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Abstract

A real-time communication medium must provide a special coordination
mechanism to guarantee bounded communication delays. Implementing this
mechanism in software offers flexibility but reduces reliability and perfor-
mance. On the other hand, customized hardware solutions deliver high
throughput and predictability, but they increase the implementation cost and
are unable to adapt to the specific needs of individual applications.

In this work, we introduce a switch that implements a programmable
dedicated time-triggered packet switching mechanism on top of Ethernet.
The switch, called the Network Code Switch bases on the NetFPGA system
and executes flexible but verifiable state-based schedules encoded in the
Network Code programming language. This permits the user to tailor the
communication behavior to the needs of the distributed application with
verifiable performance.

We discuss our experience starting at the designing to the implementation
of the prototype, and describe how we exploited modularity and code
reutilization to reduce the implementation costs and increase the flexibility
of the architecture. We also validate our design by evaluating the overhead
and throughput of the implemented prototype.

1. Introduction

Distributed real-time applications require an interconnect
network that provides delay guarantees for communication
among co-operative tasks running on multiple nodes. Nowa-
days, Ethernet is the most popular wired Local Area Network
(LAN) technology, thus it is natural to consider using the
existing Ethernet infrastructure for real-time communication.
However, the non-deterministic behavior of the Ethernet pro-
tocol (e.g., retransmissions caused for the collision detection
mechanism and/or dropped packets and Nagle’s algorithm [1])
prevent it from providing hard bounds to communication
delays. Therefore, Ethernet nodes require a different arbitration
mechanisms to coordinate access to the medium and provide
a higher degree of predictability.

These mechanisms are usually implemented in software as a
higher-level communication layer running on top of a standard
Ethernet card [2]–[4]. However, previous work showed that
executing this software layer requires expensive computational
resources [5] and generates high jitter in the communication
delays [6], limiting its applicability to soft real-time systems
with reduced throughput requirements and relaxed timing
constraints.

In a recent work [6], we addressed this limitation by
introducing the Network Code Processor (NCP), which is
an Application-Specific Instruction Set Processor (ASIP) that

coordinates access to the shared medium by executing Time-
Division Multiple Access (TDMA) based schedules on each
node. Using Field Programmable Gate Array (FPGA) devices,
the implemented system exploits hardware parallelism and
the deterministic behavior of customized devices to provide
a throughput close to the line rate of a 100Mbps Ethernet
network with high predictability of communication delays [7].
This paves the way for using the system on industrial applica-
tions with hard-real time requirements. However the previous
solution required a special hardware device for each node
connected to the network, we will now try to alleviate by
creating a special network switch that contains all the hardware
for the network in a central place.

In this work, we present the concepts and work for a
scalable architecture that interconnects multiple instances of
the NCP running concurrently on a single FPGA fabric. By
using programmable TDMA schedules to coordinate passing
data between the core instances, the system provides a ded-
icated hard real-time switching service on top of Ethernet.
Using this architecture, we implemented a functional prototype
on the state-of-the-art NetFPGA platform [8] and accessible
for download1. The resulting system delivers a switching
throughput that exceeds 200Mbps, and it offers remarkable
advantages like full integration with any standard workstation,
allowing us to exploit all the performance and predictability
benefits related to the use of customized hardware, at the same
time of providing familiar interfaces that simplify the task of
debugging and reconfiguring the system to target application.

Besides the interesting technical aspects, we also docu-
mented some of the experiences gathered through the process
of designing the multi-core architecture from the existing
single-core prototype. We describe how we exploited code
reutilization and modularity to reduce considerably the im-
plementation costs, and simplify the task of customizing and
scaling the hardware design to fit any specific requirement.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews the basic concepts of the Network Code
framework. Section 3 presents the definitions for the multi-
core architecture. We describe the practical implementation
over the NetFPGA platform in Section 4, and report related
measurements in Section 5. Section 6 summarizes some

1. http://netfpga.org/foswiki/bin/view/NetFPGA/OneGig/RealTimeSwitch



Fig. 1. Overview of the Network Code Framework

lessons learned during the implementation process, and finally
the paper ends with the conclusions in Section 7.

2. The Network Code Framework

The Network Code framework enables implementing real-
time communication systems for distributed applications. Its
main components include: (1) a domain-specific language to
represent state-based TDMA schedules, (2) a compiler with a
verification engine that translates the programs into checked
executable schedules, and (3) the interpreter entity that ex-
ecutes the schedule. We have extensively described these
elements in previous works [6], [7] and now summarize the
key elements related to the Network Code system definition,
the programming language, and the hardware implementation
of the interpreter, which is the main focus of this work.

2.1. System Overview

The Network Code framework consists of a layered archi-
tecture that separates the computation task from the communi-
cation system. Figure 1 provides an overview of the system [6].
The computation tasks reside on top and they access the
medium through the services provided by the programmable
communication layer.

Tasks produce and consume predictable or hard values, and
non-predictable or soft values. The system guarantees delivery
of hard values within well-defined time bounds, and they are
useful for communicating time-critical computation results. On
the other hand, the system transmits soft values on a best-effort
basis without delay guarantees. Soft values have limited use
for time-critical data, but they are still valuable for transmitting
QoS-based services such as background communication or
status information. In this paper, we focus on describing
the system implementation for hard values and guaranteed
traffic. For further details about the soft values and its system
implementation, we redirect the interest reader to [6].

The computation and communication layers are two inde-
pendent entities that interact in a time-triggered fashion. The

layers exchange data by reading and writing into predefined
data buffers at specific times. The data flow for guaranteed
traffic works as follows: the task writes a computed value into
a specific buffer. The Network Code schedule specifies the
precise times for moving this value from the buffer to the hard
queue and transmitting it on the medium. The communication
layer is ignorant of the underlying physical medium and
communicates with the Physical Transceiver (PHY) using
queues. The receiver node knows that the medium will carry
a data packet at a specific time, and its schedule is ready to
receive the packet and store its contents into a specific data
buffer. The task on the receiver node then reads this buffer
and processes the received data.

To use guaranteed traffic, all the nodes must synchronize
their local clocks to a global clock. We achieve this by
synchronizing all nodes with a start of cycle packet; however,
more sophisticated methods are also viable [9]. Furthermore,
all nodes must share their buffer data structures. In previous
work, we showed that as long as the traffic follows a well-
defined temporal pattern, we can apply static verification [7]
and analysis [10] to compute hard bounds for the communica-
tion delays, evaluate system correctness, and detect potential
problems before than they occur in the final implementation.

A unique feature of Network Code is that it implements
state-based schedules, meaning that a schedule can branch
within a communication round based on history information,
signals, and counters. For example, depending on the previ-
ously computed data and required precision, a node might
sometimes require communicating two slots within one round
instead of just one slot. A state-based schedule can express this
with a decision point after the first slot and will continue either
with the second slot for the node or with some other slots. This
requires either reliable communication medium achievable
through dedicated hardware [11] or special mechanisms in the
schedule for preventing and handling faulty decisions.

2.2. Network Code Language

In the following paragraphs, we briefly describe the basic
instruction set necessary to implement state-based schedules.
For simplicity, we intentionally omit some parameters and the
semantic formalities described in [12].

The create() instruction creates a message from data stored
in a named data buffer. The send() instruction encapsulates
a message into a network packet and signals the physical
layer to start transmitting. The receive() instruction stores the
data of an incoming packet into a data buffer. The branch()
instruction implements conditional jumps based on buffer
values, counters, or other status information. The sync() in-
struction signals a new communication round and synchronizes
all nodes to the round. The instructions future() and halt()
implement temporal control using timers that resume execution
at particular program labels at specified points in time.

Figure 2 shows program examples that provide bounded
communication delays to four nodes connected through a
shared medium. Figures 2(a) and 2(b) are nodes sending hard



values. Figures 2(d) and 2(e) are nodes receiving hard values.
For simplicity of the example, we assume that all the nodes
start simultaneously at time 0 and there is no clock skew. We
also assume that 5 time units are sufficient time to create and
propagate a message through the medium.

1 L0 : c r e a t e (msga , A )
send ( 1 , msga )

3 f u t u r e ( 2 0 , L0 )
h a l t ( )

(a) Sender 1 (snd1)

f u t u r e ( 1 0 , L0 )
2 h a l t ( )
L0 : c r e a t e (msgb , B )

4 send ( 2 , msgb )
f u t u r e ( 2 0 , L0 )

6 h a l t ( )

(b) Sender 2 (snd2)

t
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(c) Visual schedule.

f u t u r e ( 5 , L0 )
2 h a l t ( )
L0 : r e c e i v e ( 1 , A )

4 f u t u r e ( 2 0 , L0 )
h a l t ( )

(d) Receiver 1 (rcv1)

1 f u t u r e ( 1 5 , L0 )
h a l t ( )

3 L0 : r e c e i v e ( 2 , B )
f u t u r e ( 2 0 , L0 )

5 h a l t ( )

(e) Receiver 2 (rcv2)

Fig. 2. Network Code schedules for guaranteed traffic.

At time 0, snd1 creates a message from variable A using the
alias msga, sends it using the logical channel 1 (all channels
are mapped to the same communication medium), and then
set an alarm in 20 time units to continue at label L0. All the
other nodes stay on a waiting state. Node rcv1 is waiting for
msga, and then at time 5 leaves its waiting state, receives the
message from channel 1, and stores the data into the local
variable A. The schedules on snd2 and rcv2 follows a similar
behavior, but with a delay of 10 time units in relation to the
other nodes. At time 20 the operation starts again, and this
behavior continues endlessly as the system runs.

2.3. Single-Core Network Code Processor

Figure 3 shows a block scheme of the Single-Core Network
Code Processor (SC-NCP), the hardware ASIP that executes
the programmed schedules. The system has three main com-
ponents: the memory space, the Network Code Core (NCC),
and the Ethernet core.

The memory space consists of three blocks. The Program
ROM stores the programmed schedule. The Msg-config block
defines the data buffers through an initial address and length
that are mapped to locations on the Msg-data, which holds the
actual data and serves as the interface between the computation
task and the communication layer.

The NCC block executes the programmed schedule using
a super-scalar architecture. Hardware units independently ex-
ecute Network Code instructions. The controller reads the
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Fig. 3. Block diagram of the Single-core NCP.

instructions from the Program ROM, and processes them using
a MIPS-like fetch-decode-execute approach [13]. The con-
troller exploits hardware parallelism by calculating dependen-
cies between consecutive instructions, triggering concurrent
execution whenever it is possible [6].

Finally, the Ethernet core provides the interface to the
physical layer. It uses an Ethernet MAC to process network
packets, and interfaces the NCC using FIFO buffers.

The data flow for transmission of a given variable A works
as follows: the create() block copy the data from buffer A to
the internal send buffer. The send() block encapsulates the data
into a Ethernet frame, stores it in the MAC output FIFO, and
signals the MAC to start transmission. The created frames use
a special identifier for the EthType field, and in addition to the
actual data, the payload also includes information such as the
length of the transmitted variable and the channel identifier.
Finally, the MAC adds the headers and checksum, and put the
packet into the communication medium.

On the receiver side, the MAC automatically detects incom-
ing packets and triggers the asynchronous autoreceive() block.
This block performs a deep packet inspection to verify the
frame and store the useful data in the corresponding receive
buffer (there is one buffer per channel). The receive() block
can then read the data from the specified buffer and store
it on the Msg-data location corresponding to variable A. If
the controller does not execute a receive() instruction, the
automatically received data stays in the buffer until being
replaced by another packet arriving from the same channel.

3. Going Multi-core

We now introduce the Network Code Switch (NCS) model.
The proposed system expands the superscalar architecture of
the Network Code Processor to a multi-core device that con-
nects multiple instances of the SC-NCP running concurrently
in a single chip, offering a Network Code-based real-time
packet switching service to external Ethernet nodes.
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Fig. 4. Overview of the multi-core architecture

3.1. The Network Code Switch Model

Figure 4 shows a block diagram of the proposed multi-core
system. The system contains multiple instances of the Multi-
Core Network Code Processor (MC-NCP) core, the main
functional block that encapsulates all the components defined
in Figure 3 for the single-core processor, with the exception of
the Msg-data memory block. The data memory is now a single
block that all the cores share through a multiplexer. Each core
interfaces to an independent PHY that connects it to external
nodes through a point-to-point Ethernet connection.

The shared memory scheme brings two practical advantages
in comparison to assigning independent blocks to each core:

• It optimizes the usage of memory resources by avoiding
the need of holding redundant variables. Also, with each
core holding its own Msg-config block, we can define
asymmetric maps to distribute the memory according to
the specific needs of each core.

• It offers a direct way to exchange data between the cores.
We can define schedules to receive data from one port,
store it in memory, and transmit it later through a different
port, granting the system with the real-time switching
capabilities through time-triggered communication.

The only valid interaction between the cores is the data
exchange using the shared memory. Accesses to this memory
are coordinated by the single multiplexer that assures that
only one core will access the memory at the same time.
Similar to the stated on the SC-NCP design, where the
verification characteristic of Network Code schedules allows
the system to omit specific hardware mechanisms for error
detection and recovery from abnormal conditions (e.g. invalid
memory accesses or incompatible data formats) [6], we now
assume that the final schedules are checked beforehand to

avoid simultaneous access requests to the shared memory
from multiple instances at execution time. This assumption
contributes to retain a low footprint.

To retain the design as simple as possible, we specifically
targeted the system as a dedicated time-triggered commu-
nication device for network nodes performing safety-critical
distributed applications. Therefore, unlike the system proposed
in [4], our device offers no support for handling standard
(or event-triggered) Ethernet traffic, and it will only process
frames tagged with an specific identifier in the EthType field.

To illustrate an usage scenario for the new device, let us
consider the closed-loop control system for distributed medical
devices described in [14]. The selected clinical environment
required certified performance to assure the patient integrity.
On the reported setup, each medical device connected to a
standard Ethernet switch through a NCP-based communica-
tion dongle executing a verified Network Code schedule. To
assure the integrity of the communication between nodes, the
schedules must consider the latency by the switch. However,
this is an statistical parameter that varies among manufacturers
and models. The developer must then assume always the worst
case delay to assure the validity of the schedules, reducing the
effective throughput of the system.

Unlike standard switches, the latency of the NCS will be
known in advance with a cycle-accurate resolution. Besides,
the user can apply model checking to compute and verify the
switching times before the execution. Then, considering the
previous example scenario, replacing the generic switch with
the NCS will bring different technical advantages:
• We can use the NCS to complement the individual

communication dongles on each node. In this case, we
could apply model checking to the complete commu-
nication path, and we will rely on deterministic delay
parameters to coordinate the communication between the
nodes with a cycle-accurate resolution, maximizing the
effective throughput.

• If the nodes use a full-duplex point-to-point link to
connect to the NCS (see Figure 4), it would be possible
to generate real-time channels for generic Ethernet nodes,
not necessarily based on Network Code schedules. How-
ever, the developer must take special care in the system
design to guarantee the communication performance,
because in this usage scenario, we can only apply model
checking and verification to the internal switching parts
and not to the whole system.

3.2. Architectural definitions

Instead of a very specific off-the-shelf multi-core system
with a predefined number of cores, we want to offer a modular
architecture enabling the user to easily create a n-core system
according to its specific needs and available resources.

The architecture must scale and be easily upgradeable.
Programmable hardware requires good planning to use limited
resources, then, apart from minimizing the hands-on process
of adding or removing a core instance, we must also reduce



the overhead and provide a mechanism to predict the resource
usage beforehand when scaling the system.

Figure 4 illustrate the decomposition of the overall system
functionality into a set a modules. The main functional module
is the MC-NCP core. This block encapsulates the main com-
ponents of the SC-NCP architecture, providing a high-level
of abstraction. Also, minimizing the shared resources among
the modules increases the robustness, because a failure in one
core can occur without affecting the rest of the system.

The shared memory and the multiplexer are always present
independent of the number of cores. We defined a basic main
wrapper to hold these elements and provide the environment
to interconnect the MC-NCP instances. The address and data-
input buses of the memory are connected to the output of the
multiplexer. Each MC-NCP instance includes status flags to
signal an access request (for reading or writing) to the memory.
We use these flags as the control inputs to the multiplexer,
which places the corresponding values into the memory buses.

Considering the previous definitions, the user can scale the
system by simply adding a new MC-NCP instance, adapting
accordingly the size of the multiplexer, and adding the logic
to interface the corresponding PHY. This approach complies
with the required characteristics: (1) it minimizes the overhead
when changing the number of cores, and (2) the impact in
resource usage of the main wrapper will be negligible in
comparison to the size of the core instances. Consequently,
the amount of used resources will be linearly related to the
number of cores and we can easily estimate it in advance.
However, despite the simplicity of the approach, the access
to the multiplexer for the shared memory can become a
bottleneck and future work would need to investigate a multi-
core design with point-to-point connected shared memory.

4. System Implementation

In the previous section we presented the requirements for
the building blocks of the modular architecture. In this section,
we describe the customized system that uses these building
blocks to implement a quad-core prototype based on the
NetFPGA platform .

4.1. The NetFPGA Platform

The NetFPGA [8] is a low-cost and open platform targeted
to the implementation of reusable hardware code for high-
performance networking applications. The complete frame-
work has three main elements: (1) a FPGA-based hardware
board, (2) software tools used to communicate with the card
from a host workstation, and (3) fully functional examples and
application projects offered in an open-source basis.

The plug-in hardware board attaches to the Peripheral
Communication Interconnect (PCI) bus of any standard PC.
Its main components are one Xilinx Virtex-II Pro 50 FPGA
that holds customized logic, some buffer memory (SRAM and
DRAM), and a quad-port 1 Gbps PHY. For a detailed hardware
spec of the current 2.1 version see [15].

The software tools include a Linux device driver and a set
of basic utilities that allow programs running on the host
PC to communicate with the hardware board. Using these
utilities, the user can easily read and write the NetFPGA’s
internal memory, and even reconfigure the FPGA functionality
by downloading bitfiles directly from the workstation without
needing any additional cable or physical access to the board.

Finally, the most remarkable aspect of the NetFPGA comes
from the third element: all the codes for example projects and
applications, including the HDL code for the FPGA logic and
all the software utilities, are offered in a open-source way
through the official website [8]. This reduces considerably the
cost of implementing new components by either directly using
already tested modules or adapting them for any specific needs.

4.2. Implemented System

We implemented and tested the individual modules de-
scribed in Section 3.2 using HDL languages. Apart from the
basic functionality, we also included in the main wrapper
additional logic to interface the customized logic with the
PCI port of the host-workstation. A user can then utilize
these modules to synthesize an up to four-core system on
the NetFPGA platform. By doing this, we have verified the
scalability properties of the architecture. We will discuss the
details about the overhead and timing requirements of the
scalable system in Section 5.

The resulting system is a board that we can attach to any
workstation with a standard PCI port. Using a provided Linux
driver and software utilities, the user has access to all memory
mapped internal registers of the FPGA directly from the
workstation. This allows the developer to define the device’s
functionality by writing the programmed schedule and the
content of the Msg-config block that maps the shared memory
using a friendly and familiar environment. Under the same
principle, the user can also check the system status by reading
the FPGA registers at any time, which provides a powerful
debugging environment. This also expands the applicability
of the system by offering a real-time communication service
to computation tasks running locally on the host-PC.

The integration with the host-PC provides a high level of
abstraction that allows the user to overcome one common
practical limitation of customized hardware systems: the lack
of friendly interfaces that complicate debugging and reconfig-
uring the system. As the scheme in Figure 5 shows, the user
can create customized high-level tools and GUIs to perform
sophisticated control and analysis without requiring physical
access to the hardware or any knowledge of the underlying
technology. In fact, it is possible to change, test, and debug the
system functionality remotely from anywhere on the Internet.

5. Measurements and Technical Details

In this section we summarize the results related to the
implementation of the multi-core system in the Virtex2 50
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chip included in the NetFPGA board. We synthesized the HDL
design using the Xilinx ISE Foundation 10.1.3 tool.

5.1. Resource Usage and Timing on the FPGA

We mapped the logic of the MC-NCP block to generic
logical slices, with the exception of the Prog-ROM and Cfg-
data blocks that use one dedicated 16 Kb Block RAM
(BRAM) each. The main wrapper uses logical slices for the
multiplexer and the interfaces to the PHYs and PCI port, and
it can use any amount of the remaining BRAMs or slices
for the shared memory. The wrapper also uses Digital Clock
Managers (DCM). We require one DCM to generate a global
transmission clock for the PHYs, and one extra DCM per each
instance to drive the clock for the PHY reception logic [16].

5.1.1. Multi-core Overhead. Figure 6 summarizes the re-
ported device utilization for different numbers of cores. Start-
ing from a fully functional single-core system, we successively
added new instances modifying accordingly the size of the
multiplexer and adding the interface to the PHY.

We can note that the usage of slices grows linearly at an
approximated rate of 12.2% per instance. The synthesis tool
reported that this increasing is mostly related to the logic of
the MC-NCP cores, with the main wrapper having a negligible
impact estimated in less than 0.3%. Considering a quad-core
system (the NetFPGA board only provides four PHYs), the
MC-NCP instances will use only 8 BRAMs (around 4% of
the total available), leaving 96% of BRAMs, 51% of slices
and 37.5% of the eight available DCMs for implementing the
data memory or any additional functionality.

5.1.2. Multi-core Clocking. Table 1 summarizes the maxi-
mum speed for the clock driving the NCC logic that executes
the programmed schedule on each instance. Unlike resource
usage, it is complicated to extract a direct relation between
the number of cores and the clock speed.
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For a 1Gbps Ethernet connection, the PHY logic runs at
125 MHz. Because this speed is faster than the requirements
for the NCC, each instance will work on two different clock
domains: one driving the super-scalar NCC block that executes
the schedule, and another one driving the Ethernet MAC logic
that interfaces the PHY. The NetFPGA board provides the 125
MHz clock for the PHY, and we use a shift register to generate
a 41 MHz common for all the instances.

TABLE 1. Clock requirements for the NCC logic
1 core 2 cores 3 cores 4 cores

Period [ns] 14.1 13.9 16.3 16.3
Frequency [MHz] 70 71 61 61

5.2. Data Timing and Throughput

We now investigate the timing and derive the throughput
expressions using the same method as outlined in [6].

Because the MAC logic runs faster than the processing
speed of the NCC, the MAC must wait until all the data is
stored into the MAC output buffer before start transmission
(see Figure 3). Therefore, the time needed for a transmission
operation through a create()-send() sequence is ttx = ttx,n +
ttx,m, where ttx,n and ttx,m are the times required for moving
the data from the Msg-data block to the MAC output buffer,
and from the MAC buffer to the PHY, respectively.

Using a logic analyzer to measure the exact number of
cycles taken for both transmission stages, we derive the
following expressions that give an accurate value for the time
of a transmission operation for different variable lengths:

ttx,n(B) = (30 + max(B, 40)) ∗ 0.0244[µs] (1)

ttx,m(B) = (44 + max(B, 40)) ∗ 0.008[µs] (2)

where B is the size of the data in bytes.
A tick is the quantum for the timer used by the future()

instruction, and ttick is the duration of a future(1, ) instruction.
On this implementation, we set the value of ttick to 4[µs],
which according to (1) and (2), is enough time to generate
and transmit an Ethernet packet of up to 90 bytes.



Because the system operates at a message resolution of ttick,
the effective transmission time ˆttx is an entire multiple of ttick:

ˆttx = ticks ∗ ttick =

⌈
ttx
ttick

⌉
∗ ttick (3)

where d e is the ceiling function. We then calculate how
often Eq. (3) fits into one second, and multiply the result
with the transmitted bytes per variable to obtain the effective
transmission throughput:

TPtx(B) =
1
ˆttx

∗ B

128
[Kb/s] (4)

We used the same methodology to obtain an expression for
the switching throughput, where a packet is received in one
port and transmitted later by a different port. Because only
one core can access the shared memory at the same time,
transmission will only start in the tick following the one at
which the recipient finish to write the data into the memory;
thus, the minimum length for this operation is two ticks. The
recipient port can move the incoming data from the medium to
the receive buffer concurrently with the transmission through
another port. Thus, we reduce the contribution of the recipient
node to the total switching time, to the time for writing from
the receive buffer to the shared memory:

trx,n(B) =

(
6 +

B

4

)
∗ 0.0244[µs] (5)

Then, the resulting expression for the switching throughput is:

TPsw(B) =

(
ˆttx +

⌈ trx,n

ttick

⌉
∗ ttick

)−1

∗ B

128
[Kb/s] (6)

Figure 7 shows the graphs resulting from Eqs. (4) and (6)
for transmission and switching throughput, respectively. As
we can see, the maximum throughput for both operations
lies around 200Mbps. Even when the maximum throughput
duplicates the obtained from the previous prototype based
on a 100Mbps connection [6], it only corresponds to 1/5 of
the line rate of the 1Gbps connection. The reason for this
limitation comes from the clocking characteristics described
in Section 5.1.2. Because the NCC block runs slower than the
PHY, the MAC must wait until the complete packet is stored
in the output buffer before start the transmission, generating
a bottleneck that translates to unused cycles in the PHY.
Although this characteristic can be seen as a clear perfor-
mance limitation, we need to remark that in hard real-time
applications speed predictability is much more relevant than
speed [17]. We also point out that the clocking characteristics
of the prototype are related to the specific hardware used for
the implementation, and we could increase the throughput by
using more powerful FPGAs to synthesize the design.

6. Discussion

Being based on an already existing and tested single-core
system, the multi-core architecture allows us to exploit the
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concept of code reutilization to significantly reduce the im-
plementation time and for fast prototyping of the new device.

In this section we summarize some technical details and
lessons learned during the process of porting the HDL imple-
mentation of the original Virtex4 based SC-NCP prototype [6]
to the new NCS device targeted for the Virtex2 chip.

6.1. Exploiting Modularity

Modularity is a current trend in system design [18], [19]
that consists on implementing high-level functionality by inter-
connecting more specific lower-level modules. This approach
allows developers to reduce the design and implementation
costs of new customized devices, because we can modify
or expand the high-level functionality by simply adding,
removing or updating existing modules.

We already discussed how modularity of the final archi-
tecture simplifies the task of scaling the multi-core system.
However, we also validated the advantages of this approach
when porting the existing SC-NCP design for implementing
the new MC-NCP block. At the implementation level, the
superscalar architecture of the original SC-NCP intrinsically
led to the interconnection of well-defined HDL modules (see
Figure 3). In the new system, we reused most of the original
modules, removing the data memory block was a direct step,
and we just needed to focus on adapting some specific modules
for the new hardware and timing characteristics. We performed
these changes at an internal level on each individual module
without affecting the functionality of the others.

6.2. Hardware Dependencies and Timing

The original NCP prototype was targeted for the Virtex4
architecture, and it uses specific hardware components like an
embedded Ethernet MAC core and dedicated FIFO support
for BRAMs to implement the internal buffers. These elements
are unavailable in the Virtex2 chip used in the NetFPGA,
and thus we had to replace them with equivalent versions
using logical slices. Although this modification incremented
the usage of standard cells for customized logic, removing the
specific hardware dependencies also increased the portability



of the MC-NCP block, which can be now directly implemented
in a wide range of FPGA chips without any modification.

Changing the hardware and the network speed also modified
the timing requirements. In the original prototype, the NCC
block runs at 100 MHz and the PHY uses a 12.5 MHz clock
for the 100 Mbps connection. This allows the MAC to start
transmission as soon as the first byte arrives to the output
buffer, enabling to operate with a throughput close to line rate.
Due to the new clocking characteristics (see Section 5.1.2),
we required to modify the communication interface between
the NCC and the MAC to start transmission only when the
complete packet is available in the buffer. Fortunately, and
thanks again to the well-defined modular approach of the
NCC, we only needed to perform minor changes on the receive
command logic in a transparent way for the rest of the blocks.

6.3. Advantages of Open-source Projects

A remarkable characteristic of the NetFPGA platform is the
availability of fully functional application projects in an open-
source way. Among other advantages, open-source projects
allow the developers to easily build on top or integrate the
work of others, and increase the scrutiny of the code. Although
our design does significantly differ from the reference pipeline
proposed in [20], we were still able to reuse some functional
blocks to provide the interfaces to the PHY and the PCI
port with minor modifications. Thanks to the open-source
characteristic, we relied on the detailed documentation and
valuable feedback from the NetFPGA’s users community to
easily adapt these blocks to our specific needs.

7. Conclusion

We presented our work on moving from a single-core to a
multi-core design in the specific case of a bespoke processor
for real-time communication. The architecture relies on the
previously reported Network Code Processor which led us to
design the the architecture with the concepts of code-reuse and
modularity in mind.

We used the architecture to implement a quad-core system
on the NetFPGA platform that offers a switching service with
bounded delays to four Ethernet nodes. The platform can be
plugged in a host-PC and controlled, configured, and debugged
through the command line in the host operating system which
provides a familiar environment and ease of use.

Although the system incurs overhead and thus is unable to
compete with a native 1Gb/s Ethernet connection, we need to
point out that the aim of the system is real-time communi-
cations and it enables developers to encapsulate flexible but
verifiable communication behavior that is important especially
in safety-critical system.

The source code to the switch is available on the NetFPGA’s
website. We are currently looking for practical case studies to
evaluate the impact of the system specifically in time-critical
applications. We are also considering to add the capability of
handling standard Ethernet traffic by inserting the system in
the reference pipeline proposed for the NetFPGA applications.
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