state and receives content data as input. The only success final state of the FSM
is Sout; a sample component that is connected to the final state is a HTML
browser. The remaining three states, Scustom, Sintermediate, and Sstandard, re-
flect the internal state of the converter. The arcs denote state transitions. A
transcoding action is triggered by incoming events after or before a transition



Evaluation of User Interface Transcoding Systems 3

SF

SF
SF

IF

IF

IFSF

CF
SOutSIn

Scustom

Sstandard

Sintermediate

Converter

States Q = {Scustom, Sintermediate,

Sstandard, Sin, Sout}
Input lang. Σ = {x|x ∈ CF ∪ SF ∪ IF}
Transitions δ = Q × Σ

Start state S = {Sin}
End state F = {Sout}

Fig. 1. FSM for transcoding architectures.

from one state to the next. The identity transformation is the action associated
in state Sstandard before the transition to the final state.

An event consists of the delivery of UI data. The set of user interface data
consists of elements belonging to one of the following groups.

– Custom Format. The custom format (CF) comprises all formats that are
proprietary formats and require at least one transformation to be displayed
by widespread consumer devices.

– Intermediate Format. The intermediate format (IF) comprises all inter-
mediate formats that allow transforming source formats into target formats.

– Standard Format. Finally, the standard format (SF) comprises all formats
that widespread consumer devices can display without transformation (e.g.,
WML, HTML).

The states perform format conversions. For example, if the current state is
Scustom, the current format f is an element of CF, and the target format is
HTML (an element of SF), then Scustom transforms f into HTML and the FSM
moves to state Sstandard.

Transitions starting at Sin, require the developer of the converter to generate
data formats of type CF or SF at design time. All transitions starting in the
other part are handled by the FSM and generated at run-time. Furthermore,
the transition from state Sstandard to state Sout is the identity transition, that
means, successive formats are identical (for example, L = {. . . , wml, wml, . . .}).
Two transitions in the FSM need further explanation. In state Scustom, the input
of an element of CF leads to a failure. As the designer must generate CF, there
is no need for transcoding between two CFs. The designer must do this at design
time. In Sintermediate the input of CF also leads to a failure. Formats belonging
to CF are input formats and created at design time. Thus, there is no need for
this transition.

An example is the conversion from WML to HTML using RXML as the
intermediate data format IF. The input is L = {WML, RXML, HTML}. WML
and HTML belong to the group of SFs. WML and HTML can be displayed by
widespread consumer devices such as WAP enabled mobile telephones and Web
browser, respectively. The transitions of the FSM for this conversion are depicted



4 Guido Menkhaus and Sebastian Fischmeister

in Figure 2 (for details about the semantic of this process see Section 4.3).
The three-stacked boxes represent one state and the arrow between two states
represents a transition. The top box shows the current state in the FSM, the
second box shows the current format of the UI description, and the third box
shows the output format (the converter will convert the format from the source
format into the target format). The initial state in the example is Sin. The first
transition is from Sin to Sstandard and the original content is transcoded into
WML. In the second step the FSM converts WML into RXML, an IF; thus,
getting into state Sintermediate. The remaining steps follow the same structure.

S
in

WML

SF−−−−−→
WML

S
standard

WML

RXML

IF−−−−−→
RXML

S
intermediate

RXML

HTML

SF−−−−−→
HTML

S
standard

HTML →

Sout

HTML

Fig. 2. Transition example.

3.2 Architectural Comparison of UIT Systems

The FSM provides the basic model that is mapped onto conceptual software
architecture models. The concept of software architectures consists of three ab-
stract building blocks [6, 7]. The following paragraph shows how the FSM can
be mapped onto these building blocks (Figure 3):

– Component. Components are either processing elements or data elements:
• Processing elements. The FSM differentiates broadly between three

types of processing elements: (1) the functional core, represented by state
Sin, (2) the physical interactor (Sout), and (3) the transcoding compo-
nents. An example of a physical interactor is a WAP browser of a mobile
telephone. It accepts and displays WML data. A sample transcoding
component is “dvi2ps”; it converts DVI data into Postscript data.

• Data elements. Data elements contain, among other information, UI
data and are created, displayed, or transcoded in processing elements.
For example, data elements contain HTML code for display on a browser.

– Connector. A connector acts as data channel between two components. The
connector holds information about the two connected components and obeys
to a specific protocol. A protocol is defined as a set of incoming and outgoing
data types and the data exchange sequence [8]. An example connector is a
UNIX pipe.

– Configuration. The configuration is the structural organization of com-
ponents and connectors; It corresponds to a transition path in the FSM.
Thus, the configuration provides a high-level overview of the transcoding
architecture.



Evaluation of User Interface Transcoding Systems 5

Configuration

Component Connector

*

1 1

0..1

0..10..10..1

*

*

*

*

*

Fig. 3. Meta-model of conceptual architecture view. Adapted from [8]

As an example, a UI converter using indirect conversion to convert WML
into HTML requires five components (creator, display, and three transcoding
components) and four connectors (see Figure 2 on the facing page). Although
the FSM shows all possible transitions within the given restrictions, an analysis
of existing UITSs reveals four main transition paths:

– Identity configuration. Using identity configuration, the source and the
target formats are equal. Thus, the transition path only consists of three
states and two transitions (the process of creation and the identity transfor-
mation): Sin → Sstandard → Sout An example of an identity configuration is
a developer creating content for just one device type (e.g., only for HTML
capable devices).

– Direct configuration. Using the direct configuration the number of transi-
tions equals three. Input and output format are elements of SF.The transition
consists of Sin → Sstandard → Sstandard → Sout An example for the direct
configuration is converting WML directly into HTML.

– Indirect configuration. Using the indirect configuration the number of
transitions equals four and an IF is used, so Sintermediate is reached. The path
within the FSM is: Sin → Sstandard → Sintermediate → Sstandard → Sout

– Hybrid configuration. Finally, the hybrid configuration inherits one prop-
erty of the direct and one property of the indirect configuration. The hybrid
conversion consists of (1) two transitions and (2) the initial input format is
CF (a non-SF)—thus, Scustom is reached: Sin → Scustom → Sstandard → Sout

4 Comparison of Existing UIT Systems

On the basis of the FSM, four transcoding configurations have been identified.
This section evaluates the four categories and surveys representatives of each
category.

4.1 Identity Configuration

Systems using the identity configuration employ the same data format at design
and presentation time.



6 Guido Menkhaus and Sebastian Fischmeister

Traditional Approach The identity configuration reflects the traditional com-
puting paradigm. Figure 4 illustrates the architectural configuration using the
FSM. The designers of these solutions produce UI data for a single platform: For
example, a highly optimized HTML-based application. The advantages of this
configuration are clear: The knowledge of well-defined properties of the target
platform at design-time enables the designer to optimize the user-interface data
for visualization. This is possible, since the data format used at design time (Sin)
is identical to the data format employed at presentation time (Sout). The main

S
in

HTML

SF−−−−−→
HTML

S
standard

HTML −−−→

Sout

HTML

Fig. 4. Identity configuration.

disadvantage of this approach is the inflexibility. Since a pure “1-to-1”-relation
is rare and merely stable over time, the inflexibility is a major concern when
porting the application to new platforms if the set of possible target platforms is
enlarged and the system needs to be accessed across a multitude type of devices.
If the “1-to-1”-relation remains stable this approach is the best way to choose.
Such optimization results in high quality rendered data, however, if the relation
is likely to change, the inflexibility prevents easy adaptation to new requirements
and environments.

4.2 Direct Configuration

Direct configuration is applied to systems that have been developed for a single
platform. Due to a change of the systems requirements the application has to mi-
grate from a “1-to-1” relation to a “n-to-1” relation or an “n-to-n” relation. The
key challenge is to modify the application enabling it to use multiple platforms.

IBM Websphere IBM Webshpere supports “n-to-n” relations between design
formats and the formats used at presentation time [2]. Websphere comes with a
set of transcoding plug-ins for a wide range of SFs. It allows having a multitude
of data formats at design time. A set of transformations converts one SF into
another SF. Figure 5 shows the transition path through the FSM, which repre-
sents the “n-to-n” relation. The conversion from one format into another format
cannot be done without loss of precision if,

– elements of the input format have no corresponding elements in the target
format and cannot be mapped to other elements of that format or

– elements of the input format have no corresponding elements in the target
format with exactly the same features.



Evaluation of User Interface Transcoding Systems 7

S
in

HTML

SF−−−−−→
HTML

S
standard

HTML

WML

SF−−−−−→
WML

S
standard

WML →

Sout

WML

Fig. 5. Direct configuration.

Elements offering no corresponding elements in the target data format are omit-
ted and non-convertible elements are reduced to elements that can be trans-
formed to equivalent functionality, that means, their functional intent is pre-
served, although their functional presentation can be quite different.

The advantage of this approach is that existing “1-to-1” relation applica-
tions can be transformed into “n-to-1” relation solutions. The existence of a set
of transformer suggests that existing solutions developed using a specific stan-
dard data format can be converted without loss of functionality to other device
dependent formats. This is only true for those specific cases where the design
format uses merely elements that can be converted to the target formats. How-
ever, the migration is problematic, if the existing solution has been developed
given the “1-to-1” relation assumption. Therefore in most cases existing solu-
tions have to be redesign and reengineered to make them accessible via different
mechanisms. The fact that there are specific transformations from one SF into
another has the advantage that the transformations can be highly optimized for
exactly those data formats.

4.3 Indirect Configuration

The motivation for indirect configurations is very similar to the situation de-
scribed in Section 4.2. The aim is to enable existing solutions that have been
targeted for use on a specific target platform to be used through a wide variety
of access mechanism. In order to reduce the creation of a multitude of transfor-
mations, an IF component layer is introduced. Data in SF is transformed to the
IF, which is device independent and further transformed to an SF different from
the SF used at design time. The introduction of an additional layer reduces the
total amount of transformations required. The use of a common IF means that
the input data is possibly filtered and elements of that format are omitted to
map the input data to the IF.

Relational XML A representative of this category is relational XML (RXML) [9].
Figure 2 on page 4 sketches the high-level architecture of the indirect configura-
tion. Although RXML pursues with the introduction of an IF a different concept
as the direct configuration approaches both may be equivalent. It is sufficient to
label an SF of the direct configuration as IF and apply two transformations: the
first transformation from the SF to the SF, which is labeled as the IF and the
second transformation from the IF to the target SF.



8 Guido Menkhaus and Sebastian Fischmeister

4.4 Hybrid Configuration

The key idea of representatives of this approach is the introduction of a UI
description in CF that is shared among all target SFs. The shared data is in this
respect SF independent. In the proposed FSM the use of the CF is different from
the IF, although both formats share the feature of being SF independent. The
IF is only temporarily present, whereas the CF data is created at design time.
The intent of the proprietary data is to support multiple target platforms, i.e.,
to be transformable to a set of predefined SFs. Figure 6 illustrates an example
of the hybrid configuration. This approach is attractive, since a single shared

S
in

EGXML

CF−−−−−−→
EGXML

Scustom

EGXML

HTML

SF−−−−−→
HTML

S
standard

HTML →

Sout

HTML

Fig. 6. Hybrid configuration.

format can serve a multitude of target formats. The shared format assures that
the functional presentation in the CF also provides an adequate presentation of
the same functionality in any other supported SF. The main disadvantage is the
logical consequence of one of the main advantages. The least sophisticated format
determines the features of the shared data format. This effect is also known as the
least denominator problem. The shared data format incorporates only elements
that can be transformed to equivalent elements in all target formats.

User Interface Markup Language The User Interface Markup Language
(UIML) defines 28 generic elements that are common to UIs [10]. Transforma-
tions from UIML to different target SFs are done with rendering machines. UIs
for various platforms can be designed with UIML. However, UIs for different
platforms require usually the creation of separate and distinct UIML files. The
specific requirements of the platforms need separate UIML vocabulary and there-
fore separate UIML files have to be written (one for each platform). The main
advantage is the usage of a single UI language although the vocabulary can be
very different for different platforms. Only recently, Farooq and Abrams tried to
overcome this by extracting a generic UIML vocabulary [11].

.NET .NET offers the Compact framework and the Microsoft Mobile Internet
Toolkit for UI generation for mobile devices [12, 4]. The Compact framework al-
lows traditional graphical UI development via an API. The Compact framework
has no built-in support for markup language UI creation. The resulting appli-
cations need the .NET framework running on the target device. This restricts
the range of devices which allow an application to execute to the set of smart



Evaluation of User Interface Transcoding Systems 9

devices. The Microsoft Mobile Internet Toolkit gives support for a wide range
of markup languages. Device adapters allow the different rendering of controls
to mobile device specific markup languages.

MUSA Multi User Interface, Single Application (MUSA) introduces the event
handler graph (EGXML, Figure 6) that describes the common interaction of
an application [13, 3]. The use of generic UI elements is replaced in support of
the interaction description between interfaces and users by means of the event
handler graphs. The event handler graph is an abstract description of a service,
which is presented to the user who interacts with it through a UI. Event handlers
in the event handler graph do not specifically define UI elements. However,
event handlers are assigned and eventually mapped to UI elements that are able
to trigger the event handlers. In addition to the event handler graph, whose
description is shared by all target platforms, the global and local layout of the
UI is described separate from the event handler graph.

5 Discussion

This section discusses the three transcoding configurations with respect to sys-
tem development. The identity transformation category will not be considered
here.

5.1 Proprietary vs. Standard Format

With respect to the transformation process the FSM differentiates broadly be-
tween two approaches to UI conversion. The direct configuration approach uses
only standard format in the conversion process whereas the indirect and the
hybrid approach define a proprietary or intermediate format. Standard formats
have not been defined with respect to the current situation, where content au-
thors need to develop content targeted for use via a variety of platforms. They
do not incorporate the idea of platform independent authoring and are therefore
not truly apt to be converted to different standard platforms. Since recently,
HTML for example, did not even comply with the XML standard and there
are still HTML editors, which produce non-XML compliant HTML code. As a
consequence, tools like XSLT can merely be used in combination with HTML.
Proprietary formats are especially designed to form a compact medium, which
serve as an intermediate step towards presentation. The disadvantage of a pro-
prietary format is the fact that designers have yet to learn another new language.

5.2 System Development

Development time is crucial to the success of a software system. Software sys-
tems have long life cycles, and attributes like modifiability gain more and more
attention during development time. Modifiability subsumes activities like chang-
ing and extending a software system. This section discusses system development



10 Guido Menkhaus and Sebastian Fischmeister

SF

SF

SF

SF

SF

SF

... ...

2 2

mm

11

Presentation
Time

Design
Time

(a)

SF

SF

SF

SF

SF

SF

IF

...

2

m

1

Presentation
Time

Design
Time

1

2

m

...

(b)

SF

SF

SF

CF

Design
Time

Presentation
Time

1

2

...

m

(c)

Fig. 7. System development effort: (a) Direct configuration (b) Indirect configuration
(c) Hybrid configuration. The arrows indicate transformations and the rectangles data
formats.

effort, change and extension development effort of the three classes of transcod-
ing configuration. The identity transformation category will not be considered
here.

Tool support is important during development and maintenance time and is
considered crucial for the success of a project.

System Development Effort In this context, development effort is quantified
as the creation of transformations and data formats. The direct configuration
uses exclusively SFs and needs m2 − m transformations (T) to support m data
formats (Figure 7(a)). The indirect configuration needs the creation of 2m trans-
formations and an IF that is apt to work as an intermediate format between 2
transformations (Figure 7(b)). Only m transformations are required for the hy-
brid transformation configuration (Figure 7(c)). In addition to the creation of
the transformation, a CF needs to be created.

The comparison returns advantageous results for the hybrid transformation.
However, direct and indirect transformations start with SFs whereas the hybrid
transformation configuration requires the input to be written in CF. If an existing
application needs to be extended to allow additional devices to access it, the
direct and indirect transformation give immediately results. As for the hybrid
approach, the application needs to be migrated to the proprietary data format.

Modification Development Effort Modifiability is defined as the ability to
make changes quickly and cost effectively [14]. This section elaborates on the
impact of evolution of an SF on the three configurations. The discussion can
broadly be categorized into changes of SFs and subsequent changes of propri-
etary or IF. However, the change of the latter category is induced by a change of
an SF. The impact of a change is especially high for those configurations, which
accept SFs as input. The change of an SF entails a modification of m-1 trans-
formations in the direct configuration: the transformations from the SF that has



Evaluation of User Interface Transcoding Systems 11

SF

SF

SF

SF

SF

SF

... ...

2 2

mm

1

Presentation
Time

Design
Time

1

(a)

SF

SF

SF

SF

SF

SF

IF

... ...

2 2

mm

1

Presentation
Time

Design
Time

1

(b)

Fig. 8. Modification development effort: (a) Direct configuration (b) Indirect configu-
ration. The dashed arrows and rectangles denote modified artifacts.

SF

SF

SF

SF

SF

SF

IF

... ...

2 2

mm

1

Presentation
Time

Design
Time

1

(a)

SF

SF

SF

CF

...

2

m

Presentation
Time

Design
Time

1

(b)

Fig. 9. Modification development effort: (a) Indirect configuration (b) Hybrid config-
uration. The dashed arrows and rectangles denote modified artifacts.

been changed to every other SF (Figure 8(a)). If a transformation from an SF
wants to exploit new features of the changed SF, it must be changed as well.
The indirect configuration requires changing only one transformation (from the
modified format to the IF, Figure 8(b)). As a consequence the IF may need to be
changed. In this case all 2m transformations change since the IF is the unique
intermediate channel that connects two transformations (Figure 9(a)). Strictly
speaking, the hybrid configuration may not require any changes. The transfor-
mations convert the CF into SFs and there is no need to support new features.
However, if the CF changes it is mandatory that all other SFs support that
specific feature as well and thus, all m transformations change (Figure 9(b)).

Extension Development Effort The number of formats is growing as the
number of new Internet enabled devices is growing. There are even multiple
formats for one class of devices. Extension development effort deals with the
question: How capable are UITSs to integrate additional SFs? The direct trans-
formation configuration requires the definition of 2m new transformations for
each additional format: m transformations from the new format to the existing



12 Guido Menkhaus and Sebastian Fischmeister

formats and another m transformations from the existing formats to the new
format (Figure 10(a)). The indirect transformation configuration only needs two
additional transformations: one from the new format to the IF and one from
the IF back to the new format (Figure 10(b)). The introduction of an IF as an
intermediate layer is the reason for the constant number of additional transfor-
mations. Only one additional transformation is required using the hybrid config-
uration: the transformation from the CF to the new format (Figure 10(c)). Due
to the use of a CF the number of additional transformations is minimal.

SF

SF

SF

SF

SF

SF

SF SF

... ...

2 2

mm

1

Presentation
Time

Design
Time

1

m+1 m+1

(a)

SF

SF

SF

SF

SF

SF

IF

SF SF

... ...

2 2

mm

1

Presentation
Time

Design
Time

1

m+1 m+1

(b)

SF

SF

SF

CF

SF

...

2

m

Presentation
Time

Design
Time

1

m+1

(c)

Fig. 10. Extension development effort: (a) Direct configuration (b) Indirect configu-
ration (c) Hybrid configuration. The dashed arrows and rectangles denote new and
modified artifacts.

6 Concluding Remarks

The paper presents an abstract model for user-interface transcoding systems. On
the basis of an FSM, we identified four transcoding configurations and mapped
them onto existing solutions. In the evaluation of these configurations, we con-
centrated on the development effort, i.e., the system, the extension, and the
modification development effort. The results of the evaluation are summarized
in Table 1.

From these results, we conclude that the hybrid configuration provides the
best overall performance for these three kinds of efforts. Our experience with
industry and their approaches [15] further support this conclusion as most recent
products utilize hybrid configuration and proprietary base formats (sometimes
closely related to standard formats).

As future work, we will research the differences between these three config-
urations in more detail; especially concentrating on software quality attributes
such as throughput and capacity of adaptivity.



Evaluation of User Interface Transcoding Systems 13

System Change Extension
Configuration Development Development Development

Effort Effort Effort

Direct (m2 − m)T (m − 1)T 2mT

Indirect 2mT + 1IF 1T 2
If IF changes 2mT + 1IF

Hybrid mT + 1CF 0T 1
If CF changes mT + 1CF

Table 1. Development effort for direct, indirect, and hybrid configuration.

References

1. Goeschka, K., Smeikal, R.: Interaction Markup Language - An Open Interface for
Device Independent Interaction with E-Commerce Applications. In: Proceedings
of the 34th Hawaii International Conference on Systems Sciences, IEEE Computer
Society (2001)

2. Britton, K., R.Case, A.Citron, Floyed, R., Li, Y., Seekamp, C., Topol, B., Tracey,
K.: Transcoding. Extending e-business to new environments. IBM Systems Journal
40 (2001) 153–178

3. Menkhaus, G.: An Architecture for Supporting Multi-Device, Client-Adaptive Ser-
vices. Special Volume of the Annals of Software Engineering Journal on OO Web-
based Software Engineering (2002)

4. Microsoft: Microsoft Mobile Internet Toolkit (2002)
5. Workshop, U.T.D.: A Metamodel for the Runtime Architecture of an Interactive

System. SIGCHI Bulletin 24 (1994) 32–37
6. Perry, D., Wolf, A.: Foundations for the Study of Software Architecture. ACM

SIGSOFT Software Engineering Notes 17 (1992)
7. Shaw, M., Garlan, D.: An Introduction to Software Architecture. In Ambriola, V.,

Tortora, G., eds.: Advances in Software Engineering and Knowledge Engineering,
River Edge, NJ: World Scientific Publishing Company (1993)

8. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley
object technology series. Addison Wesley, Reading, Mass. (1999)

9. Saha, S., Jamtgaard, M., Villasenor, J.: Bringing the Wireless Internet to Mobile
Devices. IEEE Computer 34 (2001) 54–58

10. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., Shuster, J.: UIML:
An Appliance-Independent XML User Interface Language. WWW8 / Computer
Networks 31 (1999) 1695–1708

11. Farooq, M., Abrams, M.: Simplifying Construction of Multi-Platform User Inter-
face Using UIML. In: UIML Europe Conference. (2001)

12. Microsoft .NET: The .NET Compact Framework-Overview (2002)
13. Fischmeister, S., Menkhaus, G., Pree, W.: MUSA-Shadow: Concepts, Implemen-

tation, and Sample Applications; A Location-Based Service Supporting Multiple
Devices. In: Proceedings of Pacific TOOLS, Sydney, Australia (2002) 71–79

14. Bass, L., Clemens, P., Kazman, R.: Sofware Architecture in Practice. ”Addison
Wesley”, Reading, Mass. (1998)

15. Mandyam, S., Vedati, K., Kuo, C., Wang, W.: User Interface Adaptations: Indis-
pensible for Single Authoring. In: W3C Workshop on Device Independent Author-
ing Techniques, SAP University, St. Leon-Rot, Germany, W3C (2002)


