
Adaptation for Device Independent Authoring

Guido Menkhaus and Sebastian Fischmeister
Software Research Lab, University of Salzburg, Salzburg, Austria

{Menkhaus, Fischmeister}@SoftwareResearch.Net

ABSTRACT
The impact of device independent authoring on software en-
gineering manifests itself mainly at the middleware level.
Until recently middleware platforms were targeted at vertical
coverage of specific scenarios. Consumer devices with inte-
grated Internet-access are becoming more popular and their
diversity grows with their market penetration and with the
extension of the mobile communication infrastructure. This
requires software architectures that are capable of supporting
horizontal coverage of a wide range of devices and scenar-
ios. This paper presents the Multi User Interface, Single Ap-
plication project. It provides a feasable approach for multi-
platform support through the introduction of an adaptable
and abstract interaction-oriented user interface language.

Author Keywords
Device Independent Authoring, User Interface Adaptation

INTRODUCTION
Due to the emergence and proliferation of new classes of
devices accessing services on the Web, device independent
authoring became an important issue. The vision of device
independence authoring is to allow services and content on
the Web to be accessible by anyone, anywhere, anytime,
and anyhow [21] by simultaneous reuse of authored source
across multiple contexts and environments. Because of the
variety of different UI platforms, content authors cannot af-
ford creating and developing content and UIs that target only
one out of a set of target platforms. This has a profound
impact on the way UIs are build. Systems must scale up
well to environments that include a wide variety of different
devices that can easily and flexibly connect to application
logic. The objective is to develop UIs for the same applica-
tion only once and not for each particular class of computing
device to avoid fragmentation of the web space into spaces
that are solely accessible with specific type of devices.

There are research projects that look into new generation UIs
that no longer consist of a display, but for example of wear-
able glasses projecting the UI onto the eye of the user [9]

or wearable computers with small and semitransparent dis-
plays placed only centimeters from the user’s eye in front of
the line of sight [24]. These UIs, although small in physical
size, will no longer have size constraints concerning the UI.
However, user acceptance seems to be low [2]. We think that
traditional UIs still have a strong potential for improvement
and that this technology will prevail in the near future on the
consumer market [11].

The dynamics of the mobile environment and the limita-
tions of mobile computing resources make adaptation a nec-
essary technique. Adaptation is necessary when there is a
significant mismatch between the supply and demand of a
resource, which is typical for a mobile and pervasive com-
puting environments [18]. A permanent solution therefore
requires models and techniques that allow UI designer to
generate adaptive UIs.

This article presents the Multi User Interface, Single Ap-
plication (MUSA) system. The MUSA project concentrates
on multi-platform support. We argue that the introduction
of an abstract interaction-oriented UI language is an essen-
tial component that eases the development of UIs for mobile
computing devices. MUSA allows a Web-based service to
be delivered to a variety of target platforms without addi-
tional effort. When a user requests a service, context infor-
mation triggers the adaptation mechanism tailoring the event
handler graph (written in EGXML) and the content of the
service to a target platform specific presentation form. The
event handler (EH) graph mediates between the concrete UI
and the application logic. Figure 1 sketches the scenario of
device independent authoring with the EH graph.

Adaptation Process.
Selection

Transformation
Modification
Manipulation

Rules

Dialog Model.
Event Handler Graph

Application
Service

Context
Information

Presentation
Data

Figure 1: Scenario of device independent service author-
ing.

The remaining of the article is organized as follows: The fol-
lowing section presents a short overview of UI architecture

1

and related work. We then introduce the MUSA system and
model. The adaptation mechanisms of the EGXML is dis-
cussed and results are presented. We close the article with
concluding remarks and a short discussion about our future
work.

USER INTERFACE ARCHITECTURE AND RELATED WORK
Model-based UI software development has introduced con-
cepts and techniques that assist in the process of UI devel-
opment and a large number of layered architectures have
been devised [15, 20]. Myers for example, has identified
four general layers: window, widget, view, and model [13].
This division corresponds roughly to the linguistic model
of architecture of interactive software that distinguishes be-
tween the following three layers: The semantic layer de-
scribes the tasks users should be able to perform using the
application for which the UI provides the interaction means.
This layer corresponds to the model in Myer’s layered ar-
chitecture. The syntactic layer describes the structure and
the interaction behavior of the UI. This can be mapped onto
Myer’s view component. The lexical layer consists of the de-
tailed description of the visual part of the UI and corresponds
to the window and the widget layer of Myer’s architecture.

The Arch-Slinky model refines the level of abstraction with
which it describes the reference model for UI management
systems [23]. It proposes a structural and functional decom-
position into the following five components:

1. Functional Core. The functional core is the creator of
data that the system represents. It manipulates data and
performs other domain-oriented functions.

2. Functional Core Adapter. The functional core uses the
functional core adapter as its channel of communication
to the dialog component.

3. Dialog. The dialog component mediates between domain
specific and presentation specific data. It controls task se-
quencing.

4. Logical Interaction. The physical interaction and the di-
alog component interact through the logical interactor that
provides corresponding interfaces and objects.

5. Physical Interaction. The physical interaction compo-
nent consumes the presentation specific data and provides
input to the functional core. It deals with input and output
of data on the target device.

The Arch-Slinky model minimizes the effect of future modi-
fication to an application and its environment by isolating the
dialog component from the functional core and the physical
interaction component.

There are a number of approaches for designing and imple-
menting UI software. They range from the automatic gener-
ation of the presentation model from a more or less formal
task model [3] to informal, structured guidelines on how to
build UI software [10]. However, lots of effort has been
dedicated to approaches that can be placed somewhere in
the middle of the both extremes [1, 6, 17]. Common to

these approaches is the application of a single XML-based
description implementing the presentation and/or the dialog
model, respectively. The description is adapted according
to a device profile at run-time into a device adequate form.
The approach supports device independent authoring so that
a single description is enabled to serve a multitude of plat-
forms. Wong presents a high-level task model description
of a web application that has a tree-like structure [22]. The
tree-like structure is adapted according to device-dependent
information to match the target device. Adaptation on the
task and concept and the UI level is presented in [8]. Rules
are defined and prioritized that tailor a UI at different levels
for graceful degradation. Most of the work concentrates on
transformation of UI elements. Adaptation at the task and
concept level focuses on deletion and insertion of tasks.

The introduction of a custom platform-independent markup
language can help to solve the problem of the Tower of Ba-
bel in UI languages, since one obstacle to device indepen-
dent authoring is that each platform with its typical browser
has its own markup language and each language aims at a
specific platform and is optimized for supporting it. How-
ever, the support of different platforms is a problem that can
be solved at the physical interaction / UI level of abstrac-
tion. Another main obstacle to device independent author-
ing is the growing number of networking enabled devices
with a wide variety of UI capability and device specific plat-
forms. One of the main differences they share is different
screen size. How to enable content to be adapted to various
screen sizes? The same content may require varying num-
bers of windows to display and a different navigational struc-
ture, depending on the platform. For example, content fitting
on one PC window may require three windows on a mo-
bile phone. Yet, all these windows originate from the same,
single authored UI. The device profile delivers information
about the limitations and restrictions of the target platform.
The adaptation process for EGXML exploits this informa-
tion for adapting the content and the navigational structure.
This results in a hierarchical structure of dialogs.

MUSA
The MUSA system utilizes device independent UI descrip-
tion in EGXML and supports the integration and composi-
tion of Web services. The objective is a reduction of devel-
opment time, cost, as well as improved maintainability and
flexibility.

Figure 2 illustrates the high-level architecture of MUSA.
The system is conceptually split into four tiers and employs
an event-driven design.

Client: The client environment represents the first tier. The
client is represented by a device with a UI. No service data is
installed on the client side and the client communicates via
wireline or wireless Internet with the service. Typically, the
client is some sort of browser, but in principle, could also be
a device with no visualization capacity such as a telephone.

Request Processor and Client Gateways: The communica-
tion between the service and the client passes through the

2

Encoding
Transformer SPU

MUSA Core System

Presentation Model
Integrator SPU

Integrator

PM Repository

Personalization
 SPU

SOAP Service
Broker

SOAP Service
Proxy

Application
Specific

Web
Services

Application
Specific

Web
Services

Application
Specific

Web
Services

Event Handler Graph
Interpreter SPU

SMS
Gateway

Request Processor

HTML

WML

SMS

Mediator

Event Handler Graph
Manager SPU

EGXML
Event Handler Graph

Description

Figure 2. High-level architecture of MUSA system.

request processor. It forwards the communication stream to
the MUSA core system and converts the client requests into
events that are used throughout the MUSA architecture.

MUSA Core System: The MUSA core system consists of
specialized processing units (SPU), which reflect the sepa-
ration of concerns of the system.

1. Event Handler Graph Interpreter SPU. The EH graph
interpreter handles the event processing. The incoming
events from the request processor are sent to individual
EHs that contain the necessary information to properly
respond to the input event. In response to the event pro-
cessing the system generates outgoing events for each in-
coming event, which are further processed in the MUSA
system.

2. Event Handler Graph Manager SPU. The EH graph
manager SPU manages the EH graphs. It controls the ac-
cess and the transformations of the EH graph.

3. Personalization SPU. The personalization SPU enables
users to personalize, i.e., to modify and adapt the EH graph
to their preferences. The adaptation is done via direct ma-
nipulation technique [19]. For example, EHs can be re-
moved from the EH graph. Once an EH is removed, the
removal can be undone. EHs can be given a different de-
scription and they can be preset with default values. This
is helpful, when a user applies a form over and over again,
and the text of only a few input fields varies. It helps re-
ducing the time to fill a form.

4. Encoding Transformer SPU. The transformer SPU trans-
forms and maps outgoing EHs of the EH graph to an ap-
propriate presentation form. If the client is a device with a
graphical UI, the EHs are mapped to those concrete UI el-
ements, which are able to implement and trigger the spec-
ified events, which are associated to specific EHs. The
SPU applies a transformation on the EH graph depending
on the client’s profile. Figure 2 shows three transformers:
a HTML, a WML, and a SMS transformer.

5. Presentation Model Integrator SPU. The integrator SPU
models the overall presentation layout of the EH graph,

which are transmitted in the course of the current inter-
action between users and applications. The presentation
model integrator SPU has a repository of presentation mod-
els. The presentation models are created at design time
by a UI designer. This allows the EH graph and the pre-
sentation models to be developed, maintained, and modi-
fied independently. A presentation model in the repository
consists of a file written in a concrete UI language en-
riched with special integrator commands, which indicate
where to integrate the EHs of the EH graph. An opening
command opens an integrator command and each opening
command has a corresponding closing command, which
delimits it, such as a XML element has an opening tag and
a closing tag. Each concrete UI element, which is between
the opening and the corresponding closing command, be-
longs to this integrator command. The insert command in-
dicates the place where to insert the EH of the EH graph.
If the associated EH is not present, the complete command
and its content is removed and not transferred to the en-
coding transformer SPU. The simplest presentation model
consists solely of integrator commands.

Service Proxy: The service logic is the body of code for
which the MUSA system provides the service facade. The
Web services that implement the service logic are accessi-
ble via service proxies, which connect the MUSA system to
other Web services.

MUSA Model
MUSA builds on the Arch-Slinky model adopting the cardi-
nal functional decomposition in a physical interaction, logi-
cal interaction, dialog, functional core adapter and the func-
tional core component. The MUSA model (Figure 3) refines
the Dialog component, by introducing the MUSA EH graph
and the Physical interaction component, by splitting it into a
global and local component. The MUSA Model tries to map
the abstraction a Web designer would use while designing
a Web-based service onto the vocabulary of the EH graph.
Within the dialog component, we observe two kinds of in-
formation flows: the vertical traversal of the EH graph and
the lateral information flow with the functional core adapter
and the logical presentation component. An EH of the EH
graph may be related to one or multiple objects of the func-

3

Functional Core /
Application

Global
Physical

Interaction
Component

Logical Interaction /
Presentation ComponentFunctional Core Adapter

Service

Dialog

Dialoglet

Simple
Event Handler

1..n

1..n

1..n

1..n
1..n

Composite
Event Handler

1..n

Local
Physical

Interaction
Component

DialogProfile

1..n

Dialog Component

Figure 3. MUSA Model.

tional core adapter. Similarly, each part of the EH graph is
connected to one or multiple presentation objects of the log-
ical interaction component.

The physical interaction component is split into a global and
a local part. This allows the both parts to vary independently.
This avoids a permanent binding of the encoding of the ob-
jects of the logical interactor and the global layout of the
logical interactor to each other.

The MUSA Event Handler Graph (EGXML)
The EH graph is at the core of the MUSA model. The in-
troduction of the EH graph follows the idea of the reactive
constraint graph described in [4]. It is an abstract descrip-
tion of a service logic, which is available for service access
to a wide range of clients. The basic building blocks of the
EH graph are represented by specific EHs. The EHs receive
events from the client dispatched by the logical interaction
component and emit events in response to the event pro-
cessing. In case of a client with a UI, outgoing events are
assigned and eventually mapped in the physical interaction
component to concrete UI elements that are able to trigger
the corresponding EHs. The UI elements trigger the event
either on display of the UI elements or in response to user
interaction.

The objective of the concept of the EH graph is to structure
the service design by using the abstractions Service, Dialog,
Dialoglet, Composite and Simple Event Handler. Each of
these plays an important role in service UI design in prac-
tice. By providing the EH graph for describing these ab-
stractions, the vocabulary of the designers informal design
practices is matched. This makes it easy for the designer to
map its vocabulary to the abstractions, both in terms of for-
malizing an informal specification and communicating the
results to other stakeholders.

The EH graph as an implementation of the dialog component
runs inside an EH graph interpreter and contains the descrip-

tion of the service logic in EH graph XML (EGXML). It
handles the event sequencing and processing. The follow-
ing hierarchical structures help the designer to organize the
service logic into a dialog model.

1. Simple Event Handler. An EH is an abstract interac-
tion object. It contains the necessary information on how
to handle an event coming from a UI and to delegate the
processing of the event and its associated data. It is a con-
crete UI object’s target and represents it from a behavioral
point of view.

2. Composite Event Handler. An EH is composite, if it is
composed of other EHs.

3. Dialoglet. A dialoglet consists of a number of EH, which
belong to one group – logically and semantically.

4. Dialog Profile. A Dialog Profile consists of a device pro-
file and one or more dialoglets.

5. Dialog. A dialog is designed to represent a task or a sub
task of a specific Web-based service. A dialog contains
one or more dialog profiles. A dialog profile represents
the dialog through the filter of a specific device profile. A
dialog is composed of an initial dialog, from which other
dialogs are chained.

6. Service. A service is composed of a sequence of dialogs.

During the design of the EH graph, the difficulty consisted of
the support of a wide variety of possible UIs for the access
of web-based interactive services. The least sophisticated
format determines the features of the EH graph. This effect
is also known as the least denominator problem. The EH
graph format incorporates elements that can be transformed
to equivalent elements in all target formats. For example,
the graphical UI of a service intended for a desktop com-
puter may be quite different to a UI that is appropriate for
a mobile telephone with a very small display. However, al-
though the concrete UI elements are quite different for each
target device and the layout mechanisms vary, the interaction
mechanisms are similar.

EGXML ADAPTATION
The definition of a single dialog model is still oriented at the
”one device - one functionality” paradigm, but today we can
access mutually any service through any device [5]. This
requires an appropriate mechanism to dynamically adapt the
dialog model. In this article a dialoglet of the dialog model
will be represented by a two-dimensional discrete function
e(x, y), which is digitized both in spatial coordinates and
feature value: dialoglet = [e(x, y)]P×Q where P ×Q is the
size of the dialog, (x, y) denotes the spatial coordinate and
e(x, y) ∈ EH the type of EH of the EH graph from the set of
available EHs EH . Without loss of generality we consider
only the case, where Q = 1.

Clustering EHs that implement the dialog model into a hi-
erarchical structure of dialoglets is the essential step in our
adaptation process that leads to device independent author-
ing (Figure 4). For this, the dialog model adaptation pro-
cess partitions the EHs implementing the dialog model into

4

non-intersecting dialoglets such that each dialoglet satisfies
a homogeneity predicate. We consider the case, where the
current dialog model was intended to be displayed on a de-
vice like a desktop PC with a monitor and the actual de-
vice that accesses the service is a PDA or mobile telephone
with a much smaller screen. This situation is typical for mo-
bile computing: Services target primarily desktop PC with
a monitor and latter are ported to a wide variety of mobile
computing devices. The situation in which a service targets
small devices and is accessed by a desktop PC with a moni-
tor is not further discussed here.

....

Dialoglet

Dialoglet Dialoglet Dialoglet

Dialog
Adaptation

Dialog Profile

Figure 4. Dialog adaptation.

Formally, the process of adaptation of the dialog model can
be defined as follows: If a dialog model consists of a set of
EHs and P is a homogeneity predicate, then the adaptation
of the dialog model is a partitioning of EHs into a set of
connected dialoglets (d1, d2, . . . , dn), which will eventually
be converted into a hierarchical navigationable structure of
dialoglets, such that:

dialoglet = ∪n
i=1(di\enavigation(di))

di ∩ dj = ∅, i 6= j

di is a connected set of event handlers

P (di) = true, i = 1, . . . , n

P (di ∪ dj) = false, if di is adjacent to dj

A user accessing a service supported by a dialog model needs
to navigate from one dialoglet to the next dialoglet. How-
ever, not all navigation elements are in the original dialog.
Thus, they have to be integrated into the dialoglets resulting
from the adaptation process. The set of all UI elements in
the dialoglets equals the EHs in the original dialog plus the
integrated new EHs dedicated to the navigation between the
dialoglets, the enavigation(di).

EGXML Adaptation using Event Handler Clustering
The above definition of the process of adaptation is very sim-
ilar to image segmentation as defined in [16]. Analogous to
segmentation and clustering processes, the more context and
domain information is known beforehand and integrated into
the process, the better the process’ results.

Approaches exploring dialog model adaptation can broadly
be divided into two categories. Processes of the first cate-
gory do not consider context knowledge such as screen size
during design time. They work bottom-up and rely uniquely
on dynamic adaptation of the dialog model. The other cate-
gory explicitly uses top-level domain and task model knowl-
edge during design time. The processes are configured with
a priori known target contexts. The quality of the latter ap-
proach depends on the configuration and the type of content

that is presented. The former approach has the drawback of
working only on syntactic information. We propose a hybrid
approach that combines the advantages of both approaches,
fast design, no need to produce sophistic configuration data
and integration of semantic information.

The two main challenges of the hybrid approach to dialog
model adaptation are: How to incorporate low-level seman-
tic information into the dialog model? How to adapt the di-
alog model respecting the semantic information? Our adap-
tation technique is based on a linking strategy of two hierar-
chies of graphs [12, 14]. It allows remodeling a dialog of the
dialog model into dialoglets of connected EH and the use of
low-level task model information.

The elements of the dialog model are placed as EHs into
a stack of regular grids, as illustrated in Figure 5. In the
lowest level of the stack, each cell of the grid corresponds
to a single EH. Each cell of level i + 1 represents a group
of cells of level i. The adaptation algorithm always forms
linear structures of 3 × 1 cells. The cells overlap in such a
way that the outer cells on level i belong to two cells of level
i + 1. The cells in a group of level i, represented by a cell of
level i+1, are called the subcells or the children of this cell.
The representing cell is called the parent of its children.

Cell CellCell

Cell

Event Handler Event Handler Event Handler Event Handler Event Handler Event Handler Event Handler

Figure 5: Stack of a regular grid of cells that places a
structure on a set of EHs. Three EHs form a cell on the
lowest level. Cells on a lower level are candidates for cells
on a higher level.

The clustering of a set of EHs into a set of dialoglets is done
within the boundaries of the induced stack of cells and is of
primary interest. To come to the final set of dialoglets, we
dynamically build up a stack of EH-regions. An EH corre-
sponds to a EH-region on the lowest level. Adaptation of a
dialog is performed by clustering EH-regions of level i into
EH-regions of level i + 1. However, EH-regions can only be
grouped within the boundaries of a cell in which they reside,
as illustrated in Figure 6, and if they satisfy the homogene-
ity predicate. This guarantees that we cluster only connected
and adjacent EH-regions. Complete EH-regions, i.e. regions
that cannot further be clustered, result in dialoglets.

The framework to describe the adaptation technique is the
description as a hierarchy of graphs. The first hierarchy of
graphs forms a syntactic based and static structure that guar-
antees that the resulting dialoglets are connected. The sec-
ond hierarchy is dynamically built up respecting the low-
level semantic information integrated into the dialog model

5

at design time. The two hierarchies of graphs implement the
dialog model adaptation process. The process consists of the
following four phases:

• Bottom-up Clustering. EH-regions of level i are grouped
into EH-regions of level i + 1 within the boundaries of
their cell and satisfying a predicate P .

• Top-down Separation. EH-regions that fail to group on
level i are separated recursively down to level 0.

• Horizontal Separation. Large-sized EH-regions of level
i, especially when they contain a single EH, are split.

• Relinking. The user should be able to navigate from one
dialoglet to the next dialoglet. To ensure usability, EH-
regions are relinked by integrating additional navigation
EHs.

Bottom-up Clustering: The clustering process determines
the set of connected EH-regions of level i of a specific cell
and groups them. In order to form a new region ri+1 (the
subscript indicates the level) in a cell ci+1, the set of sub-
cells are determined. Each subcell has a set of regions asso-
ciated that are candidates for grouping into ri+1. A region
si groups into the region ri+1, if it satisfies the homogeneity
predicate P (ri+1 ∪ si) = true. Two regions si, ti are con-
nected, if they have a common subregion: ui−1. Regions
of the lowest level are connected with their neighboring re-
gions. The overlapping structure of the stack of cells guaran-
tees that the clustering process considers only those regions,
which are connected or have a path of connected regions on
the lowest level. The clustering process is illustrated in Fig-
ure 6.

Region s Region t

Region r
(Dialgolet, if complete)

Cells

Event Handler ...Event Handler Event Handler Event Handler Event Handler

Figure 6: Clustering process. Regions are grouped
within the boundary of a cell.

The homogeneity predicate decides, if regions will be clus-
tered or not. The predicate consists of two parts, which both
need to evaluate to true; P (r) = Size(r)∧Context(r), r ∈
Ri.

• Size. On different devices a dialoglet is displayed with a
varying number and size of EHs. If the size of a region and
its parent region is lower than a predefined threshold (e.g.,

RelinkingComplete
Region

(Dialoglet)

Region Region

Region
Complete

Region
(Dialoglet)

Region Region

Region
Region

with
Navigation

Event Handler

Figure 7: A region containing a single navigation EH will
replace a complete region. The new region takes part in
the bottom-up clustering phase on behalf of the complete
region.

three times of the screen size) the regions are clustered,
otherwise they are separated, either horizontally or top-
down. The size of a region is device dependent.

• Context. The designer of the original dialog model inte-
grates in it semantic information. The information deals
with the semantic relation of an EH with its neighboring
EHs. A region si and its tentative parent region ri+1 will
be grouped, if their semantic intent does not exceed a pre-
defined threshold d(σ(si), σ(ri+1)) < Θ. In the current
version of the adaptation process, we simply assign inte-
ger values to EHs, to indicate semantic similarity. d(·, ·)
is a distance measure like the Euclidian distance.

Top-down Separation: If the grouping process fails, because
a region si does not satisfy the homogeneity predicate P ,
the region need to be separated from its connected region
ti. The region need to be separated since they have a com-
mon subregion ui−1, which needs to be assigned to a single
parent region (Figure 6). The separation process assigns the
common subregion to the region, whose semantic value is
the most similar. The process is recursively applied down
to the lowest level. For level i − 1 in Figure 6 it would be
applied to ui−1, the common subregion of si and ti, and to
those subregions of regions of level i, which have a common
subregion with ui−1.

Horizontal Separation: If the size of a region ri prevents
it from clustering with other regions, although it could from
the homogeneity predicate’s point of view, it is split into a se-
quence of n smaller, mutually linked regions r0,i, r1,i, . . . , rn,i.
E.g., a lengthy text message is split into a sequence of re-
gions or EHs containing each a part of the text message.
Only the head of the sequence continues to take part in the
grouping process.

Relinking: A region that cannot further be clustered with
other regions into a region of a higher level is called com-
plete and results in a dialoglet after the adaptation process.
A complete region that has reached the threshold of the max-
imal allowed size or that cannot further be clustered from
a semantic context point of view does not drop out of the
grouping process. Instead, a new region is created contain-
ing a single navigation EH pointing to the complete region.
The new region takes the place of the complete region and
continues the grouping process on behalf of it. The pro-
cess is illustrated in Figure 7. The effect of the relinking
phase is that the adaptation process creates a linked tree-
structure. The regions representing the leaves of that tree-

6

structure contain the EHs of the original dialog. The inter-
mediate nodes of the tree-structure are regions including the
navigation EHs that have been created in the relinking pro-
cess.

The set of complete regions resulting from the adaptation
process are transformed into a set of dialoglets and eventu-
ally into a concrete UI applying the Presentation Integrator
SPU and the Encoding Transformer SPU of MUSA.

RESULTS
To illustrate the adaptation technique of a dialog model, we
have implemented a message board service build with soft-
ware agents for a location-based systems [7]. The message
board contains location specific information and users can
read and store messages on the message board. A mobile
user moving from location to location accesses different mes-
sage boards depending on the geographical position. Differ-
ent users use different devices to access the message board
such as laptops, PDAs, or mobile phones. The dialog model

Figure 8: HTML browser showing the Message Board
”Main Menu”.

that results in the graphical UI on a HTML browser is shown
in Figure 8. It shows the UI of the message board service.
This browser is a powerful tool, so that there is no need to
perform any adaptation of the dialog model. Additionally to
the dialog a global presentation model is defined, which is
responsible for the layout of the Web-page. The two aspects
that guide the adaptation process are size and context. The
context information is inserted into the dialog model at de-
sign time. Size, however, or the screen space that is available
for presentation of the UI, is device dependent. The adapta-
tion process needs size information of the device’s UI that
accesses the service. This information is delivered in device
profiles.

Figure 9 shows the same dialog model that results in the UI
of a HTML browser in Figure 8, but this time adapted to the
small screen of a mobile telephone. There are two things
to note. First, the menu is hierarchically structured into a

Figure 9: WML-Browser showing the Message Board
”Main Menu” on a mobile telephone.

two level menu, with a main menu containing links to each
menu item, which are presented on their distinct screen. The
main menu is created during the relinking process of the
adaptation and is not present in the original dialog model.
The clustering process groups the newly created navigation
UI elements together, which results in the main menu. Sec-
ond, the service description, which is a lengthy text, is split
into a series of screens, which are linked with each other.
The user navigates with the ”Continue” and ”Back” links
from one screen containing part of the description to the next
screen. The size threshold of the homogeneity predicate for
this adaptation process is set to three device screen sizes.

Figure 10 shows the results for the device profile with the
size threshold set to two device screens. The adaptation pro-
cess has added another level of indirection. The main menu
has a hierarchical structure of depth three to cope with the
small screen size. The figure shows only part of the col-
lection of UI screens. It illustrates the different hierarchical
menu structure in comparison to Figure 9.

Figure 10: WML-Browser showing the Message Board
”Main Menu” on a mobile telephone with size threshold
of two device screens.

CONCLUDING REMARKS
The article has presented the MUSA project. It is a novel
approach to device independent authoring. Adaptation of a
dialog model represented by the EH graph in EGXML is
based on bottom-up clustering and top-down separation us-

7

ing low-level semantic context information. It results in a
hierarchical structure of dialoglets by clustering, separating,
and relinking regions and EH. The process is guided by low-
level semantic information that is provided by the designer
of the dialog model at design time. The adaptation process
remodels dynamically a presentation of the dialog model to
better fit it to the current device.

The presented experiments with the dialog model adaptation
technique are promising and show that the concept is sound.
The use of the hierarchy of graph has been proven flexible
and is a viable concept for future UI development.

In our future work, we will elaborate the adaptation algo-
rithm to include user specific settings such as window size
of the running application or user-preferred font size. We
conduct experiments with more complex dialog models. The
integration of task model related information into the dialog
model is somehow simple. Exploration of more powerful
but equally simple methods needs to be carried out. How-
ever, simplicity for the designer is an important objective to
encourage use of this design technique.

REFERENCES
1. M. Abrams, C. Phanouriou, A. Batongbacal,

S. Williams, and J. Shuster. UIML: An
Appliance-Independent XML User Interface Language.
WWW8 / Computer Networks, 31(11-16):1695–1708,
1999.

2. Mark Alpert. Machine Chic. Sci.Am, August 2002.

3. D. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: A
domain specific language for form-based services.
IEEE Transaction on Software Engineering,
25(3):334–346, 1999.

4. T. Ball, P. Danielson, L. Jagadeesan, R. Jagadeesan,
K. Laeufer, P. Mataga, and K. Rehor. Sisl: Several
Interfaces, Single Logic. ”International Journal of
Speech Technology”, 3:93–108, June 2000.

5. Christian Elting, Jan Zwickel, and Rainer Malaka.
Device-Dependant Modality Selection for User
Interfaces – An Emprical Study. In ACM IUI, San
Fransisco, California, USA, January 2002.

6. Mir Farooq and Marc Abrams. Simplifying
Construction of Multi-Platform User Interface Using
UIML. In UIML Europe Conference, ”March” 2001.

7. Sebastian Fischmeister. Mobile software agents for
location-based systems. In Agents and Software
Engineering, volume 2592 of LNCS, pages 226 – 239.
Springer Verlag Heidelberg, 2003.

8. M. Florins and J. Vanderdonckt. Graceful Degradation
of User Interfaces as a Design Method for
Multiplatform Systems. In Conference on Intelligent
User Interfaces (IUI04), pages 140 – 147, Funchal,
Portugal, 2004.

9. Futuremind. The Next Generation in Light and Sound
Technology Transforms your PC into the Ultimate
Mind Machine, 2002.

10. Glenn E. Krasner and Stephen T. Pope. A cookbook for
using the model-view-controller user interface
paradigm in smalltalk-80. Journal of Object-Oriented
Programming, 1(3):26–49, August/September 1988.

11. Aaron Marcus and Eugene Chen. Designing the PDA
of the Future. Interactions, 9(1):34–44, 2002.

12. Guido Menkhaus and Sebastian Fischmeister. Dialog
Model Clustering for User Interface Adaptation. In Web
Engineering, Proceedings of ICWE 03, pages 194 –
203. 2003.

13. Brad Myers. User Interface Software Tools. ACM
Transaction on Computer-Human Interaction,
2(1):64–103, March 1995.

14. Peter Nacken. Image Segmentation By Connectivity
Preserving Relinking in Hierarchical Graph Structures.
Pattern Recognition, 28(6):907–920, 1995.

15. Paulo Pinheiro da Silva. User Interface Declarative
Models and Development Environments: A Survey. In
Proceedings of DSV-IS2000, pages 207–226, Limerick,
Ireland, June 2000.

16. Nikhil R.Pal and Sankar K.Pal. A Review on Image
Segmentation Techniques. Pattern Recognition,
26(9):1277–1294, 1993.

17. Subhasis Saha, Mark Jamtgaard, and John Villasenor.
Bringing the Wireless Internet to Mobile Devices.
IEEE Computer, 34(6):54–58, 2001.

18. M. Satyanarayanan. Pervasive Computing: Vision and
Challenges. IEEE Persoanl Communications, pages
10–17, August 2001.

19. Ben Shneiderman. Direct Manipulation for
Comprehensible, Predictable and Controllable User
Interfaces. In Intelligent User Interfaces, pages 33–39,
1997.

20. P. Szekely. Retrospective and Challenges for
Model-Based Interface Development. In F. Bodart and
J. Vanderdonckt, editors, Design, Specification and
Verification of Interactive Systems ’96, pages 1–27,
Wien, 1996. Springer-Verlag.

21. W3C. Mobility Access Activity Statement, 2001.

22. C. Wong, H.H. Chu, and Katagiri M. A.
Single-Authoring Technique for Building
Device-Independent Presentations. In W3C Workshop
on Device Independent Authoring Techniques, 2002.

23. UIMS Tool Developers Workshop. A Metamodel for
the Runtime Architecture of an Interactive System.
SIGCHI Bulletin, 24(1):32–37, 1994.

24. Xybernaut. poma, 2002.

8

