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Abstract—Instrumentation is a valuable technique to gain
insight into a program’s behavior. Safety-critical real-time em-
bedded applications are time sensitive and so instrumentation
techniques for this domain must especially consider timing.

This work establishes the basis for measuring the effectiveness
of approaches for time-aware instrumentation in addition to
coverage. We define the ETP shift effectiveness metric and define
its optimality criterion. We identify locations in the program
where program transformation techniques can be applied to
increase the instrumentability of the program. We subsequently
use the proposed metric to evaluate two transformation methods
that improve the effectiveness and coverage of current techniques
for time-aware instrumentation by a factor of five.

I. INTRODUCTION

Tracing a program usually means extracting information
from the program while it runs. Depending on the method, this
extraction process generally causes perturbation in the applica-
tion. The perturbation originates from the instrumentation pro-
cess. Software instrumentation techniques [1], [2], [3] insert
tracing code into the original program code. Usually, the more
tracing code the program executes during the run, the more
the slow down and perturbation. The reason is that, in general,
the addition of more tracing code increases the number of
instructions the processor executes thus leading to a longer
execution time. Dynamic instrumentation approaches [4], [5]
modify the binary at runtime and thus cause highly non-
deterministic timing behavior. Hardware-supported tracing [6],
[7] use special hardware interfaces to stream data off chip.
Even this method can cause significant perturbation [8].

Safety-critical real-time applications must be correct and
meet timing requirements. Timing perturbations are thus par-
ticularly harmful for such applications. Therefore, prior work
investigates mechanisms to instrument programs without af-
fecting their timing constraints and functional behavior.

This work specifically investigates time-aware instrumenta-
tion [9]. This approach tries to preserve logical correctness as
well as meeting timing constraints. Often, this means instru-
menting only on non-worst-case paths of the program. While
a minor influence maybe be acceptable due to a specified
timing constraint for debugging, naive instrumentation will
usually violate such constraints. Time-aware instrumentation
attempts to honor the timing constraint and shifts the execution
time profile (ETP) closer to the programs deadline (without
exceeding the debugging constraint).

Case studies investigated in related work [9] demonstrate
the promise of the general concept but the results revealed
new problems. Figure 1 shows the execution time profile of a
case study reported in [9] on the OLPC keyboard controller.
The figure shows the success of time-aware instrumentation
in shifting the ETP of the instrumented program. While the

shift in the execution time profile is visible, it is lower than
expected. The expectation was a larger shift in the time profile
towards longer execution times. Further investigation revealed
that, in this example, about 25 percent of the paths share basic
blocks with the worst-case path. This means that large portions
of the program are unavailable for instrumentation, because
instrumenting them could affect the worst-case execution
time and thus violate existing timing constraints. Based on
this observation, we investigated program transformations to
increase the effectiveness of time-aware instrumentation for
such programs.
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Fig. 1: ETPs of the OLPC keyboard controller [9]

This also raises the question of how to measure the ef-
fectiveness of a time-aware instrumentation approach, so that
different approaches can be compared against each other. One
way is a visual inspection as seen in Figure 1. This involves
manual assessment and lacks accuracy. Another way is to
calculate the instrumentation coverage as the ratio of extracted
information to what is expected or desired. In this work, we
propose the ETP shift effectiveness as a more efficient metric
for time-aware instrumentation.

Finally, a central element for time-aware instrumentation is
to identify regions in the program which can be instrumented.
We propose an algorithm that identifies instrumentable edges
in a program’s control-flow. An instrumentable edge is one
that lends itself for time-aware instrumentation. Different
approaches can use these edges for program instrumentation.
We demonstrate the utility of this algorithm by introduc-
ing Branch Block Creation and CFG Cloning as two such
approaches to increase the effectiveness of time-aware in-
strumentation at the expense of code size. We measure the
performance of these transformation approaches using the
SNUbenchmark [10].

II. TIME-AWARE INSTRUMENTATION OVERVIEW

Time-aware instrumentation aims to instrument a program
while minimizing changes to the timing behavior on the worst-



case path. Since the execution time of the program differs
from one execution path to another, the idea is to instrument
programs only in locations on non-worst-case paths. In the
optimal case, this means zero added overhead to the program
on the worst-case path.

The work flow for time-aware instrumentation differs from
standard instrumentation in that it has extra steps to consider
timing. Figure 2 shows the work flow of our approach.
Initially, we analyze the program’s source code, establish
timing information, and generate its control-flow graph. The
instrumentation tool (such as in previous work [9]) analyzes
the program and considers timing information. The tool out-
puts an instrumentation configuration which the framework
uses to compute an expected instrumentation coverage for a
given set of variables. After running the tool, the developer
checks whether the achieved expected coverage is acceptable.
If the results are satisfactory, the developer will execute the
instrumented program. Otherwise, if the expected coverage is
insufficient, then the developer will have two means by which
to attempt increasing the coverage. First, the developer can
use our approaches to transform the program into a program
that is more suitable for instrumentation. Second, the developer
can change the debugging budget given to the instrumentation.
This increases the number of instrumentation points. If neither
of these two is successful, then the framework will report that
it is unable to instrument and meet the desired coverage.
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Fig. 2: Work flow for our tool chain.

The instrumentation process uses time differences between
execution paths and different basic blocks to ensure that
the instrumented program stays within the original program’s
time limits on the worst-case path. Sometimes, however,
due to processor anomalies, cache behavior, etc., the timing
might change. After each complete instrumentation attempt,
the framework will analyze the worst-case execution time
behavior to check if it exceeds the execution time of the
original worst-case path plus the debugging budget. If this
occurs, the framework will attempt a different instrumentation
configuration which reduces the coverage on non worst-case
paths to satisfy the timing requirements. This process will
be iteratively repeated until the program meets its timing
constraint.

III. MODEL AND TERMINOLOGY

Developers usually use instrumentation to trace information
of interest such as the state changes of variables. To, for
example, trace changes of a variable z, instrumentation must
be applied to all places in the program that modify the variable
z and add code to record its value. Time-aware instrumentation
will choose which ones to instrument based on the timing
constraints of the program.

The abstract model used to represent programs is similar to
the one presented by Fischmeister and Lam [9]. A program is a
directed graph G = (V| E) which captures the program’s inter-
procedural control flow. Each vertex v € V' in the program’s
control-flow graph (CFG) represents a basic block in the
program. A basic block is a unit of execution in the program
and has a single entry and exit point. £ C V x V is the set
of edges that represent the flow of control in the CFG.

A path p,,_ ,, of a CFG G describes a path from the source
vertex v, to the destination vy with a sequence of vertices
(Vsy Us41, -+, Us+n—2,Vq). The worst-case path (WCP) is the
path with the largest worst-case execution time (WCET) of
all paths. We use measurement-based analysis to obtain the
WCET and assume correct WCET measurements. The WCET
analysis itself falls outside of the scope of this work, but it is
in general technically feasible [11].

In addition to the differences between lower execution times
and the WCET, instrumentation can also make use of the
debugging time budget available to a program. A debugging
time budget « is usually a small percentage of the program’s
slack. The program’s slack is the time window between the
program’s deadline and WCET. For safety concerns, systems
are designed with a slack that is sufficient to act as a safety
assurance margin. The debugging budget o is a percentage
of the CPU resources dedicated to debugging and must be
accounted for in the schedulability analysis. Therefore, we can
utilize the debugging budget for instrumentation in the manner
described in Section II.

The instrumentation process might increase the WCET of
a program by an overhead o. Perturbations in the WCET
are acceptable as long as they are less than or equal to the
debugging budget «, specified by the developer. Depending on
the extent to which the system is loaded, the debugging budget
may permit programs to absorb small increases in the WCET,
and still ensure that the temporal deadlines are correct. So
for single-task applications without interrupts, we must ensure
that the overhead o is below the budget a. For instrumenting
concurrent applications, we must ensure the schedulability of
the whole workload after adding all overheads to the WCETs
of the instrumented program functions. The specific way to
distribute the available debugging budget among the tasks is up
to the developer. However, a naive way to distribute the budget
would be to assign weights to tasks (for instance following the
tasks importance) and distribute the budget according to these
weights.

IV. THE ETP SHIFT EFFECTIVENESS METRIC

Related work [9] used a coverage (also named reliability)
criterion as a metric for the quality of instrumentation. The



instrumentation coverage of an instrumented program is the
ratio of the amount of information extracted at run time to the
desired amount. So, for example, when the developer wants to
trace 100 variable assignments and the instrumentation only
yields 30 assignments, then the instrumentation coverage will
be 0.3.

This metric fails to capture the potential for extracting
information at an abstract level, because it only compares
concrete solutions. For example, to compare two instrumen-
tation techniques using instrumentation coverage, this metric
measures the values for the different techniques for a particular
execution of the program. Instead, a more useful metric
can capture the quality of the different techniques over a
wide range of inputs and, therefore, for different program
executions. This metric should potentially estimate how much
coverage each instrumentation technique achieves per unit
time.

This work presents a new metric for time-aware instru-
mentation. The metric complements the previously explored
coverage metric. The ETP shift effectiveness captures the
potential for instrumentation and thus defines the optimal
bound on time-aware instrumentation for any function based
on its ETP. Figure 3a shows such ETPs for a fictive function.
Values on the x-axis show the different execution times of
the program and the y-axis shows the frequency at which the
execution time occurs when executing this function.

Time-aware instrumentation bases on the idea of a “right
shift” in the ETP during instrumentation. Figure 1 shows this
right shift. The ETP of the instrumented program exhibits a
right shift from the original program’s ETP. The reason is
that instrumentation utilizes paths with lower execution times
(compared to the WCET). Instrumenting these paths increases
their execution times and thus shifts the ETP to the right.

The ETP shift effectiveness uses this observation to quantify
the theoretic optimum for time-aware instrumentation. The
insight is that any software-based instrumentation inserts code
in the programs and thus shifts the ETP. For a certain coverage,
the less the shift in the ETP, the more effectively the method
has used the slack (disregarding any execution time anomalies
that might exist). This metric uses coverage/time as its basis
with a double integral over time.

Figure 3 illustrates the ETP shift effectiveness. Figure 3a
shows the ETPs of the original and different instrumented
programs. Figure 3b shows the frequency distribution of
the coverage over the execution time. Figure 3c shows the
cumulative distribution function for Figure 3b. The more the
shift in the ETP of the instrumented program, the further
its cumulative distribution from that of the uninstrumented
program.

Optimally an instrumentation technique would obtain full
coverage without any shift to the program’s ETP. The figures
then show that as the effectiveness of the instrumentation
increases, the cumulative distribution of the ETP gets closer
to the optimum, i.e., to that of the uninstrumented program.
Integrating the cumulative distribution curves once more ob-
tains the effectiveness of the instrumentation. The smaller the
value (and closer to that of the uninstrumented program), the

¢

more effective the instrumentation is.

The ETP shift effectiveness captures the achieved coverage
per unit time of the instrumentation technique. So it is a
measure of how successful an instrumentation technique is
in consuming slack in the program (between lower execution
times of non-worst-case paths and the WCET) for the sake of
tracing a certain amount of information. For example, assume
two instrumentation methods applied to the same program
result in the same coverage but different ETP shift effectiveness
values. The one with a lower value means a more efficient
utilization of time to extract the same information.

V. EDGE DETECTION FOR PROGRAM TRANSFORMATION

In a program’s CFG, uninstrumentable non-WCP edges are
ones that lie on non-WCPs and connect to basic blocks of the
WCP. They are uninstrumentable because instrumenting any of
the basic blocks to which they connect changes the WCET of
the program. These uninstrumentable non-WCP edges limit
the ETP shift effectiveness and are the basic elements used
by methods that increase the coverage and the ETP shift
effectiveness. Figure 4a shows a sample CFG with five basic
blocks A,B,C,D and E. Assuming that (4, B,C, D, FE)
is the WCP, then the uninstrumentable non-WCP edge set
includes (A,C) and (C, E), because these edges, although
being non worst-case edges, they share all their basic blocks
with the WCP.

We propose an algorithm to identify such edges as the
basic building block for improving time-aware instrumenta-
tion. Function 1 shows this algorithm. The algorithm takes
as input the CFG G(V, E) and the WCP p,_ ,,, of the CFG,
and it returns the set of edges of interest. The helper function
children : v — V1 returns the set of direct successor vertices
of a vertex v. The queue operations enqueue and dequeue
enqueue and dequeue an element from a queue, respectively.

This algorithm finds non-WCP edges that have subpaths of
the WCP connecting their head and tail vertices. In Function 1,
lines 5-6 iterate through all edges of the directed CFG G that
have both vertices on the WCP p,, ,,. For each edge e, line
7 queues the direct successors of the head vertex of the edge
in the queue @ except for the tail of the edge e and line 8
marks the vertex as visited. Then, line 9 iterates on all vertices
in the queue @. Line 10 dequeues a vertex v from () and
lines 11-12 expand the direct successors of v and mark it as
visited. Line 13 checks each of the direct successors of v, if the
direct successor is the tail of the edge e, then line 14 will add
edge e to set B. Otherwise, line 17 would enqueue the direct
successor in @, if it were not visited before. This algorithm
is polynomial in time with respect to the number of vertices.

VI. BRANCH BLOCK CREATION

Branch Block Creation is a program transformation tech-
nique that uses the edge detection mechanism described in
Section V. Branch Block Creation creates locations in the
program for instrumentation. This increases the number of
instrumentable basic blocks in the program.
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Fig. 3: Illustrative example of the ETP shift effectiveness

Function 1 Edge Identification

Input: CFG G, po, v,
Output: G
1: Let S be the set of visited vertices
2: Let B < () be the set of edges for creating basic blocks
3: Let Q) be an empty queue
4:

5: for e = (vq,vp) € E do

6:  if vy € Py, and vy € Pu, v, then
7 Q <= children(va) \ vp

8

: S < {va}
9: while Q # 0 do
10: Vg < dequeue(Q)
11: S <= SU{v.}
12: for v € children(v,) do
13: if v = v, then
14: B < BU{e}
15: break while loop
16: else if v € S then
17: enqueue(Q,v)
18: end if
19: end for
20: end while
21:  end if
22: end for
23: return B

A. Overview

Figure 4 illustrates how Branch Block Creation transforms
programs to increase the ETP shift effectiveness in time-aware
instrumentation. Figure 4a shows a sample CFG with five
basic blocks A, B, C, D, E. Assuming that (A, B,C, D, E) is
the WCP, (A,C, E), (A,C, D, E), and (A, B,C, E) are non-
WCPs that cannot be instrumented because they share all their
basic blocks with the WCP. Applying Branch Block Creation
modifies the CFG as shown in Figure 4b. We create two new
basic blocks F' and G on edges (A4,C) and (C, E) (detected
by Function 1), respectively. This creates new non-WCPs with
basic blocks F' and G that can be used for instrumentation
given that the execution time of these paths stays less than or
equal to that of the WCP (A, B,C, D, E).

The Branch Block Creation algorithm may modify the pro-
gram’s WCP, depending on the target architecture and com-
piler. After instrumentation, the end of basic block B (which
used to be a fall-through block) now contains a new uncon-
ditional branch instruction to jump past the code at F'. This
instruction did not exist in the original program. Therefore,

the creation of basic block F' results in an overhead of one
unconditional branch instruction on the WCP (A, B,C, D, E)
(same happens due to G). Note that the location of the
unconditional branch instruction, whether in the if or the else
block, is architecture specific. If the instruction is in the if
block then it will modify the WCP; otherwise it will not.
Note also that even if the compiler adds the instruction to
the if block, inverting the condition will move the instruction
to the non-WCP (the instrumentation block) leading to an
unmodified WCP. Therefore, modifying the WCP is avoid-
able. But since the avoidance is either architecture specific
or requires code modification, this work assumes that the
Branch Block Creation modifies the WCP.

B. Algorithm

The algorithm for Branch Block Creation iterates on the
set of edges obtained as output from Function 1 and creates
basic blocks on these edges. We use these created basic
blocks for instrumentation either by instrumenting every basic
block for modified variables or through the minimization of
instrumentation points [9].

Branch Block Creation may add overhead on the WCP
and this overhead must stay below the program’s slack o
(assuming no changes to avoid adding instructions on the
WCP). This may lead to an increase in the WCET of the
program. Thus, We want to choose only a subset of the
basic blocks to create such that the overhead o is within the
given budget « for instrumentation. Equation 1 describes this
optimization problem:

n
Max Z b; * (vars; * frequency;)
i=1

subject to Z b; * (overhead; x frequency;) < o
i=1
where b; € {0,1} fori =1,2,...,n. (1

vars; is the number of traced variables at the created basic
block ¢, frequency, is the number of times the basic block
i executes (determined by the WCET analysis tool), and
overhead,; is the overhead on the WCP caused by creating the
basic block 7. n is the total number of created basic blocks
from Function 1, and b; is the binary variable.

Solving the problem of finding a subset of the basic
blocks to create is NP-Complete. We can show this by first



polynomially reducing the binary knapsack problem to this
problem, thus proving that its NP-Hard, and then showing
that the problem lies in NP (the reduction is omitted for
space constraints). We solve the problem using binary integer
programming (BIP).

The set of basic blocks to be created on the edges returned
from Function 1 is given as input to this optimization problem.
The output is the set of basic blocks to actually create and use
for instrumentation. We use this subset of created basic blocks
for instrumentation to satisfy the program’s budget a.

VII. CFG CLONING

In this section, we propose CFG Cloning as another trans-
formation technique that uses the edge detection algorithm
outlined in Section V. CFG Cloning facilitates instrumenta-
tion on non-WCPs that share basic blocks with the WCP.
CFG Cloning does not add instructions to the WCP and offers
more instrumentation flexibility at the expense of code size.

A. Overview

We illustrate the concept of CFG Cloning using the example
CFG in Figure 4a. Again, we assume that (A, B,C, D, E) is
the WCP. Although the CFG contains three other non-WCPs,
we cannot instrument them, because they share all their basic
blocks with the WCP.

CFG Cloning duplicates whole subgraphs of the CFG to
permit instrumenting them. Figure 4c shows the CFG after
we do CFG Cloning. First, for the edge (A, C), which does
not fall on the WCP, we duplicate the basic block C' and its
subgraph. Edge (C, E) as well does not belong to the WCP
and so we duplicate basic block FE. It is worth noting that the
edge (C, E) has been duplicated before (in the subgraph of C),
and, therefore, we duplicate it twice, once for each occurrence.
We choose to duplicate cloned occurrences because they
represent different execution paths in the program and, hence,
increase the number of locations at which instrumentation can
be inserted. Now, each of the three non-WCPs that used to
share basic blocks with the WCP, have their own paths with
some unshared basic blocks.
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Fig. 4: Example of program transformation

B. Algorithm

The algorithm for CFG Cloning iterates on the set of
edges obtained as output from Function 1 and copies the tail

basic blocks of these edges along with their subgraphs. The
algorithm removes each of these edges and creates new edges
from the head basic blocks to the copied subgraphs. This
algorithm is polynomial in time with respect to the number
of vertices in the CFG G.

One drawback of CFG Cloning is the potentially large
increase in code size. In general, this increase is exponential,
and Figure 4c already indicates this. This is because when a
basic block is duplicated all its subgraph is duplicated as well.
Moreover, we duplicate basic blocks as well as any copies of
them that are created from the duplication of any ancestor
basic block. Although we limit the CFG Cloning to the scope
of functions and loops, the exponential duplication can still
cause problems.

Given that there is a certain limit on the increase in code
size, we want to choose only a subset of the basic blocks
that the algorithm duplicates which maximizes the amount of
traced information. We model this problem as a non-linear
programming problem as shown in Equation 2.

n
Max E b; * vars; * frequency;,
i=1

subject to Z b; * code; < code gy
i=1
b = [ bj where b; € {0,1} fori=1,2,...,n (2)
JES;

Here, b; is a binary variable designating a duplicated basic
block i, S; is the set of duplicated basic blocks upon which
the existence of basic block ¢ depends, vars; is the set of traced
variables at basic block i, frequency; is the number of times
basic block 7 executes, and code; is the amount of code added
by duplicating basic block i. n is the total number of basic
blocks available for duplication. For example, for the CFG
in Figure 4c, we have three possible duplications C’, E’, and
E" (from E"). The code added by C’ equals the total size
of basic blocks C, D, E, while the code added by E’, B’ is
equal to the size of basic block E only. The existence of E'’
would be valid only if C” was chosen for duplication.

After obtaining the new CFG G’ from the CFG Cloning
algorithm, the duplicated basic blocks are passed as input to
the optimization problem in Equation 2. The output is only
a subset of all duplicate basic blocks. The set of duplicate
blocks that have not been selected will be removed from the
CFG G’ and their subgraphs. The edges that were removed
for creating these vertices will have to be reconstructed. This
can easily be done because the edges are already stored in the
set B in Function 1.

VIII. EXPERIMENTATION

We explore the two transformation methods in practice us-
ing the SNU real-time benchmark suite [10]. This benchmark
suite contains 17 C programs that implement numeric and DSP
algorithms. The benchmarks have on average 117 lines of code
and 34 basic blocks. We extended the benchmarks with a wide
range of inputs to generate reasonable ETPs.



We apply the program transformation techniques to all
benchmarks before instrumenting them. For the actual instru-
mentation, we use the technique proposed by Fischmeister et
al. [9]. We compare the instrumentation of the transformed
benchmarks against the instrumentation without transforma-
tion. Note that the transformation and instrumentation process
is fully automated. We use CIL [12] for static code analysis
and control flow graph extraction.

All experiments were run on a Keil MCB1700 board
running a 100 MHz ARM Cortex-M3 processor-based MCU.
Trace data from each benchmark was logged in a buffer and
sent off-chip to a PC monitor for analysis. Note that a task
sends data off chip at the end of a super loop as in a cyclic
executive system. We use RapiTime [13] to analyze the WCET
of the programs. We trace all variable assignments except for
function arguments, constants, and loop counters. We set a
debugging budget « for each program that is 2% of its WCET.

The goal of experimentation is to quantitatively assess the
transformation techniques using the following metrics:

o ETP shift effectiveness: This metric indicates the extent
by which an instrumentation method utilizes time for
instrumentation coverage.

o Average instrumentation coverage: Instrumentation
coverage shows the effectiveness of an instrumentation
method in capturing variable assignments. For each
benchmark, we calculate the coverage for every input and
compute the average across all inputs.

o Instrumentation time: This metric shows the time the
tool spends in parsing the code, instrumentation, opti-
mizing for debugging budget «, and any retries required.
The instrumentation tool will retry the instrumentation
with reduced overhead, if the WCET overhead after
instrumentation exceeds the debugging budget a.

« Increase in code size: Every instrumentation point adds
extra code to the program. The less the increase in code
size, the more effective the instrumentation approach is
in utilizing code space for instrumentation.

o Number of retries: It shows how often the instrumen-
tation tool reduces the instrumentation coverage due to
exceeding the debugging budget . A small number of
retries is essential for the applicability of the approach.

A. Results

Figure 6 shows the average instrumentation coverage for
the different instrumentation approaches. The error bars show
the maximum and minimum coverage over all executions of
each benchmark. For the benchmarks: fft/k, fibcall, insertsort,
Jfdctint, and matmul, none of the instrumentation approaches
was able to extract any information. This happens, because
either the program has a single path which is the WCP and
cannot be instrumented, or it has multiple paths but adding
any instrumentation code modifies the program’s WCP.

Table I shows the results for the ETP shift effectiveness,
instrumentation time, increase in code size, and number of re-
tries for each of the instrumentation approaches. The values of
the ETP shift effectiveness are normalized to those of previous
work instrumentation. We omit the data of the five benchmarks

for which none of the instrumentation approaches was able
to extract any traces. The instrumentation for all benchmarks
is limited by a 2% debugging budget «, and if exceeded,
the instrumentation tool will repeat the instrumentation while
reducing coverage. The benchmarks gsort-exam and select
show the increase in code size when using CFG Cloning.
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Fig. 5: Execution time profiles for gsort-exam

Figure 5 illustrates the benefit of the proposed instrumenta-
tion approaches. The vertical line represents the WCET plus
a 2% debugging budget «v. The figure shows the original ETP
of the gsort-exam benchmark. It also shows the shifted ETPs
with four different instrumentation approaches; previous work,
Branch Block Creation, CFG Cloning, and naive instrumen-
tation. The time-aware instrumentation techniques shift the
original within the debugging budget a. Naive instrumentation
instruments for variables of interest without taking timing into
account. Although, the instrumented program achieves full
coverage, its ETP fails to obey the timing requirement.

B. Discussion

In 11 out of 12 instrumentable benchmarks,
Branch Block Creation and CFG Cloning always increase
the instrumentation coverage. For the benchmark bs, all
instrumentation methods perform alike. In many cases, both
transformation techniques perform equally well, in terms of
coverage, except for select in which CFG Cloning performs
better. The reason is that Branch Block Creation has less
basic blocks to instrument on the execution path, whereas
CFG Cloning clones basic blocks along with their subgraphs
thus more instrumentable basic blocks. Hence, using
CFG Cloning adds more flexibility to the instrumentation
process leading to an increase in the instrumentation coverage
for some executions of the programs.

ETP shift effectiveness is effective in identifying efficient
instrumentation methods. The better the utilization of slack
on the non-WCPs for the obtained coverage, we get a smaller
value of ETP shift effectiveness. For the adpcm-test bench-
mark, for example, Branch Block Creation and CFG Cloning
increase the coverage from 0.003 to 0.03 compared to previous
work. Their ETP shift effectiveness, however, is almost 10
times that of previous work. In such case, it is up to the
developer to decide whether such a shift in the program’s ETP
is acceptable for the corresponding increase in coverage. In
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some cases, the coverage obtained by Branch Block Creation
and CFG Cloning are equal but the values obtained from ETP
shift effectiveness do not match such as for benchmark gsor-
exam. The reason is that although both essentially extract the
same amount of information, the CFG Cloning utilizes less
slack for instrumentation. ETP shift effectiveness is thus useful
for choosing an instrumentation metric over the other if, for
example, their coverage match.

The instrumentation time of the benchmarks is acceptable
and has a maximum of 420 mS. As a test for scalability,
we concatenated all benchmarks into one C file of about
3200 lines of code. The instrumentation time was 653 mS.
In most cases, the first instrumentation attempt was successful
in honoring the debugging budget «.. The tool had to adjust the
instrumentation in some cases with a maximum of 4 retries.

Out of 17 benchmarks, 5 are not instrumentable even after
transformation. Two benchmarks are instrumentable only af-
ter transformation. Branch Block Creation and CFG Cloning
increase the instrumentation coverage, on average over all
benchmarks, compared to previous work by 5.8 and 5.9 times,
respectively. CFG Cloning increases the program code size
considerably but gives more flexibility to instrumentation and
has a better utilization of slack in most of the cases. The ETP
shift effectiveness is an indicator of the effectiveness of the
instrumentation approaches.

I1X. DISCUSSION

This section focuses on some high-level issues regarding
the applicability of the results and the proposed techniques.

Code size and memory profile: The program transforma-
tion techniques proposed in this work can modify the block
layout of the program especially the CFG Cloning. Modifying
the layout can change memory and cache profiles, which in
turn may change the WCET of the program. After each com-
plete transformation attempt, the framework analyzes WCET
measurements to check for such changes. If this happens
and the budget o disallows the change, the framework will
attempt a different transformation configuration. For example,
the framework will reduce the number of cloned or inserted
blocks. This process repeats until the requirements are met.

Scope and traceability: Although the examples and ex-
perimentation in this work focus on tracing data variables,
time-aware instrumentation can similarly trace function calls,
or control flow. The main goal of time-aware instrumentation

is information extraction without affecting a program’s worst-
case timing constraint. This limits the amount of extracted
information due to instrumenting only subsets of the basic
blocks and avoiding instrumentation of the WCP. Partial traces,
however, are useful for program understanding, performance
analysis, and optimizations [14], [15].

Multiple WCPs: In our analysis, we ignored the exceed-
ingly rare case of multiple WCPs in a program. This case never
occurred in the experiments. However, addressing multiple
WCPs is an easy task. Our instrumentation tool would simply
avoid instrumenting any WCP. The algorithm for finding
instrumentable edges will then take multiple WCPs as an input.

WCET analysis tools: In our experimentation, we used
RapiTime [13] to obtain the WCET of the basic blocks.
RapiTime is a measurement-based WCET analysis tool and
thus might underestimate the actual WCET. The WCET,
however, is only an input to the instrumentation tool and
thus the validity of the proposed concept is independent of
the accuracy of the analysis tool. The choice of RapiTime as
a WCET analysis was due to the availability of the tool in
our labs, past experience using it, and independence of the
architecture on which the software executes. It is also the de
facto industrial standard applied in fields like aerospace and
automotives. We can obviously replace RapiTime with a static
analysis tool such aiT [16] to obtain WCETS, but this is also
known to be costly for modern architectures.

Optimization criteria: In Sections VI and VII, the algo-
rithms only focus on optimizing for the budget o and code
size, respectively. The value of a basic block considers only
the number of traced variables and the frequency of executing
the basic block. Other criteria can be considered such as the
usefulness of the traced variables from a tracing perspective
that allows for choosing more optimal basic blocks.

X. RELATED WORK

Some instrumentation tools are capable of inserting instru-
mentation points to binary executables. Binary static instru-
mentation tools include Etch [17] the program performance
evaluation and optimization system, Morph [18], QPT [19],
EEL, and ATOM. Examples of dynamic instrumentation tools
that do code transformation during program execution are
Pin [4] and DynamoRIO [5]. Other examples of dynamic
binary instrumentation also include DTrace, SystemTAP, Frysk
and GDB. These tools overwrite code locations with trap



TABLE I: The ETP shift effectiveness, the overhead on the WCP, and the increase in code size for different approaches

ETP shift effectiveness Instrumentation Time [mS] Increase in code size [bytes] Retries
Benchmark Previous| Creation| Cloning || Previous| Creation| Cloning || Previous| Creation| Cloning || Previous| Creation| Cloning
adpcm-test 1 10.191 9.968 167 177 420 8 84 468 0 0 4
bs 1 1 1 30 38 48 16 16 16 1 1 1
crc 1 0.989 1.869 32 44 61 20 28 608 1 1 1
fftl 1 1 1.009 57 69 79 28 44 88 0 0 0
fir 1 9.813 9.813 108 91 91 36 48 52 1 0 0
Ims 1 8.933 8.933 59 66 70 32 40 44 0 0 0
ludemp 1 0.0039 0.0039 62 67 70 0 20 108 0 0 0
minver 1 8.146 7.643 100 104 109 24 144 512 0 0 0
gsort-exam 1 0.043 0.023 55 63 104 31 40 1628 0 0 2
qurt 1 0.915 0.915 32 41 51 24 32 36 0 0 0
select 1 6.120 3.995 69 101 135 20 144 2,000 0 1 3
sqrt 1 0.889 0.889 29 33 35 24 32 36 0 0 0

instructions to execute instrumentation code.

Mellor-Crummey et al. propose a software instruction
counter [1] to debug parallel programs using the integrated
approach to parallel program debugging on large-scale shared-
memory multiprocessors introduced by Fowler et al. [20].
Thane [3] and Dodd et al. [2] present integrated approaches
for monitoring and debugging of real-time systems. Moore et
al. [6] and Omre [7] introduce hardware trace debuggers.

All these instrumentation methods are known to affect
the behavior of the program including its temporal behavior
which is sometimes not acceptable in real-time embedded
systems. One method for preserving timing constraints is
partial instrumentation [14], [15]. Another method is doing
time-aware instrumentation to only instrument at locations that
do not affect the timing behavior of the program [9].

XI. CONCLUSION

Instrumentation for information extraction supports under-
standing specific aspects and behavior of the software at run
time. Time-aware instrumentation tries to preserve logical
correctness and timing constraints during instrumentation.

This work introduces the ETP shift effectiveness as a new
metric for measuring the performance of time-aware instru-
mentation techniques. We discuss two approaches using the
metric and measure their effectiveness. While the two ap-
proaches are straightforward, they and the new metric lay the
foundation for future work for more complicated approaches
as well as for instrumentation mechanisms going beyond
timing and logical correctness.
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