
Sampling-based Runtime Verification!

Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister

Department of Electrical and Computer Engineering
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada, N2L 3G1

Email:{borzoo,snavabpo,sfischme}@ece.uwaterloo.ca

Abstract. The goal of runtime verification is to monitor the behavior of
a system to check its conformance to a set of desirable logical properties.
The literature of runtime verification mostly focuses on event-triggered
solutions, where a monitor is invoked by every change in the state of
the system and evaluates properties of the system. This constant in-
vocation introduces two major defects to the system under scrutiny at
runtime: (1) significant overhead, and (2) unpredictability. To circum-
vent the latter defect, in this paper, we introduce a novel time-triggered
approach, where the monitor frequently takes samples from the system
in order to analyze the system’s health. We propose formal semantics
of sampling-based monitoring and discuss how to optimize the sampling
period using minimum auxiliary memory. We show that such optimiza-
tion is NP-complete and consequently introduce a mapping to Integer
Linear Programming. Experiments on real-world applications show that
our approach introduces bounded overhead and effectively reduces in-
volvement of the monitor at runtime using negligible auxiliary memory.
We also show that in some cases it is even possible to reduce the over-
all overhead of runtime verification using our sampling-based approach
when the structure of the system allows choosing long enough sampling
period.

Keywords: Runtime verification, monitoring, time-triggered, predictability.

1 Introduction

Runtime verification [2, 3, 5, 9, 10, 21] is a complementary technique to exhaus-
tive verification methods such as model checking and theorem proving, as well as
incomplete solutions such as testing. Roughly speaking, in runtime verification,
the objective is to ensure that at runtime, a system satisfies its desirable prop-
erties; i.e., the system under inspection is observed and analyzed by a decision
procedure called the monitor.

! This is an extended version of the paper appeared in the 17th International Sympo-
sium on Formal Methods (FM’11).

In the literature of runtime verification, constructing a monitor involves
synthesizing an automaton that realizes the properties that the system under
scrutiny must satisfy [18]. Then, by composing the monitor with the system,
the monitor observes the occurrence of each transition and decides whether the
specification has been met, violated, or impossible to tell. Thus, the monitor
is invoked by every event (e.g., change of value of a variable) triggered in the
system. We call this type of monitoring event-triggered. The main drawback of
event-triggered runtime verification is twofold: the monitor (1) imposes unpre-
dictable overhead, and (2) may introduce bursts of interruptions to the system
at runtime. This can lead to undesirable transient overload situations in time-
sensitive systems.

With this motivation, in this paper, we propose an alternative and novel ap-
proach for runtime verification of sequential systems where the monitor is time-
triggered. The idea is that the monitor wakes up with a constant frequency and
takes samples from the system in order to analyze the system’s soundness. This
way, the involvement of the monitor is time-bounded and predictable. However,
the main challenge in this mechanism is accurate reconstruction of the system’s
state between two samples; i.e., if the value of a variable of interest changes
more than once between two samples, the monitor may fail to detect violations
of some properties. Hence, the problem boils down to finding the longest possible
sampling period that allows state re-constructivity.

We calculate the sampling period through building the system’s control-flow
graph. Then, we employ this sampling period to define the formal semantics of
sampling-based runtime verification using the timed automata formalism. The
sampling period extracted from control-flow graphs tend to be short and, hence,
precipitates highly frequent involvement of the monitor even in branches of the
program that does not require monitoring. To tackle this problem, we propose a
method for increasing the sampling period by incorporating auxiliary memory,
where we store a history of state changes. Obviously, we face a tradeoff between
minimizing the size of auxiliary memory versus maximizing the sampling period.
We show that the corresponding optimization problem is NP-complete.

In order to cope with the exponential complexity of the optimization problem,
we map the problem onto Integer Linear Programming (ILP). We have developed
a tool chain that takes C programs as input, instruments the program to build
optimal history and constructs a monitor that takes samples with the optimal
sampling period. Our experimental results show encouraging results. Firstly, the
size of ILP models for real-world applications are quite manageable. Secondly, we
observe that in event-triggered implementations, the system suffers from bursts
of monitor involvement, whereas our sampling-based monitor adds bounded and,
hence, predictable overhead. Finally, we observe that the memory usage overhead
is negligible and our method effectively increases the sampling period, which
results in adding less overall overhead at runtime and in some cases obtaining
faster execution of the system as compared to event-triggered methods.

Organization. The rest of the paper is organized as follows. We present the
preliminary concepts in Section 2. Formal semantics of sampling-based monitor-

2

ing is discussed in Section 3. Then, in Section 4, we introduce our method for
optimizing the sampling period using auxiliary memory and analyze its com-
plexity. Section 5 presents our transformation to ILP. Section 6 is dedicated to
experimental results. Related work is discussed in Section 7. Finally, we make
concluding remarks and discuss future work in Section 8. Appendix ?? provides
a summary of notations. All proofs appear in Appendix ??.

2 Preliminaries

In this section, we present the preliminary concepts. In Subsection 2.1, we present
the notion of control-flow graphs for analyzing timing characteristics of programs
written in high-level programming languages. In Subsection 2.2, we present the
concept of timed automata [1] to present the semantics of sampling-based run-
time verification.

2.1 Control-flow Graphs

Definition 1. The control-flow graph of a program P is a weighted directed
simple graph CFGP = 〈V, v0, A, w〉, where:

– V : is a set of vertices, each representing a basic block of P . Each basic block
consists of a sequence of instructions in P .

– v0: is the initial vertex with indegree 0, which represents the initial basic
block of P .

– A: is a set of arcs (u, v), where u, v ∈ V . An arc (u, v) exists in A, if and
only if the execution of basic block u can immediately lead to the execution
of basic block v.

– w: is a function w : A → N, which defines a weight for each arc in A. The
weight of an arc is the best-case execution time (BCET) of the source basic
block1. %&

Notation: Let v be a vertex of a control-flow graph. Since the weight of all out-
going arcs from v are equal, w(v) denotes the weight of the arcs that originate
from v.

For example, consider the C program in Figure 1(a). If each instruction takes
one time unit to execute, the resulting control-flow graph is shown in Figure
1(b). Vertices of the graph in Figure 1(b) are annotated by the corresponding
line numbers of the C program in Figure 1(a).

1 In Section 3, we will compute sampling period of a CFG based on BCET of basic
blocks. This computation is quite realistic, as (1) all hardware vendors publish the
BECT of their instruction set in terms of clock cycles, and (2) BECT is a conservative
approximation and no execution occurs faster than that.

3

1: a = scanf(...);
2: if (a % 2 == 0) goto 9
3: else {
4: printf(a + "is odd");
5:* b = a/2;
6:* c = a/2 + 1;
7: goto 10;
8: }
9: printf(a + "is even");
10: end program

(a) A simple C program

10

2 2

4 1

A
1, 2

B C

D

4..7 9

(b) Control-flow
graph

Fig. 1. A C program and its control-flow graph.

2.2 Timed Automata

Let Σ be an alphabet. A timed word over Σ is a sequence
(a0, t0), (a1, t1) · · · (ak, tk), where each ai ∈ Σ and each ti is in non-negative
real numbers R≥0 and the occurrence times increase monotonically. Let X be
a set of clock variables. A clock constraint over X is a Boolean combination of
formulae of the form x ' c or x − y ' c, where x, y ∈ X, c ∈ Z≥0, and ' is
either < or ≤. We denote the set of all clock constraints over X by Φ(X). A
clock valuation is a function ν : X → R≥0 that assigns a real value to each clock
variable. For τ ∈ R≥0, we write ν+ τ to denote ν(x)+ τ for every clock variable
x in X. Also, for λ ⊆ X, ν[λ := 0] denotes the clock valuation that assigns 0 to
each x ∈ λ and agrees with ν over the rest of the clock variables in X.

Definition 2. A timed automaton is a tuple A = 〈L,L0, X,Σ, E, I〉, where

– L is a finite set of locations.
– L0 ⊆ L is a set of initial locations.
– X is a finite set of clock variables.
– Σ is a finite set of labels.
– E ⊆ (L × Σ × 2X × Φ(X) × L) is a set of switches. A switch 〈l, a,λ,ϕ, l′〉

represents a transition from location l to location l′ labelled by a, under clock
constraint ϕ. The set λ ⊆ X gives the clocks to be reset with this switch.

– I : L → Φ(X) assigns delay invariants to locations. %&

The semantics of a timed automaton A is as follows. A state is a pair (l, ν),
where l ∈ L and ν is a clock valuation for X. A state (l, ν) is an initial state if
l ∈ L0 and ν(x) = 0 for all x ∈ X. There are two types of transitions :

1. Location switches are of the form 〈l, a,λ,ϕ, l′〉 such that ν satisfies ϕ, (l, ν)
a−→

(l′, ν[λ := 0]), and ν[λ := 0] satisfies I(l′).
2. Delay transitions are of the form (l, ν)

τ−→ (l, ν + τ), which preserves the
location l for time duration τ ∈ R≥0, such that for all 0 ≤ τ ′ ≤ τ , ν + τ ′

satisfies the invariant I(l).

4

For a timed word w = (a0, t0), (a1, t1) · · · (ak, tk), a run over w is a sequence

q0
t0−→ q′0

a0−→ q1
t1−t0−−−→ q′1

a1−→ q2
t2−t1−−−→ q′2

a2−→ q3 → · · · ak−→ qk+1

such that q0 is an initial state.
Let A1 = 〈L1, L0

1, X1,Σ1, E1, I1〉 and A2 = 〈L2, L0
2, X2,Σ2, E2, I2〉 be two

timed automata, where X1 ∩X2 = ∅. The parallel composition of A1 and A2 is
A1||A2 = 〈L1×L2, L0

1×L0
2, X1∪X2,Σ1∪Σ2, E, I〉, where I(l1, l2) = I(l1) ∧ I(l2),

and E is defined by:

1. for a ∈ Σ1 ∩Σ2, for every 〈l1, a,λ1,ϕ1, l′1〉 in E1, and 〈l2, a,λ2,ϕ2, l′2〉 in E2,
E contains 〈(l1, l2), a,λ1 ∪ λ2,ϕ1 ∧ ϕ2, (l′1, l

′
2)〉.

2. for a ∈ Σ1\Σ2, for every 〈l, a,λ,ϕ, l′〉 in E1, and every m ∈ L2, E contains
〈(l,m), a,λ,ϕ, (l′,m)〉.

3. for a ∈ Σ2\Σ1, for every 〈l, a,λ,ϕ, l′〉 in E2, and every m ∈ L1, E contains
〈(m, l), a,λ,ϕ, (m, l′)〉.

3 Formal Semantics of Sampling-based Monitoring

Given a program P , we describe the semantics of sampling-based monitoring in
two steps: (1) identifying the minimum sampling period, and (2) constructing
and composing a sampling-based monitor with P . Then, our goal is to show that
the obtained composition never fails to detect property violations.

3.1 Calculating the Sampling Period

Let P be a program and Π be a logical property (e.g., in Ltl), where P is
expected to satisfy Π. Let VΠ denote the set of variables that participate in
Π. In our idea of sampling-based monitoring, the monitor wakes up with some
sampling period, reads the value of variables in VΠ and evaluates Π. The main
challenge in this mechanism is accurate reconstruction of the state of P between
two samples; i.e., if the value of a variable in VΠ changes more than once between
two samples, the monitor may fail to detect violations of Π.

In order to handle value changes accurately, we modify CFGP as follows. In
the first step, we ensure that each critical instruction (i.e., an instruction that
modifies a variable in VΠ) is in a basic block that contains no other instructions.
We refer to such a basic block as critical basic block or critical vertex. Formally,
let instv = 〈v1 · · · vn〉 denote the sequence of instructions in a basic block v of
CFGP . Let vi, where 1 < i < n, be a critical instruction. We split vertex v
into three vertices v1, v2, and v3, such that instv1 = 〈v11 · · · vi−1

1 〉, instv2 = 〈vi2〉,
and instv3 = 〈vi+1

3 · · · vn3 〉. Incoming arcs to v now enter v1. We add arc (v1, v2),
where w(v1, v2) is equal to the best-case execution time of 〈v11 · · · vi−1

1 〉. We also
add arc (v2, v3), where w(v2, v3) is equal to the best-case execution time of 〈vi2〉.
Outgoing arcs from v now leave v3 with weight equal to the best-case execution
time of 〈vi+1

3 · · · vn3 〉. Obviously, if i = 1 or i = n, we split v into two vertices.
We continue this procedure until each critical instruction is in one basic block.

5

10

A
1, 22

B1
4

6
B3

5

1

2

1

1

1

1

7
B4

B2

C
9

D

(a) Step 1

D

1

3

3

2

A

B2

B3

(b) Step 2

Legened

Critical basic block

Uncritical basic block

Fig. 2. Obtaining a critical CFG and calculating the sampling period.

For example, in the program in Figure 1(a), if variables b and c are of interest
for verification of a property at runtime, then instructions 5 and 6 are critical
and we obtain the control-flow graph in Figure 2(a).

Since uncritical vertices play no role in determining the sampling period, in
the second step, we collapse uncritical vertices as follows. Let CFG = 〈V, v0, A, w〉
be a control-flow graph. Transformation T (CFG , v), where v ∈ V \{v0} and out-
degree of v is positive, obtains CFG ′ = 〈V ′, v0, A′, w′〉 via the following ordered
steps:

1. Let A′′ be the set A ∪ {(u1, u2) | (u1, v), (v, u2) ∈ A}. Observe that if an arc
(u1, u2) already exists in A, then A′′ will contain parallel arcs (such arcs can
be distinguished by a simple indexing or renaming scheme). We eliminate
the additional arcs in Step 3.

2. For each arc (u1, u2) ∈ A′′,

w′(u1, u2) =

{
w(u1, u2) if (u1, u2) ∈ A
w(u1, v) + w(v, u2) if (u1, u2) ∈ A′′\A

3. If there exist parallel arcs from vertex u1 to u2, we only include the one with
minimum weight in A′′.

4. Finally, A′ = A′′\{(u1, v), (v, u2) | u1, u2 ∈ V } and V ′ = V \ {v}.

We clarify a special case of the above transformation, where u and v are two
uncritical vertices with arcs (u, v) and (v, u) between them. Deleting one of the
vertices, e.g., u, results in a self-loop (v, v), which we can safely remove. This is
simply because a loop that contains no critical instructions does not affect the
sampling period.

We apply the above transformation on all uncritical vertices. We call the
result a critical control-flow graph. Such a graph includes (1) an uncritical initial
basic block, (2) possibly an uncritical vertex with outdegree zero (if the program

6

is terminating), and (3) a set of critical vertices. Figure 2(b) shows the critical
CFG of the graph in Figure 2(a).

Definition 3. Let CFG = 〈V, v0, A, w〉 be a critical control-flow graph. The
minimum sampling period for CFG is MSPCFG = min{w(v1, v2) | (v1, v2) ∈
A ∧ v1 is a critical vertex}. %&

Intuitively, minimum sampling period is the minimum amount of time that
two variables in VΠ get changed. For example the minimum sampling period
of the control-flow graph in Figure 2(b) is MSP = 1. Later in this section, we
will show that by applying this sampling period, no property violations can be
overlooked.

3.2 Constructing and Composing The Sampling-based Monitor

We now explain the semantics of sampling-based monitoring using timed au-
tomata2. The transformation of a control-flow graph CFG = 〈V, v0, A, w〉 into a
timed automaton ACFG = 〈L,L0, X,Σ, E, I〉, where X = {t} and Σ = {a, s},
is as follows:

– L = {lv | v ∈ V }
– L0 = {lv0}
– E = {〈lv, a, {t}, t ≥ w(v, v′), lv′〉 | (v, v′) ∈ A} ∪ {〈lv, s, {}, true, lv〉 | v ∈ V }.
– I(lv) = worst-case execution time of basic block v ∈ V .

Intuitively, ACFG works as follows. Each location of ACFG corresponds to
one and only one vertex of CFG . The initial location corresponds to the initial
basic block of CFG . Each location is associated with a delay invariant; the
execution can stay in a location no longer than the worst-case execution time
of the corresponding basic block. ACFG has two types of switches. The first set
of switches (labelled by a) change location. Each such switch takes place when
the execution of the corresponding basic block is complete. Obviously, this can
happen not earlier than the best-case execution time of the basic block. The other
set of switches (labelled by s) are self-loops and are meant to synchronize with
the sampling-based monitor. The timed automaton obtained from the control-
flow graph in Figure 1(b) is shown in Figure 3(a), where the worst-case execution
time of each instruction is 2.

The relation between execution of a program P and runs of timed automaton
ACFGP is as follows. Intuitively, a delay transition in ACFGP corresponds to
execution of a set of instructions in P . Formally, let q = (l, t = 0) be a state
of ACFGP , where location l hosts instructions {l1 · · · ln}. An outgoing transition
from this state with delay τ reaches a state (l, t + τ) which leads to executing
zero or more instructions. Thus, starting from (l, t = 0), a run of ACFGP is of
the form:
2 We emphasize that our implementation does not involve the transformation pre-
sented in this subsection; i.e., we solely use the timed automata formalism to describe
the semantics.

7

C

A

D

t := 0

t := 0
t ≥ 2

t ≥ 1

t := 0

t ≤ 4

t ≤ 2

s

s

s

aa

a a

t ≥ 4
t := 0

B
t ≤ 8

s

t ≥ 2

(a) Transformed Timed au-
tomaton

M1

x = MSP

x := 0s

M0

x ≤ MSP

x ≤ MD

(b) Sampling-based
Monitor

Fig. 3. Formal semantics of sampling-based monitoring.

(l, t = 0)
τ1−→ (li, t+ τ1)

τ2−→ (lj , t+ τ1 + τ2)
τ3−→ · · · τm−−→ (ln, t+

∑m
k=1 τk)

a−→ (l′, t = 0),

such that i ≤ j ≤ m, l 1= l′, (li, t + τ1) denotes the fact that instructions
〈l1 · · · li〉 have been executed within τ1 time units,

∑m
k=1 τk ≥ w(l, l′) in CFGP ,

and
∑m

k=1 τk satisfies I(l). Note that an s-transition may occur in such a run,
but such transitions obviously do not change the current location or the value
of t.

A sampling-based monitor MP for program P works as follows (see Figure
3(b)). From the initial location M0 the only outgoing switch is enabled when the
sampling period is complete (i.e., x = MSPCFGP). The monitor may remain in
location M1 for at most MD time units, where MD is the maximum delay that
can occur in execution of an instruction3 (note that sampling never occurs in the
middle of execution of an instruction). From location M1, the monitor synchro-
nizes with ACFGP on the switch labelled by s in order to read the variables of
interest for evaluating properties. Thus, the parallel composition ACFGP ||MP

constructs the entire system4. For example, the following is a run of the automa-
ton in Figure 3(a) composed with a monitor with sampling period MSP = 1 and
MD = 0:

AM0
1−→ A1M1

s−→ A1M0
1−→ A2M1

s−→ A2M0
a−→ BM0

1−→ B4M1
s−→ B4M0

1−→ B5M1 → · · · ,

Assumption 1 We assume that MD ≤ MSP. %&

Finally, we show that our construction method is sound in the sense that it
never fails to detect property violations.

3 Such delays are normally cause by interrupts, pipeline stalls, I/O operations, etc.
4 We note that our work is not concerned with evaluating properties when a sample
is taken and, thus, this issue is not addressed.

8

Theorem 1. Let P be a program and w = (a0, t0), (a1, t1) · · · be a timed word of
ACFGP ||MP . For all i and j, where i < j, ai = aj = s, and there does not exist
an s-transition between ai and aj in w, no run over w contains delay transitions
between ai and aj that includes two critical instructions. %&

4 Optimizing Sampling Period and its Complexity

Employing the minimum sampling period as identified in Section 3 results in
highly frequent involvement of the monitor in the system at runtime. Obviously,
increasing the sampling period naively leads to inability of the monitor to re-
construct the state of the program at sampling time. Thus, in order to reduce
the sampling points, we use auxiliary memory to build a history of critical state
changes between two samples. More specifically, let (u, v) be an arc and v be
a vertex in a critical control-flow graph CFG , where instv = 〈i〉 and i changes
the value of a variable, say a. We apply transformation T (CFG , v) introduced
in Subsection 3.1 and add an instruction i′ : a′ ← a, where a′ is an auxiliary
memory location. Thus, we obtain instu = instu.〈i, i′〉. We call this process in-
strumenting transformation and denote it by IT (CFG , v). Observe that adding
the extra instruction does not affect the calculation of the sampling period. This
is due to the fact that adding instrumentation only increases the best case exe-
cution time of a basic block and by maintaining the calculated sampling period,
we are guaranteed that no critical instruction is overlooked.

Unlike uncritical vertices, the issue of loops involving critical vertices need to
be handled differently. Suppose u and v are two critical vertices with arcs (u, v)
and (v, u) between them and we intend to delete u. This results in a self-loop
(v, v), where w(v, v) = w(u, v)+w(v, u). Since we do not know how many times
the loop may iterate at runtime, it is impossible to determine the upperbound
on the size of auxiliary memory needed to collapse vertex v. Hence, to ensure
correctness, we do not allow applying transformation IT on critical vertices that
have self-loops.

Given a critical control-flow graph, our goal is to optimize two factors through
a set of IT transformations: (1) minimizing auxiliary memory, and (2) maximiz-
ing sampling period. We now analyze the complexity of such optimization.

Instance. A critical control-flow graph CFG = 〈V, v0, A, w〉 and positive inte-
gers X and Y .

Transformation optimization decision problem (TO). Does there exist
a set U ⊆ V , such that after applying transformation IT (CFG , u) for all u ∈ U ,
we obtain a critical control-flow graph CFG ′ = 〈V ′, v0, A′, w′〉, where |U | ≤ Y
and for all arcs (u, v) ∈ A′, w′(u, v) ≥ X?

Theorem 2. TO is NP-complete. %&

9

Obviously, sampling-based monitoring and in particular, increasing the sam-
pling period introduces detection latencies. To tackle this problem, one can spec-
ify a tolerable detection delay for critical variables. This factor can be easily
incorporated in our transformation technique and optimization problem.

5 Mapping to Integer Linear Programming

In order to cope with the exponential complexity of our optimization problem,
we transform it into Integer Linear Programming (ILP). ILP is a well-studied op-
timization problem and there exist numerous efficient ILP solvers. The problem
is of the form:

Minimize c.z

Subject to A.z ≥ b

where A (a rational m × n matrix), c (a rational n-vector), and b (a rational
m-vector) are given, and, z is an n-vector of integers to be determined. In other
words, we try to find the minimum of a linear function over a feasible set defined
by a finite number of linear constraints. It can be shown that a problem with
linear equalities and inequalities can always be put in the above form, implying
that this formulation is more general than it might look.

We now describe how we map the optimization problem described in Section
4 to ILP. Our mapping takes the critical control-flow graph CFG = 〈V, v0, A, w〉
of a given source code and a desired sampling period SP as input. Our objective
is to find the minimum number of vertices that must be removed from V .

Integer variables. Our ILP model employs the following sets of variables:

1. x = {xv | v ∈ V }, where each xv is a binary integer variable: if xv = 1, then
vertex v is removed from V , whereas xv = 0 means that v remains in V .

2. a = {av | v ∈ V }: where each av is an integer variable which represents the
weight of arcs originating from vertex v. Recall that all the outgoing arcs of
a vertex have the same weight in the CFG . This variable is needed to store
the new weight of an arc created by merging a sequence of arcs. For example,
in Figure 2(b), initially, variable aB2 = 1. However, if xB3 = 1 (i.e., vertex
B3 is removed), then aB2 = 3.

3. y = {yv, y′v | v ∈ V }, called choice variables, where each yv and y′v is an
integer variable. The application of this set is described later in this section.

Constraints for the initial basic block. Since we always want a sample at
the beginning of the program to extract the initial value of variables, we add the
following constraints:

xv0 = 0 (1)

av0 = w(v0) (2)

10

Constraints for arc weights and internal vertices. Since our goal is to
ensure that the weight of all arcs become at least SP , if there exists an arc of
weight less than SP , then the target vertex of the arc must be removed from the
graph. Thus, for every arc (u, v) ∈ A, we add the following constraint:

au + SP .xv ≥ SP (3)

Next, we add constraints for calculating the new weights of arcs when vertices
are deleted from the CFG . We distinguish two cases:

– Case 1: If xv = 0, for some v ∈ V , then av = w(v).
– Case 2: If xv = 1, then av = w(v) + w(u), where (u, v) ∈ A. Note that

in this case, although vertex v is removed, for simplicity, we use variable av
as the weight of the newly created arc. Also note that in this case, outgoing
arcs from u automatically satisfy Constraint 3.

In order to make these cases mutually exclusive in ILP, we use the choice
variables with the following properties:

– Prop. 1: The values of yv and y′v are such that one of them is zero and the
other is au. This property enforces mutual exclusiveness of the above cases.

– Prop. 2: If xv = 1, then yv = au and y′v = 0. On the contrary, if xv = 0,
then yv = 0 and y′v = au.

In order to enforce Prop. 1, we use a special data structure implemented in our
ILP solver called Special Ordered Set Type 1, where at most one variable can
take a positive value while all others must have a value of zero. The following
constraints enforce Prop. 1 and 2:

yv + y′v = au (4)

sos1(yv, y
′
v) (5)

1 ≤ xv + y′v ≤ au (6)

The following constraints implement Case 1 and 2, respectively:

w(v) + au − y′v = av (7)

yv + w(v) = av (8)

For example, if v is deleted (i.e., xv = 1), then we have yv = 0 and y′v = au by
Constraints 4-6. Moreover, when v is deleted, the weight of the newly created
arc av will be au + w(v). This is ensured by Constraints 7 and 8.

Now, we duplicate Constraints 4-8 for each incoming arc to vertex v. More
specifically, for arcs (u1, v), (u2, v) · · · (un, v), we instantiate Constraints 4-8 with
variables au1 , au2 · · · aun and au1

v , au2
v · · · aun

v . We note that existence of multiple
incoming arcs in a control-flow graph is due to the existence of conditional and
goto statements in the input program. Since the depth of nested conditional
statements is not normally high, we do not expect to encounter an explosion in

11

the number of a-variables in our ILP model.

Handling loops. Recall that in Section 4, we argued that vertices with self-
loops cannot be removed. Self-loops are created when we apply the IT transfor-
mation on vertices of a cycle in a control-flow graph. To ensure that self-loops
are not removed, we add a constraint to our ILP model, such that from each
cycle v1 → v2 → · · · → vn → v1, only n− 1 vertices can be deleted:

n∑

i=1

xvi ≤ n− 1 (9)

We note that cycles can be identified when we construct CFG and there is
no need for graph exploration to enumerate them.

Objective function. Finally, we state our objective function, where we aim
at minimizing the set of vertices removed from CFG :

Minimize
∑

v∈V

xv (10)

6 Experimental Results

In this section, we present the results of our experiments using the following
tool chain. First, we generate the control-flow graph of a given C program using
the tool CIL [?]. Next, we generate the critical control-flow graph and transform
it into an ILP model. The model is given to the tool lp solve [?] to obtain the
optimal sampling period and the size of auxiliary memory. We use the breakpoint
mechanism of gdb [?] to implement monitors. Finally, a Python script controls
gdb and handles possible exceptions.

Our case studies are from the MiBench [?] benchmark suite. For reasons of
space, we only present experimental results for two case studies:

1. Blowfish: This benchmark has 745 lines of code, which results in a CFG of
169 vertices and 213 arcs. We take 20 variables for monitoring.

2. Dijkstra: This benchmark has 171 lines of code, which results in a CFG of
65 vertices and 78 arcs. We take 8 variables for monitoring.

Our observation is that other benchmarks behave similarly. All experiments in
this section are conducted on a Mac Book Pro with 2.26GHz Intel Core 2 Duo
and 2GB main memory.

We consider the following different settings for our experiments:

– Event-based: gdb extracts the new value of variables of interest whenever
they get changed throughout the program execution.

– Sampling-based with no history: gdb is invoked every MSP time units
(see Subsection 3.1) to extract the value of all the variables of interest.

12

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1 2 3 4 5 6

O
ve

rh
ea

d
(M

Se
c)

Execution Time (Sec)
sampling-based with no history

event-based
sampling-based 50x MSP

Fig. 4. Experimental results for Dijktra (50 ∗MSP sampling period).

– Sampling-based with history: This setting incorporates our ILP opti-
mization. Thus, whenever gdb is invoked, it extracts the value of variables
of interest as well as the history.

In the event-based setting (see Figures 4(a) and 5(a)), since the monitor
interrupts the program execution irregularly, unequal bursts in the overhead can
be seen. Moreover, the overhead caused by each data extraction is proportional
to the data type. Hence, the data extraction overhead varies considerably from
one interruption to another. Thus, the monitor introduces probe-effects, which

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

O
ve

rh
ea

d
(M

Se
c)

Execution Time (Sec)
sampling-based with no history

event-based
sampling-based with 50x MSP

Fig. 5. Experimental results for Blowfish (50 ∗MSP sampling period).

13

in turn may create unpredictable and even incorrect behaviour. This anomaly is,
in particular, unacceptable for real-time embedded and mission-critical systems.

On the contrary, since the sampling-based monitor interrupts the program
execution on a regular basis, the overhead introduced by data extraction is not
subject to any bursts and, hence, remains consistent and bounded (see Figures
4(a) and 5(a)). Consequently, the monitored program exhibits a predictable be-
haviour. Obviously, the sampling-based monitor may potentially increase the
overhead, which extends the overall execution time. Nonetheless, in many com-
monly considered applications, designers prefer predictability at the cost of larger
overhead.

Regarding the third setting, recall that we prohibited deletion of self-loops
from critical control-flow graphs. Hence, if some variables get updated in loops,
the minimum sampling period of loops, can determine the optimal sampling
period. For example, in both case studies, since the majority of the variables of
interest are updated in loops, we cannot increase the sampling period beyond
4 ∗ MSP . In such a situation, employing the new sampling period and history
does not achieve much. To overcome this problem, we devise a simple heuristic
that makes a conservative estimate of the size of a buffer needed to build the
history for loops. By incorporating this heuristic, we allow deletion of self-loops.
For example, in both case studies, the ILP solver can increase the sampling
period up to 100 ∗MSP . We note that solving the corresponding ILP problem
for all benchmarks takes on average 3 minutes. This clearly shows that we are
not even close to the boundaries of ILP solving.

Figures 4(a) and 5(a) show the results of our experiments for sampling period
of 50 ∗ MSP . As can be seen, increasing the sampling period results in larger
overhead. This is because the monitor needs to read a larger amount of data
formed by the history. However, the increase in overhead is considerably small
(less than twice the original overhead). Having said that, the other side of the
coin is that by increasing the sampling period, the program is subject to less
monitoring interrupts. This results in significant decrease in the overall execution
time of the programs. This is indeed advantageous for monitoring hard real-
time programs. Although adding history causes variability in data extraction
overhead, the system behavior is still highly predictable as compared to the
event-based setting.

The above observations are valid for the case, where we increase the sampling
period by 100 ∗ MSP as well (see Figures 4(b) and 5(b)). Observe that the
reduction in execution time of Blowfish is less than Dijkstra, as the overhead of
data extraction in Blowfish is proportionally larger than Dijkstra. This is due
to the fact that in Blowfish more and larger variables are stored in the history
between two samples. On the other hand, overhead variability in Blowfish is less
than Dijkstra, as the number of variables stored in the history from one sample
to another does not significantly vary in Blowfish.

We now clarify why the sampling-based method naturally incurs more over-
head than event-based approaches. While in the event-based method, the mon-
itor only executes whenever a new event occurs, in the sampling-based method,

14

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1 2 3 4 5 6

O
ve

rh
ea

d
(M

Se
c)

Execution Time (Sec)
sampling-based with no history

event-based
sampling-based with 100x MSP

Fig. 6. Experimental results for Dijktra (100 ∗MSP sampling period).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

O
ve

rh
ea

d
(M

Se
c)

Execution Time (Sec)
sampling-based with no history

event-based
sampling-based with 100x MSP

Fig. 7. Experimental results for Blowfish (100 ∗MSP sampling period).

the monitor sometimes takes a sample although no significant event has oc-
curred since the last sample. Also, in the sampling-based method, the monitor
must collect all relevant variables while in the even-based method the monitor
only processes the single new event. Thus, higher overhead of the sampling-based
approach is natural and expected.

Finally, we discuss the tradeoff between execution time and the added mem-
ory consumption when the sampling period is increased (see Figures 6(a) and
6(b)). As can be seen, as we increase the sampling period, the system requires
negligible extra memory. Also, one can clearly observe the proportion of increase

15

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

MSP
20x MSP

50x MSP

70x MSP

100x MSP

 7.15

 7.2

 7.25

 7.3

 7.35

 7.4

 7.45

 7.5

 7.55

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Vi
rtu

al
 M

em
or

y
U

sa
ge

 (M
B)

Sampling Type

Execution Time
Memory Consumption

Fig. 8. Memory usage vs. execution time (Dijkstra).

in memory usage versus the reduction in the execution time. In other words,
by employing small amount of auxiliary memory, one can achieve considerable
speedups.

In summary, our experiments show practical evidence and support our intu-
ition on the benefit of using sampling-based monitors:

Sampling-based monitors provide bounded overhead and predictable pro-
gram behavior. Increasing the sampling period to gain speedups is possible
at the cost of adding negligible auxiliary memory.

7 Related Work

In classic runtime verification [21], a system is composed with an external ob-
server, called the monitor. This monitor is normally an automaton synthesized
from a set of properties under which the system is scrutinized. To the best
of our knowledge, in the literature of runtime verification, monitors are event-
triggered [18] in the sense that every change in the state of the system invokes
the monitor for analysis.

From the logical and language point of view, runtime verification has mostly
been studied in the context of Linear Temporal Logic (LTL) properties [2,9,11–
13, 23] and in particular safety properties [14, 22]. Other languages and frame-
works have also been developed for facilitating specification of temporal proper-
ties [16,17,24]. Runtime verification of ω-languages was considered in [6]. In [7],
the authors address runtime verification of safety-progress [4, 19] properties.

In [8], the authors introduce a sampling-based program monitoring tech-
nique. They propose a framework that allows quantitative reasoning about is-
sues involved in sampling-based techniques. They also discuss how to optimally

16

instrument a program by a set of markers, such that different execution paths
reachable from the same state are distinguishable. In the same context, in [20],
the authors propose the language Capilot for developing hard real-time moni-
tors. The aim of this language is to develop programs where the monitor (1)
does not change the functionality and schedule of the program, and (2) adds
minimal overhead to the program. We, however, take a different approach by fo-
cusing on designing a method where predictable monitors are added to observe
the behaviour of existing programs. We also present optimization techniques
and experimental evidence on the effectiveness of our approach. Finally, in [?],
the authors propose a method to control the overhead of software monitoring
using control theory for discrete event systems. In this work, overhead control
is achieved by temporarily disabling involvement of monitor, thus avoiding the
overhead to pass a user-defined threshold.

8 Conclusion

In this paper, we investigated a sampling-based approach for runtime verifica-
tion. We explored the problem by defining it in formal terms and then showed
that the optimization problem for using minimum auxiliary memory to maxi-
mize the sampling period is NP-complete. As a practical solution, we encoded our
problem in Integer Linear Programming (ILP). Our approach is implemented in
a tool chain that takes a C program as input and (1) constructs a time-triggered
monitor with an optimal sampling period, and (2) instruments the input pro-
gram in order to build a history of optimal size. Experimental results show that
sampling-based monitoring provides a predictive overhead on the system. More-
over, using negligible auxiliary memory, one can increase the sampling period,
which results in less overall overhead and faster execution of the system under
scrutiny.

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 4.5

MSP
20x MSP

50x MSP

70x MSP

100x MSP

 9.4

 9.5

 9.6

 9.7

 9.8

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Vi
rtu

al
 M

em
or

y
U

sa
ge

 (M
B)

Sampling Type

Execution Time
Memory Consumption

Fig. 9. Memory usage vs. execution time Blowfish.

17

For future work, we are considering several research directions. We are cur-
rently working on adaptive monitoring, where the monitor adapts its sampling
period based upon the structure of the input program. Such adaptive sampling
will be highly beneficial to overcome loop problems. Another interesting direc-
tion is to weave a sampling-based monitor with the program not as a separate
process, but as a built-in verification mechanism. Also, one may consider devel-
oping hybrid monitors that take advantage of both event-triggered as well as
time-triggered techniques.

9 Acknowledgement

This research was supported in part by NSERC DG 357121-2008, ORF RE03-
045, ORE RE-04-036, and ISOP IS09-06-037.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology (TOSEM), 2009. in
press.

3. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL Semantics for Runtime
Verification. Journal of Logic and Computation, 20(3):651–674, 2010.

4. E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of Temporal Property
Classes. In Automata, Languages and Programming (ICALP), pages 474–486, 1992.

5. S. Colin and L. Mariani. Run-Time Verification, chapter 18. Springer-Verlag LNCS
3472, 2005.

6. M. d’Amorim and G. Rosu. Efficient Monitoring of omega-Languages. In Computer
Aided Verification (CAV), pages 364–378, 2005.

7. Y. Falcone, J.-C. Fernandez, and L. Mounier. Runtime Verification of Safety-
Progress Properties. In Runtime Verification (RV), pages 40–59, 2009.

8. S. Fischmeister and Y. Ba. Sampling-based Program Execution Monitoring. In
ACM International conference on Languages, compilers, and tools for embedded
systems (LCTES), pages 133–142, 2010.

9. GNU debugger. http://www.gnu.org/software/gdb/.
10. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal

Properties on Running Programs. In Automated Software Engineering (ASE),
pages 412–416, 2001.

11. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. MiBench: A free, commercially representative embedded benchmark suite.
In IEEE International Workshop on In Workload Characterization (WWC), pages
3–14, 2001.

12. K. Havelund and A. Goldberg. Verify your Runs. pages 374–383, 2008.
13. K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer.

Electronic Notes in Theoretical. Computer Science, 55(2), 2001.
14. K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Automated

Software Engineering (ASE), pages 135–143, 2001.

18

15. K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), pages
342–356, 2002.

16. H. K and G. Rosu. Efficient Monitoring of Safety Sroperties. Software Tools and
Technology Transfer (STTT), 6(2):158–173, 2004.

17. R. M. Karp. Reducibility Among Combinatorial Problems. In Symposium on
Complexity of Computer Computations, pages 85–103, 1972.

18. M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky. Monitoring, Checking,
and Steering of Real-Time Systems. Electronic. Notes in Theoretical Computer
Science, 70(4), 2002.

19. M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: A Run-
Time Assurance Approach for Java Programs. Formal Methods in System Design
(FMSD), 24(2):129–155, 2004.

20. O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. In Computer
Aided Verification (CAV), pages 172–183, 1999.

21. ILP solver lp solve. http://lpsolve.sourceforge.net/5.5/.
22. Z. Manna and A. Pnueli. A Hierarchy of Temporal Properties. In Principles of

Distributed Computing (PODC), pages 377–410, 1990.
23. G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Intermediate language

and tools for analysis and transformation of c programs. Proceedings of Conference
on Compilier Construction, 2002.

24. L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: A Hard Real-Time Run-
time Monitor. In Runtime Verification (RV), 2010. To appear.

25. A. Pnueli and A. Zaks. PSL Model Checking and Run-Time Verification via
Testers. In Symposium on Formal Methods (FM), pages 573–586, 2006.

26. G. Rosu, F. Chen, and T. Ball. Synthesizing Monitors for Safety Properties: This
Time with Calls and Returns. In Runtime Verification (RV), pages 51–68, 2008.

27. V. Stolz and E. Bodden. Temporal Assertions using Aspectj. Electronic Notes in
Theoretical Computer Science, 144(4), 2006.

28. W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee. MaC: Distributed Monitoring and
Checking. In Runtime Verification (RV), pages 184–201, 2009.

19

Appendix

A Summary of Notations

CFG control-flow graph
V set of vertices
A set of arcs
v0 initial basic block (vertex)

w(u, v) weight of arc (u, v)
w(v) weight of outgoing arcs from v in a control-flow graph
instv set of instructions in basic block v

〈v1 · · · vn〉 set of n instructions in basic block v
A timed automata
L set of locations
L0 set of initial locations
E set of switches
Σ alphabet

I(l) delay invariant of location l
Φ(X) set of all clock constraints on clocks X

Π logical property
VΠ set of variables that participate in property Π

T (CFG , v) graph transformation on vertex v for control-flow graph CFG
MSP minimum sampling period

IT (CFG , v) instrumenting graph transformation on vertex v for control-flow graph CFG
MP sampling-based monitor for program P
MD maximum delay

20

B Proofs

Theorem 1. Let P be a program and w = (a0, t0), (a1, t1) · · · be a timed word
of ACFGP ||MP . For all i and j, where i < j, ai = aj = s, and there does
not exist an s-transition between ai and aj in w, no run over w contains delay
transitions between ai and aj that includes two critical instructions.

Proof. The theorem holds by construction of MP , as it enforces the sampling
period MSP . We only describe three cases for the sake of clarity:

– Note that if all locations of ACFGP show their best-case execution time, the
monitor still observes all critical state changes. One can think of this scenario
similar to a sliding window with fixed size (equal to MSP) that can move
over a run. Since the window can never observe two critical state changes,
worst-case executions are irrelevant to sampling points.

– The above argument also clarifies why the delay invariant of location M1 in
MP causes no incorrectness.

– Finally, removing self-loops from uncritical vertices also create no problems,
since those loops contain no critical instructions. Thus, no matter how many
times such loops iterate, the minimum sampling period guarantees correct-
ness. %&

Theorem 2. TO is NP-complete.

Proof. Since showing membership to NP is straightforward, we only need to
prove that TO is NP-hard. To this end, we reduce the Minimum Vertex Cover
Problem (VC) [15] to TO. The minimum vertex cover problem is as follows:
Given a (directed or undirected) graph G = 〈V,E〉 and a positive integer K,
the problem is to find a set V ′ ⊆ V , such that |V ′| ≤ K and each edge in E is
incident to at least one vertex in V ′.

First, we present a mapping from an instance of VC to an instance of TO.
Then, we illustrate a reduction using our mapping.

Mapping. Let digraph G = 〈V1, E〉 and positive integer K be an arbitrary
instance of VC. We obtain an instance of TO as follows:

– We construct digraph CFG = 〈V2, v0, A, w〉 as follows:
• V2 = V1 ∪ {v0}, where v0 is an additional vertex representing the initial
basic block of CFG .

• A = E ∪ {(v0, u) | u ∈ V2},
• w(v0, u) = 2 for all u ∈ V2 and w(v, u) = 1, where v 1= v0.

– Finally, we let Y = K and X = 2.

Reduction. Now, we show that the answer to an instance of VC is affirmative
if and only if the answer to TO is positive:

21

– (⇒) Let V ′
1 ⊆ V1 be the answer to VC for G, such that |V ′

1 | ≤ K. We now
show that the set V ′

2 identical to V ′
1 is the answer to TO. First, observe that

|V ′
2 | ≤ Y . Now, notice that deleting a vertex in V ′

2 results in all pairs of
incoming and outgoing arcs to be replaced by edges of weight 2. The only
case where an edge of weight 2 is not created between two vertices, say u
and v, is when an edge of cost 1 already exists between u and v. However,
since all arcs are covered by a vertex in V ′

2 , the arc with weight 1 will be
replaced by an arc of weight at least 2 through another vertex in V ′

2 as well.
Finally, since all vertices have indegree and outdegree of at least 1, all arcs
are replaced by arcs of cost at least 2.

– (⇐) Let V ′
2 ⊆ V2 be the answer to TO, such that |V ′

2 | ≤ Y . We now show that
the set V ′

1 identical to V ′
2 is the answer to VC. First, observe that |V ′

1 | ≤ K.
Now, since the weight of all arcs in A are at least 2, all edges in E1 must be
incident to at least one vertex in V ′

1 . This simply implies that V ′
1 is a cover

for E1. %&

22

