
Noname manuscript No.
(will be inserted by the editor)

Time-triggered Runtime Verification

Borzoo Bonakdarpour · Samaneh

Navabpour · Sebastian Fischmeister

Abstract The goal of runtime verification is to monitor the behavior of a system

to check its conformance to a set of desirable logical properties. The literature of

runtime verification mostly focuses on event-triggered solutions, where a monitor is

invoked when an event of interest occurs (e.g., change in the value of some variable).

At invocation, the monitor evaluates the set of properties of the system that are affected

by the occurrence of the event. This constant invocation introduces two major defects to

the system under scrutiny at run time: (1) significant overhead, and (2) unpredictability

of behavior. These defects are serious obstacles when applying runtime verification on

safety-critical systems that are time-sensitive by nature.

To circumvent the aforementioned defects in runtime verification, in this article, we

introduce a novel time-triggered approach, where the monitor takes samples from the

system with a constant frequency, in order to analyze the system’s health. We describe

the formal semantics of time-triggered monitoring and discuss how to optimize the

sampling period using minimum auxiliary memory. We show that such optimization

is NP-complete and consequently introduce a mapping to Integer Linear Program-

ming. Experiments on a real-time benchmark suite show that our approach introduces

bounded overhead and effectively reduces the involvement of the monitor at run time

by using negligible auxiliary memory. We also show that in some cases it is even pos-

sible to reduce the overall overhead of runtime verification by using our time-triggered

approach when the structure of the system allows choosing a long enough sampling

period.

Keywords Runtime verification, monitoring, time-triggered, predictability, overhead,

real-time, embedded systems.

B. Bonakdarpour
School of Computer Science
University of Waterloo
200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1
E-mail: borzoo@cs.uwaterloo.ca

S. Navabpour and S. Fischmeister
Department of Electrical and Computer Engineering
University of Waterloo
200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1
E-mail: {snavabpo, sfischme}@uwaterloo.ca

sfischme
Typewriter
Accepted for publication in Springer Formal Methods in System Design (FMSD).

1 Introduction

In a computing system, correctness refers to the assertion that a system satisfies its

specification. Runtime verification [5, 6, 16, 21, 23, 43] refers to a technique, where a

monitor checks at run time whether or not the execution of a system under inspection

satisfies a given correctness property. Runtime verification complements exhaustive

verification methods such as model checking and theorem proving, as well as incom-

plete solutions such as testing and debugging. Exhaustive verification often requires

developing a rigorous abstract model of the system and suffers from the infamous

state-explosion problem. Testing and debugging, on the other hand, provide us with

under-approximated confidence about the correctness of a system as these methods

only check for the presence of defects for a limited set of scenarios.

Constructing a monitor for runtime verification normally involves synthesizing an

automaton for each property that the system under scrutiny must satisfy [34]. Then, by

composing the monitor with the system, the monitor observes the occurrence of each

transition and decides whether the specification has been met, violated, or impossible

to tell. Thus, the monitor is invoked by the execution of every event in the system which

may affect the valuation of the properties (e.g., change in the value of a variable). We

call this type of monitoring event-triggered. The main challenge in augmenting a system

with runtime verification is dealing with the runtime overhead of monitor invocations.

Several techniques have been introduced in the literature for reducing and controlling

runtime monitoring overhead. Examples include:

– improved instrumentation (e.g., using aspect-oriented programming [14,46]),

– combining static and dynamic analysis techniques (e.g., using typeset analysis [8]

and PID controllers [28]), and

– efficient monitor generation and management (e.g., in the case of parametric mon-

itors [39]).

Although the aforementioned approaches assist in reducing the overhead, the event-

triggered monitor has two characteristics which may cause defects in the behaviour of

the system under scrutiny: (1) unpredictable invocation of the monitor due to different

patterns in the occurrence of monitored events for different execution scenarios of the

program, and (2) possible bursts of monitoring invocation due to the uneven distribu-

tion of the occurrence of monitored events throughout the program execution. These

characteristics can lead to undesirable transient overload situations in time-sensitive

systems. This is because time predictability is the key ingredient in designing real-time

systems. Time predictability makes it easier to respect timing constraints and hard

real-time deadlines, and hence, bursts of monitoring invocation can cause the moni-

tored program to violate its timing constraints. We currently lack a rigorous method to

design and deploy runtime monitors suitable for time-sensitive systems. Such a moni-

tor should intervene with the program execution in a predictable and timely fashion,

making it possible for a system designer to reason about the timing constraints of the

monitored program in a straightforward manner.

With this motivation, in this paper, we propose an alternative and novel approach

for runtime verification of sequential systems, where the monitor is time-triggered. The

idea is that the monitor wakes up with a fixed frequency and takes samples from

the system under inspection in order to analyze the system’s correctness. This way,

the involvement of the monitor is time-bounded and predictable. Such predictability

makes a time-triggered monitor a perfect module in real-time systems, especially when

2

they are constrained by hard real-time deadlines. However, the main challenge in this

mechanism is accurate reconstruction of the system’s state between two samples. For

instance, if the value of a variable that should be monitored changes more than once

between two samples, the monitor may fail to detect violations of some properties.

Hence, the problem boils down to finding the longest possible sampling period that

allows state reconstruction.

Given a program and a set of (desired) variables to be monitored, in order to calcu-

late the longest sampling period, one has to consider three factors: (1) the instructions

that change the value of the desired variables, (2) execution paths of the program, and

(3) the time interval between the execution of instructions that change the value of

the desired variables. Our method first constructs the program’s control-flow graph. A

vertex in this graph is a basic block of one instruction and an edge between two ver-

tices exist if execution of one may immediately lead to the execution of the other. Each

edge is associated with a weight, which is the best-case execution time of the source

vertex. The longest sampling period for runtime monitoring is the minimum shortest

path between two vertices which incorporate instructions that change the value of a

desired variable. This sampling period ensures that all state changes (i.e., changes in

the value of desired variables) vital to sound evaluation of properties are observed at

run time.

We employ the longest sampling period to define the formal semantics of time-

triggered runtime verification using the timed automata formalism [2]. We define in

formal terms the behavior of a time-triggered monitor and how it interrupts and eval-

uates a set of properties at runtime by using the 3-valued Linear Temporal Logic [7]

and parallel composition of timed automata. We also argue that our method can be

extended for monitoring systems with respect to real-time extensions of temporal logics

such as the 3-valued Timed Linear Temporal Logic [7].

The longest sampling period extracted from a control-flow graph tend to be short,

and hence, precipitates highly frequent invocations of the monitor even in branches

of the program that do not require monitoring. In other words, the system under

inspection by a time-triggered monitor is likely to suffer from the redundant sampling

phenomenon. To tackle this problem, we propose a method for increasing the sampling

period by incorporating auxiliary memory, where we store a history of state changes.

As a result, extending the sampling period does not result in overlooking state changes

vital to the evaluation of properties, as they are kept in the history. Thus, when the

monitor wakes up and samples the program state, it also reads the recorded history

of events. Naturally, it is desirable to use the least amount of history while allowing

the least monitoring invocation. More formally, we face a tradeoff between minimizing

the size of auxiliary memory to build the state history versus maximizing the sampling

period. We show that the corresponding optimization problem is NP-complete.

In order to cope with the exponential complexity of the optimization problem, we

map the problem onto integer linear programming (ILP). Our tool chain RiTHM1 takes

a C program as input, instruments the program to build optimal history and constructs

a monitor that takes samples with the optimal sampling period. In particular, we gen-

erate the control-flow graph of a given C program using the tool LLVM [35]. Next, we

generate the critical control-flow graph, which encapsulates the state changes caused

by monitored variables. This graph and the optimization problem are then transformed

1 To access the tool, please visit http://uwaterloo.ca/embedded-software-group/
projects/rithm.

3

into an ILP model. The model is given to the tool lp solve [37] to obtain the optimal

sampling period and the size of auxiliary memory. Moreover, the solution to the ILP

model specifies what instrumentation instructions must be added to the input program

for building up history. Finally, a time-triggered monitor is automatically generated

for an MCB1700 board. It interrupts the program execution with respect to the ob-

tained sampling period, reads the program state and history variables and evaluates

properties.

We report the results of comprehensive experiments on the SNU [1] benchmark suite

(designed for real-time systems) to study the effect of different factors on time-triggered

monitoring. These factors include the longest sampling period, extended sampling pe-

riod using history, and desired variables for monitoring. We measure the impact of a

time-triggered monitor on metrics important to deploying a system augmented with

a time-triggered monitor. These metrics include the added instrumentation, amount

of monitoring overhead, the monitoring overhead pattern and predictability, overhead

jitter, program execution time, auxiliary memory usage, the number of variables stored

in the history, and redundant sampling. Our experimental results are highly encour-

aging. First, the size of ILP models for real-world applications are quite manageable.

Second, we observe that in event-triggered implementations, the system suffers from

bursts of monitor involvement, whereas our time-triggered monitor adds bounded, and

hence, predictable overhead. Finally, we observe that the memory usage overhead is

negligible and our method effectively increases the sampling period, which results in

adding less overall monitoring overhead at runtime, and in some cases obtaining faster

execution of the program as compared to event-triggered methods.

Organization. The rest of the paper is organized as follows. We present the prelim-

inary concepts in Section 2. Formal semantics of time-triggered runtime monitoring is

discussed in Section 3. Then, in Section 4, we introduce our method for optimizing the

sampling period using auxiliary memory and analyze its complexity. Section 5 presents

our transformation to ILP. Section 6 explains our implementation, tool chain, and ex-

perimental settings, while Section 7 is dedicated to experimental results. Related work

is discussed in Section 8. Finally, we make concluding remarks and discuss future work

in Section 9.

2 Preliminaries

In this section, we present the preliminary concepts. In Subsection 2.1, we present the

notion of control-flow graphs for analyzing timing characteristics of programs written in

high-level programming languages. In Subsections 2.2 and 2.3, we present the concept

of timed automata [2] and 3-valued linear temporal logic [7, 32, 36], respectively, as

basis for presenting the semantics of time-triggered runtime verification.

2.1 Control-flow Graphs

Definition 1 The control-flow graph of a program P is a weighted directed simple

graph CFGP = 〈V, v0, A, w〉, where:

– V : is a set of vertices, each representing a basic block of P . Each basic block consists

of a sequence of instructions in P .

4

1: a = scanf(...);

2: if (a % 2 == 0) goto 9

3: else {
4: printf(a + "is odd");

5:* b = a/2;

6:* c = a/2 + 1;

7: goto 10;

8: }
9: printf(a + "is even");

10: end program

(a) A simple C program

A
1, 2

1

C

E
9

D
10

1

2

B
4..7

4

2

2

(b) Control-flow graph

Fig. 1 A C program and its control-flow graph.

– v0: is the initial vertex with indegree 0, which represents the initial basic block of

P .

– A: is a set of arcs of the form (u, v), where u, v ∈ V . An arc (u, v) exists in A, if

and only if the execution of basic block u can immediately lead to the execution of

basic block v.

– w: is a function w : A → N, which defines a weight for each arc in A. The weight

of an arc is the best-case execution time (BCET) of the source basic block2. �

Notation: Let v be a vertex of a control-flow graph. Since the weight of all outgo-

ing arcs from v are equal, we denote the weight of the arcs that originate from v by w(v).

For example, consider the C program in Figure 1(a). If each instruction takes one

time unit to execute, the resulting control-flow graph is shown in Figure 1(b). Vertices

of the graph in Figure 1(b) are annotated by the corresponding line numbers of the C

program in Figure 1(a).

2.2 Timed Automata

Let AP be a finite set of atomic propositions and Σ = 2AP be a finite alphabet. A letter

a in Σ is interpreted as assigning truth values to the elements of AP ; i.e., elements in a

are assigned true (denoted >) and elements not in a are assigned false (denoted ⊥). A

timed word over Σ is a sequence (a0, t0), (a1, t1) · · · (ak, tk), where each ai ∈ Σ and each

ti is in non-negative real numbers R≥0 and the occurrence times increase monotonically.

Let X be a set of clock variables. A clock constraint over X is a Boolean combination

of formulae of the form x � c or x− y � c, where x, y ∈ X, c ∈ Z≥0, and � is either <

or ≤. We denote the set of all clock constraints over X by Φ(X). A clock valuation is

a function ν : X → R≥0 that assigns a real value to each clock variable. For τ ∈ R≥0,

we write ν + τ to denote ν(x) + τ for every clock variable x in X. Also, for λ ⊆ X,

2 In Section 3, we will compute the longest sampling period of a CFG based on BCET of
basic blocks. This computation is quite realistic, as (1) all hardware vendors publish the BCET
of their instruction set in terms of clock cycles, and (2) BCET is a conservative approximation
and no execution occurs faster than that.

5

ν[λ := 0] denotes the clock valuation that assigns 0 to each x ∈ λ and agrees with ν

over the rest of the clock variables in X.

Definition 2 A timed automaton is a tuple A = 〈L,L0, X,Σ, E, I〉, where

– L is a finite set of locations.

– L0 ⊆ L is a set of initial locations.

– X is a finite set of clock variables.

– Σ is a finite set of labels.

– E ⊆ (L×Σ× 2X ×Φ(X)×L) is a set of switches. A switch 〈l, a, λ, ϕ, l′〉 represents

a transition from location l to location l′ labelled by a, under clock constraint ϕ.

The set λ ⊆ X gives the clocks to be reset with this switch.

– I : L→ Φ(X) assigns a delay invariant to a location. �

The semantics of a timed automaton A is as follows. A state is a pair (l, ν), where

l ∈ L and ν is a clock valuation for X. A state (l, ν) is an initial state if l ∈ L0 and

ν(x) = 0 for all x ∈ X. There are two types of transitions:

1. Location switches are of the form 〈l, a, λ, ϕ, l′〉, such that ν satisfies ϕ, (l, ν)
a−→

(l′, ν[λ := 0]), and ν[λ := 0] satisfies I(l′).
2. Delay transitions are of the form (l, ν)

τ−→ (l, ν + τ), which preserves the location l

for time duration τ ∈ R≥0, such that for all 0 ≤ τ ′ ≤ τ , ν + τ ′ satisfies the delay

invariant I(l).

For a timed word w = (a0, t0), (a1, t1) · · · (ak, tk), a run over w is a sequence

q0
t0−→ q′0

a0−−→ q1
t1−t0−−−−→ q′1

a1−−→ q2
t2−t1−−−−→ q′2

a2−−→ q3 → · · ·
ak−−→ qk+1

such that q0 is an initial state.

Let A1 = 〈L1, L
0
1, X1,Σ1, E1, I1〉 and A2 = 〈L2, L

0
2, X2,Σ2, E2, I2〉 be two timed

automata, where X1 ∩ X2 = ∅. The parallel composition of A1 and A2 is A1||A2 =

〈L1 × L2, L
0
1 × L0

2, X1 ∪X2,Σ1 ∪ Σ2, E, I〉, where I(l1, l2) = I(l1) ∧ I(l2), and E is

defined by:

1. for a ∈ Σ1 ∩ Σ2, for every 〈l1, a, λ1, ϕ1, l
′
1〉 in E1, and 〈l2, a, λ2, ϕ2, l

′
2〉 in E2, E

contains 〈(l1, l2), a, λ1 ∪ λ2, ϕ1 ∧ ϕ2, (l
′
1, l
′
2)〉.

2. for a ∈ Σ1\Σ2, for every 〈l, a, λ, ϕ, l′〉 in E1, and every m ∈ L2, E contains

〈(l,m), a, λ, ϕ, (l′,m)〉.
3. for a ∈ Σ2\Σ1, for every 〈l, a, λ, ϕ, l′〉 in E2, and every m ∈ L1, E contains

〈(m, l), a, λ, ϕ, (m, l′)〉.

2.3 3-Valued Linear Temporal Logic (LTL)

Linear temporal logic (Ltl) [42] is a popular formalism for specifying properties of (con-

current) programs. The set of well-formed linear temporal logic formulas is constructed

from a set of atomic propositions, the standard Boolean operators, and temporal op-

erators. A word is a finite or infinite sequence of letters w = a0a1a2 . . . , where ai ∈ Σ

for all i ≥ 0. We denote the set of all finite words over Σ by Σ∗ and the set of all

infinite words by Σω. For a finite word u and a word w, we write u ·w to denote their

concatenation.

6

Definition 3 (Ltl Syntax) Ltl formulas are defined inductively as follows:

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1Uϕ2

where p ∈ Σ, and © (next) and U (until) are temporal operators. �

Definition 4 (Ltl Semantics) Let w = a0a1 . . . be an infinite word in Σω, i be

a non-negative integer, and |= denote the satisfaction relation. Semantics of Ltl is

defined inductively as follows:

w, i |= >
w, i |= p iff p ∈ ai
w, i |= ¬ϕ iff w, i 6|= ϕ

w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 ∨ w, i |= ϕ2

w, i |=©ϕ iff w, i+ 1 |= ϕ

w, i |= ϕ1 Uϕ2 iff ∃k ≥ i : wk |= ϕ2 ∧ ∀i ≤ j ≤ k : w, j |= ϕ1

In addition, w |= ϕ holds iff w, 0 |= ϕ holds. �

Notice that an Ltl formula ϕ defines a set of words (i.e., a language or a property)

that satisfies the semantics of that formula. We denote this language by L(ϕ). For

simplicity, we introduce abbreviation temporal operators. ♦ϕ (eventually ϕ) denotes

>Uϕ, and �ϕ (always ϕ) denotes ¬♦¬ϕ.

Implementing runtime verification boils down to the following problem: given a

finite word σ = a0a1a2 . . . an, check whether or not σ belongs to a set of words defined

by some property ϕ. This is a complex problem, because Ltl semantics is defined over

infinite words and a running program can only deliver a finite word at a verification

point. For example, given a finite word σ = a0a1 . . . an, it may be impossible for a

monitor to decide weather the property ♦p is satisfied.

To formalize satisfaction of Ltl properties at run time, in [7], the authors propose

semantics for Ltl, where the evaluation of a formula ranges over three values ‘>’, ‘⊥’,

and ‘?’ (denoted Ltl3). The latter value expresses the fact that it is not possible to

decide on the satisfaction of a property, given the current finite trace of the program.

Definition 5 (Ltl3 semantics) Let u ∈ Σ∗ be a finite word. The truth value of an

Ltl3 formula ϕ with respect to u, denoted by [u |= ϕ], is defined as follows:

[u |= ϕ] =

> if ∀w ∈ Σω : u · w |= ϕ,

⊥ if ∀w ∈ Σω : u · w 6|= ϕ,

? otherwise.

�

Note that the syntax [u |= ϕ] for Ltl3 semantics is defined over finite words as

opposed to u |= ϕ for Ltl semantics, which is defined over infinite words. For example,

given a finite program trace σ = a0a1 · · · an, property ♦p holds iff ai |= p, for some

i, 0 ≤ i ≤ n (i.e., σ is a good prefix). Otherwise, the property evaluates to ?.

Definition 6 (Good and Bad Prefixes) Given a language L ⊆ Σω of infinite words

over Σ, we call a finite word u ∈ Σ∗

– a good prefix for L, if ∀w ∈ Σω : u · w ∈ L

7

q⊥

true
initspawn ∧ ¬init

¬spawn ∧ ¬init
“?”

q0

true
q⊤

Fig. 2 The monitor for property ϕ ≡ (¬spawn U init)

– a bad prefix for L, if ∀w ∈ Σω : u · w /∈ L
– an ugly prefix otherwise. �

Implementing runtime verification for an Ltl3 property involves synthesizing a

monitor that realizes the property. In [7], the authors introduce a stepwise method that

takes an Ltl3 property ϕ as input and generates a deterministic finite state machine

(FSM) Mϕ as output. Intuitively, simulating a finite word u on this FSM reaches a

state that illustrates the valuation of [u |= ϕ].

Definition 7 (Monitor) Let ϕ be an Ltl3 formula over alphabet Σ. The monitor of

ϕ is the unique FSM Mϕ = (Σ, Q, q0, δ, λ), where Q is a set of states, q0 is the initial

state, δ is the transition relation, and λ is a function that maps each state in Q to a

value in {>,⊥, ?}, such that:

[u |= ϕ] = λ(δ(q0, u)).

�

For example, consider the property ϕ ≡ (¬spawn U init) (i.e., a thread is not

spawned until it is initialized). The corresponding monitor is shown in Figure 2 [7]. The

proposition true denotes the set AP of all propositions. We use the term a conclusive

state to refer to monitor states q> and q⊥; i.e., a state where λ(q) = > and λ(q) = ⊥,

respectively. Other states are called inconclusive states. A monitor Mϕ is constructed

in a way that it recognizes good, bad, and ugly prefixes of L(ϕ). Hence, a conclusive

state is in fact also a trap state. In other words, if Mϕ reaches a conclusive state, it

stays in this state.

3 Formal Semantics of Time-triggered Monitoring

Given a program P , we describe the semantics of time-triggered monitoring in two

steps: (1) identifying the longest sampling period, and (2) constructing a time-triggered

monitor and composing it with P . Then, we show that the obtained composition can

effectively verify a rich fragment of Ltl3 properties at run time.

3.1 Calculating the Longest Sampling Period

Let P be a program and ϕ be an Ltl3 property, where P is expected to satisfy ϕ. Let

Vϕ denote the set of variables that can change the valuation of the atomic propositions

8

9

A
1, 2

2

B1
4

6
B3

5

1

1

1

1

7
B4

B2

D
10

C
2

E

2

1

1

(a) Step 1

4
1

3

2

A

B2

B3

D

(b) Step 2

Legened

Critical basic block

Uncritical basic block

Fig. 3 Obtaining a critical CFG and calculating the sampling period.

in ϕ. For example, in property ϕ ≡ �♦(x ≥ 0 ∧ y = 10), we have Vϕ = {x, y}.
Generally, in our time-triggered monitoring, a sampler process periodically wakes up

with some sampling period, reads the value of variables in Vϕ from program P , and

passes them to a monitor Mϕ (as described in Subsection 2.3) to evaluate ϕ. The

sampler process is discussed in more detail in Subsection 3.2. The main challenge in

this mechanism is accurate reconstruction of the states that P takes in between two

consecutive samples from the sampler process. For instance, if the value of a variable

in Vϕ changes more than once between two samples, the sampler process can only

extract the last value of the variable. Hence, the monitor may fail to evaluate property

ϕ correctly.

In order to accurately sample all the changes in the value of variables in Vϕ, we

modify CFGP as follows. In the first step, we ensure that each critical instruction (i.e.,

an instruction that modifies the value of a variable in Vϕ) is in a basic block that

contains no other instructions. We refer to such a basic block as critical basic block

or critical vertex. Formally, let instv = 〈v1 · · · vn〉 denote the sequence of instructions

in a basic block v of CFGP . Let vi, where 1 < i < n, be the one and only critical

instruction in instv. We split vertex v into three vertices v1, v2, and v3, such that

instv1 = 〈v11 · · · vi−11 〉, instv2 = 〈vi2〉, and instv3 = 〈vi+1
3 · · · vn3 〉. Incoming arcs to v

now enter v1. We add arc (v1, v2), where w(v1, v2) is equal to the best-case execution

time of 〈v11 · · · vi−11 〉. We also add arc (v2, v3), where w(v2, v3) is equal to the best-case

execution time of 〈vi2〉. Outgoing arcs from v now leave v3 with weight equal to the

best-case execution time of 〈vi+1
3 · · · vn3 〉. Obviously, if i = 1 or i = n, we split v into

two vertices. We continue this procedure until each critical instruction is in a separate

basic block. For example, in the program in Figure 1(a), if variables b and c are in Vϕ,

then instructions 5 and 6 are critical, and hence, we obtain the control-flow graph in

Figure 3(a).

Since non-critical vertices do not play a role in determining the sampling period,

in the second step, our method collapses non-critical vertices as follows. Let CFG =

〈V, v0, A, w〉 be a control-flow graph. Transformation T (CFG, v), where v ∈ V \{v0}
and outdegree of v is positive, obtains CFG ′ = 〈V ′, v0, A′, w′〉 via the following ordered

steps:

9

1. Let A′′ be the set A ∪ {(u1, u2) | (u1, v), (v, u2) ∈ A}. Observe that if an arc

(u1, u2) already exists in A, then A′′ will contain parallel arcs (such arcs can be

distinguished by a simple indexing or renaming scheme). We eliminate the addi-

tional arcs in Step 3.

2. For each arc (u1, u2) ∈ A′′,

w′(u1, u2) =

{
w(u1, u2) if (u1, u2) ∈ A
w(u1, v) + w(v, u2) if (u1, u2) ∈ A′′\A

3. If there exist parallel arcs from vertex u1 to u2, we only include the one with

minimum weight in A′′.
4. Finally, A′ = A′′\{(u1, v), (v, u2) | u1, u2 ∈ V } and V ′ = V \ {v}.

We clarify a special case of the above transformation, where u and v are two non-

critical vertices with arcs (u, v) and (v, u) between them. Deleting one of the vertices,

e.g., u, results in a self-loop (v, v), which we can safely remove. This is simply because a

loop that contains no critical instructions has no effect on the calculation of the longest

sampling period.

We apply the above transformation on all non-critical vertices. We call the resulting

graph a critical control-flow graph. Such a graph includes (1) a non-critical initial

basic block, (2) possibly a non-critical vertex with outdegree zero (if the program is

terminating), and (3) a set of critical vertices. Figure 3(b) shows the critical CFG of

the graph in Figure 3(a).

Definition 8 Let CFG = 〈V, v0, A, w〉 be a critical control-flow graph. The longest

sampling period (LSP) for CFG is

LSPCFG = min{w(v1, v2) | (v1, v2) ∈ A ∧ v1 is a critical vertex}

�

Intuitively, the longest sampling period is the minimum time interval between the

execution of two critical instructions that change the value of a variable in Vϕ. For

example, the longest sampling period of the control-flow graph in Figure 3(b) is LSP =

1. Later in this section, we show that by applying this sampling period, one can verify

the correctness of a rich fragment of Ltl3 properties at run time.

3.2 Constructing and Composing a Time-triggered Monitor

We now explain the semantics of time-triggered monitoring using timed automata. We

note that our implementation (as described in Section 6) does not explicitly use the

transformation presented in this subsection; i.e., we solely use the timed automata

formalism to describe the semantics and our implementation is a refinement of the

transformation. Transformation of a control-flow graph CFG = 〈V, v0, A, w〉 into a

timed automaton ACFG = 〈L,L0, X,Σ, E, I〉, where X = {t} and Σ = {a, s}, is as

follows:

– L = {lv | v ∈ V }
– L0 = {lv0}
– E = {〈lv, a, {t}, t ≥ w(v, v′), lv′〉 | (v, v′) ∈ A} ∪ {〈lv, s, {}, true, lv〉 | v ∈ V }.

10

D

C

A

E
a

s

t ≤ 2 s

t ≤ 4

s

a a

t ≥ 4
t := 0

B
t ≤ 8

s

t ≥ 2
t := 0

t := 0
t ≥ 1

a
t ≤ 2 s

t ≥ 2
t := 0

a t ≥ 1
t := 0

(a) Timed automaton of the CFG in
Figure 1(b)

x = 0

x ≤ LSPCFGP

S0

x = LSPCFGP

S1

x := 0

x ≤ MD

s

true
init

“?”
q0

true
q⊤q⊥

¬spawn ∧ ¬init

spawn ∧ ¬init

SI

s

(b) Time-triggered sampler and monitor

Fig. 4 Formal semantics of time-triggered monitoring.

– I(lv) = worst-case execution time of basic block v ∈ V .

Intuitively, ACFG works as follows. Each location of ACFG corresponds to one and

only one vertex of CFG. The initial location corresponds to the initial basic block of

CFG. Each location is associated with a delay invariant; the execution can stay in a

location no longer than the worst-case execution time of the corresponding basic block.

ACFG has two types of switches. The first set of switches (labelled by a) change the

location. Each such switch takes place when the execution of the corresponding basic

block is complete. Obviously, this can happen not earlier than the best-case execution

time of the basic block. The other set of switches (labelled by s) are self-loops and are

meant to synchronize with the automaton representing the sampler process. The timed

automaton obtained from the control-flow graph in Figure 1(b) is shown in Figure 4(a),

where the worst-case execution time of each instruction is 2.

The relation between execution of a program P and runs of the timed automaton

ACFGP
is as follows. Intuitively, a delay transition in ACFGP

corresponds to the

execution of a set of instructions in P . Formally, let q = (l, t = 0) be a state of

ACFGP
, where location l hosts instructions {l1 · · · ln}. An outgoing transition from

this state with delay τ reaches a state (l, t+ τ) which leads to executing zero or more

instructions. Thus, starting from (l, t = 0), a run of ACFGP
is of the form:

(l, t = 0)
τ1−−→ (li, t+ τ1)

τ2−−→ (lj , t+ τ1 + τ2)
τ3−−→ · · · τm−−→ (ln, t+

∑m
k=1 τk)

a−→ (l′, t = 0),

such that:

– i ≤ j ≤ m,

– l 6= l′, where (l, l′) is a location switch in E,

– (li, t + τ1) denotes the fact that instructions 〈l1 · · · li〉 have been executed within

τ1 time units,

–
∑m
k=1 τk ≥ w(l, l′) in CFGP , and

11

– (t ≤
∑m
k=1 τk) ⇒ I(l).

Note that an s-transition may occur in such a run, but such transitions obviously do

not change the current location or the value of t. This also holds in practice, because

when the sampler process intervenes with the program execution to extract the value

of variables in Vϕ, the execution of the program halts until the sampler process finishes

its data extraction and resumes the normal operation of the program.

A sampler process SP of a time-triggered monitor for program P works as follows

(see Figure 4(b)). From the initial location SI the only outgoing switch is enabled

immediately (i.e., when x = 0). This switch is labeled by s and the sampler synchro-

nizes with ACFGP
on the switch in order to read the variables in Vϕ and evaluate ϕ.

Consequently, the sampler reaches location S1 and may remain in this location for at

most MD time units, where MD is the worst-case execution time for reading the vari-

ables in Vϕ and property evaluation, using the technique presented in Subsection 2.3.

That is, the sampled program state is simulated on the monitor (e.g., the monitor

depicted in location S1 from Figure 2) automaton for property evaluation. We assume

that sampling never occurs in the middle of the execution of an instruction. Normally,

this assumption is already implemented, as hardware interrupts to generate time ticks

are generally handled after completion of fetched instructions. After the verification

step in location S1, the sampler reaches location S0, where it sleeps until the sampling

period is complete (i.e, x = LSPCFGP
). Thus, the parallel composition ACFGP

||SP
constructs the entire monitored system. For example, the following is a run of the au-

tomaton in Figure 4(a), composed with a sampler with sampling period LSP = 1 and

MD = 0:

ASI
s−→ AS1 −→ AS0

1−→ A1S0
s−→

A1S1 −→ A1S0
1−→ A2S0

s−→ A2S1 −→ A2S0
a−→ BS0

1−→ B4S0 → · · ·

We call the combination of such a time-triggered sampler and a monitor (as illustrated

in Figure 4(b)) a time-triggered monitor.

3.3 Correctness of Time-triggered Runtime Monitoring

In this section, we show that runtime verification using a time-triggered monitor is

sound and complete for a rich fragment of Ltl3.

Assumption 1 We assume that MD ≤ LSP. �

This assumption is quite realistic. That is, the time a time-triggered monitor needs

to read the state of the program and evaluate properties is less than the sampling

period. This can be, for instance, guaranteed by scheduling all verification tasks at

run time on a different computing core. We now show that our monitor construction

method is sound and complete with respect to observing all value changes of variables.

Lemma 1 Let P be a program and w = (a0, t0), (a1, t1) · · · be a timed word of

ACFGP
||SP . For all i and j, where i < j, ai = aj = s, and there does not exist an

s-transition between ai and aj in w, no run over w contains delay transitions between

ai and aj that includes two critical instructions.

12

Proof The lemma holds by construction of SP , as it enforces sampling period LSP .

We only describe three cases for the sake of clarity:

– Note that if all locations of ACFGP
show their worst-case execution time, the

monitor still observes all critical state changes. One can think of this scenario

similar to a sliding window with fixed size (equal to LSP) that can move over

a run. Since the window can never observe two critical state changes, worst-case

executions are irrelevant to sampling points.

– The above argument also clarifies why the delay invariant of location S1 in SP
causes no incorrectness.

– Finally, removing self-loops from non-critical vertices do not create any problems,

since those loops do not contain critical instructions. Thus, no matter how many

times such loops iterate, the longest sampling period guarantees correctness. �

Lemma 1 has several consequences important to deploying and running a time-

triggered monitor:

– Once a time-triggered monitor starts its execution, it can soundly re-construct the

state of the inspected program, regardless of the time the time-triggered monitor

started executing. This implies that even when the time-triggered monitor has exe-

cution offset from the execution start of the inspected program, the time-triggered

monitor starts sampling the program correctly as soon as the it starts its execution.

Thus, if a time-triggered monitor crashes and recovers, it will work correctly from

the point it restarts sampling.

– If the inspected program does not exhibit best-case execution time (which is nor-

mally the case), then the program executes at a slower pace. In this case, the

time-triggered monitor still samples the program with LSP and this ensures that

no critical instructions are overlooked. Thus, if the inspected program is later aug-

mented by new code that does not decrease the minimum time interval between

the execution of two consecutive critical instructions and hence, there is no need

to change the sampling period or the time-triggered monitor structure.

– Unlike worst/average-case execution, best-case execution time analysis is a straight-

forward procedure. Most hardware vendors publish the best-case execution time of

instructions sets based on CPU clock cycles. Thus, our method for constructing a

time-triggered monitor is a conservative, but robust approach for deployment.

A valid question in the context of our approach is whether any Ltl3 property can

be soundly verified when the time-triggered sampler is in location S1. To intuitively

answer this question, first, consider the following property ϕ1 ≡ ♦p; i.e., eventually

proposition p holds. Since the sampler reads the state of the program after any change

in the value of variables in proposition p (i.e., variables in Vϕ1), when it reaches state

S1, simulation of proposition p on Mϕ1 can trivially determine whether the valuation

of ϕ is ‘?’ or conclusive.

On the other hand, consider Ltl property ϕ2 ≡ (p ⇒ ©q); i.e., if p holds, then

proposition q must hold in the next state. In this case, a time-triggered monitor cannot

soundly evaluate ϕ2. The reason is simple: the sampler only reads the state of the

program when it wakes up. Thus, if proposition p becomes true in the next program

state, the sampler may wake up several states after q becomes true. Hence, when the

sampler wakes up, if q is false, then the monitor can evaluate ϕ2 to ⊥. However, if q is

true, then the monitor cannot deduce whether q became true in the immediate state

after p become true, or in some other state.

13

In the next theorem, we show that a time-triggered monitor is sound for verification

of the fragment of Ltl3 which excludes the next operator (denoted Ltl−©3). To this

end, we first set our terminology based on standard concepts. A state of a program is

a valuation of its variables. Notice that each state of a program determines a set of

propositions that hold in that state. Thus, a finite word of a program is trivially defined

by a finite sequence of states of the program. Given a finite word u of a program, where

each letter in u is read by the time-triggered monitor, we denote the complete finite

word of the program by û. Formally, let u = a0a1a2 · · · an and û = b0b1b2 · · · bm. If ai
and ai+1 are two letters in u, where 0 ≤ i ≤ n, then (1) there exist j and k, such that

0 ≤ j ≤ k ≤ m, bj = ai, and bk = ai+1, and (2) if there exists l, where j < l < k, then

state bl is not sampled by the time-triggered monitor.

Lemma 2 Let p be a proposition in AP and u = a0a1 · · · an be a finite word of a

program P that is sampled by a time-triggered monitor with sampling period LSP. Let

û = b0b1 · · · bm. It is the case that p 6∈ bi and p ∈ bi+1, where 0 ≤ i ≤ m, if and only

if there exists j, 0 ≤ j ≤ n, such that p 6∈ aj and p ∈ aj+1.

Proof The proof follows trivially from Lemma 1. �

Intuitively, Lemma 2 shows that if a proposition becomes true in a state, then the

time-triggered monitor always detects it in the next immediate sample and vice versa.

Lemma 3 Let p and q be two propositions in AP and u = a0a1 · · · an be a finite word

of a program P that is sampled by a time-triggered monitor with sampling period LSP.

Let û = b0b1 · · · bm. It is the case that p ∈ bi and q ∈ bj , where 0 ≤ i ≤ j ≤ m if and

only if there exists i′ and j′, 0 ≤ i′ ≤ j′ ≤ n, such that p ∈ ai′ and p ∈ aj′ .

Proof The proof follows trivially from Lemma 2. �

Intuitively, Lemma 3 shows that the causal order of occurrence of events when

detected by a time-triggered monitor is correct. Notice that in Lemmas 2 and 3 the if

directions show soundness and the only if reverse directions show completeness.

Theorem 1 Let P be a program, ϕ be a property in Ltl−©3 , and u be a finite word of

P that is sampled by a time-triggered monitor with sampling period LSP and û be the

corresponding complete program finite word. It is the case that [u |= ϕ] = [û |= ϕ].

Proof Let u = a0a1 · · · an and û = b0b1 · · · bm. We prove the theorem in an inductive

fashion:

– Let ϕ ≡ p, where p is an atomic proposition and [û |= p] = >. This implies that

p ∈ b0. Since the time-triggered monitor samples the program in the initial state

(i.e., the switch from location SI to S1 in Figure 4(b)), we have a0 = b0. Thus, the

monitor can determine the truthfulness of p ∈ a0. The same argument holds for

other possible values of [u |= p]. Also, the same claim can be proved for any point

of a finite word other than a0 and b0, in the same fashion by applying Lemma 2.

– For cases, where the property is of the form ¬ϕ or ϕ1 ∧ϕ2, the proof is implied by

Lemma 2 and is identical to the proof of the previous case.

– Let ϕ ≡ ϕ1Uϕ2. We now show that [u |= ϕ] = [û |= ϕ]. We distinguish three

sub-cases:

14

– Let us assume that [û |= ϕ1Uϕ2] =?. It follows that (1) there does not exist

k ≤ m, such that [û, k |= ϕ2] = >, and (2) for all i, 0 ≤ i ≤ m, [û, i |= ϕ1] = >.

By applying Lemmas 2 and 3, it is straightforward to see that there does not

exist l ≤ n, such that [u, l |= ϕ2] = >, and (2) for all j, 0 ≤ j ≤ n, [u, j |=
ϕ1] = >. Hence, we have [u |= ϕ1Uϕ2] =?.

– Let us assume that [û |= ϕ1Uϕ2] = >. It follows that (1) there exists k ≤ m,

such that [û, k |= ϕ2] = >, and (2) for all i, 0 ≤ i ≤ k, [û, i |= ϕ1] = >. By

applying Lemmas 2 and 3, it is straightforward to see that there exists l ≤ n,

such that [u, l |= ϕ2] = >, and (2) for all j, 0 ≤ j ≤ l, [u, j |= ϕ1] = >. Hence,

we have [u |= ϕ1Uϕ2] = >.

– Let us assume that [û |= ϕ1Uϕ2] = ⊥. It follows that (1) there does not

exist k ≤ m, such that [û, k |= ϕ2] = >, or (2) there exists i, 0 ≤ i ≤ m,

[û, i |= ϕ1] = ⊥. By applying Lemmas 2 and 3, it is straightforward to see that

there does not exist l ≤ n, such that [u, l |= ϕ2] = >, or (2) there exists j,

0 ≤ j ≤ n, [u, j |= ϕ1] = ⊥. Hence, we have [u |= ϕ1Uϕ2] = ⊥. �

Notice that in Theorem 1, the logical equivalence between [u |= ϕ] and [û |= ϕ]

show soundness and completeness of time-triggered runtime verification. Finally, we

note that one can prove that a time-triggered monitor can soundly evaluate the 3-

valued version of timed linear time temporal logic (TLtl3) [7, 44] as well. We choose

to focus on Ltl3, since reasoning about TLtl3 would require presenting a fairly large

background, which would distract our main goal in this paper.

4 Optimizing the Sampling Period and its Complexity

Employing the longest sampling period as identified in Subsection 3.1 results in highly

frequent involvement of the time-triggered monitor in the program execution at run

time. Obviously, increasing the sampling period naively may lead to the inability of

the monitor to reconstruct the state of the program at a sampling point. Thus, in

order to reduce the number of sampling points (i.e., reduce monitor involvement),

we use auxiliary memory to build a history of program state changes between two

samples. More specifically, let (u, v) be an arc and v be a vertex in a critical control-flow

graph CFG, where instv = 〈i〉 and i changes the value of a variable, say a. We apply

transformation T (CFG, v) introduced in Subsection 3.1 and add an instruction i′ :

a′ ← a, where a′ is an auxiliary memory location. Thus, we obtain instu = instu.〈i, i′〉.
We call this process instrumenting transformation and denote it by IT (CFG, v). For

example, in Figure 5(a), assuming that x is a variable in Vϕ, all three basic blocks are

critical. Thus, the sampling period is 1 time unit. Figure 5(b) shows the CFG obtained

by applying the IT transformation on the shaded vertex, where the corresponding

instruction is added to the previous vertex and the value of x is stored in x′.
Unlike uncritical vertices, the issue of loops involving critical vertices need to be

handled differently. Suppose u and v are two critical vertices with arcs (u, v) and (v, u)

between them and we intend to apply IT on vertex u. This results in a self-loop (v, v),

where w(v, v) = w(u, v) + w(v, u). Since we do not know how many times the loop

may iterate at run time, it is impossible to determine the upperbound on the size of

auxiliary memory needed to collapse vertex v. Hence, to ensure correctness, we do not

allow applying transformation IT on critical vertices that have self-loops.

Before we elaborate on the formulation of optimal instrumentation of a program,

two issues need to be addressed with regard to instrumenting a program using the

15

(a)

5

(b)

1 4

x’:=a*b

x:=1

x:=1
x:=a*b x:=1

x:=1

Fig. 5 IT transformation applied on the middle basic block.

IT transformation. The first issue is whether instrumenting a program affects the

calculation of the longest sampling period as described in Subsection 3.1. Observe that

adding an extra instruction to a critical basic block only extends the execution time of

that basic block. As argued in Section 3, if the execution of a basic block gets extended

for any reason, it does not affect the correctness of a time-triggered monitor. This is

due to the fact that adding instrumentation only increases the best-case execution time

of a basic block and by maintaining the calculated sampling period, we are guaranteed

that no critical instruction is overlooked.

The second issue is that whether the transformed program inspected by a time-

triggered monitor exhibits the same semantics. In particular, let (u, v) be an arc

of a critical control-flow graph and v be the basic block, on which transformation

IT (CFG, v) is applied. Let the critical instruction in v be instv = 〈i〉, which updates a

variable a and the added instruction by IT be i′ : a′ ← a. Let us assume that variable a

participates in valuation of a proposition p. In this setting, in order to enable a monitor

to evaluate Ltl3 properties soundly, one only needs a simple rewriting procedure, so

that a property that involves proposition p is rewritten by p′ when variable a′ is read.

Hence, valuation of any Ltl−©3 property is preserved by applying IT transformations;

i.e., the instrumentation instructions do not change the functional properties of the

inspected program (obviously with no next operator).

We now analyze the complexity of achieving optimal instrumentation. Given a

critical control-flow graph, our goal is to optimize two factors through a set of IT

transformations: (1) minimizing auxiliary memory, and (2) maximizing the sampling

period. We now analyze the complexity of such optimization.

Instance. A critical control-flow graph CFG = 〈V, v0, A, w〉 and positive integers X

and Y .

Transformation optimization decision problem (TO). Does there exist a set

U ⊆ V , such that after applying transformation IT (CFG, u) for all u ∈ U , we obtain

a critical control-flow graph CFG ′ = 〈V ′, v0, A′, w′〉, where |U | ≤ Y and for all arcs

(u, v) ∈ A′, w′(u, v) ≥ X?

Theorem 2 TO is NP-complete.

Proof Since showing membership to NP is straightforward, we only need to prove that

TO is NP-hard. To this end, we reduce the Minimum Vertex Cover Problem (VC) [29] to

TO. The minimum vertex cover problem is as follows: Given a (directed or undirected)

16

graph G = 〈V,E〉 and a positive integer K, the problem is to find a set V ′ ⊆ V , such

that |V ′| ≤ K and each edge in E is incident to at least one vertex in V ′.
First, we present a mapping from an instance of VC to an instance of TO. Then,

we illustrate a reduction using our mapping.

Mapping. Let digraph G = 〈V1, E〉 and positive integer K be an arbitrary instance

of VC. We obtain an instance of TO as follows:

– We construct digraph CFG = 〈V2, v0, A, w〉 as follows:

– V2 = V1 ∪ {v0}, where v0 is an additional vertex representing the initial basic

block of CFG.

– A = E ∪ {(v0, u) | u ∈ V2},
– w(v0, u) = 2 for all u ∈ V2 and w(v, u) = 1, for all v ∈ V − {v0}.

– Finally, we let Y = K and X = 2.

Reduction. Now, we show that the answer to an instance of VC is affirmative if and

only if the answer to TO is positive:

– (⇒) Let V ′1 ⊆ V1 be the answer to VC for G, such that |V ′1 | ≤ K. We now show that

the set V ′2 identical to V ′1 is the answer to TO. First, observe that |V ′2 | ≤ Y . Now,

notice that deleting a vertex in V ′2 results in all pairs of incoming and outgoing

arcs to be replaced by edges of weight 2. The only case where an edge of weight 2

is not created between two vertices, say u and v, is when an edge of cost 1 already

exists between u and v. However, since all arcs are covered by a vertex in V ′2 , the

arc with weight 1 will be replaced by an arc of weight at least 2 through another

vertex in V ′2 as well. Finally, since all vertices have indegree and outdegree of at

least 1, all arcs are replaced by arcs of cost at least 2.

– (⇐) Let V ′2 ⊆ V2 be the answer to TO, such that |V ′2 | ≤ Y . We now show that

the set V ′1 identical to V ′2 is the answer to VC. First, observe that |V ′1 | ≤ K. Now,

since the weight of all arcs in A are at least 2, all edges in E1 must be incident to

at least one vertex in V ′1 . This simply implies that V ′1 is a cover for E1. �

Obviously, time-triggered monitoring and in particular, increasing the sampling

period introduces detection latencies. To tackle this problem, one can specify a toler-

able detection delay for variables in Vϕ. This factor can be easily incorporated in our

transformation technique and optimization problem.

Theorem 2 clearly shows the tradeoff between minimizing the auxiliary memory

size and maximizing the sampling period. For practical reasons, designers may have

restrictions over the size of the auxiliary memory for building the histories. Neverthe-

less, one can increase the sampling period as much as possible to bound the runtime

monitoring overhead. The extreme case is to take a sample in the beginning and one

at the end of program execution. We now show that building optimized history even

for this overly simplified problem remains NP-complete. We denote this problem by

MTO.

Theorem 3 MTO is NP-complete.

Proof Since showing membership to NP is straightforward, we only need to prove that

MTO is NP-hard. To this end, our reduction is from the Hamiltonian Path Problem

17

(HP) [29]: Given a (directed or undirected) graph G = 〈V,E〉, the problem is to deter-

mine whether G has a simple path that visits all vertices in V .

First, we present a mapping from an instance of HP to an instance of MTO. Then,

we illustrate a reduction using our mapping.

Mapping. Let digraph G1 = 〈V1, E1〉 be an arbitrary instance of HP. We obtain an

instance of MTO as follows:

– We construct digraph G2 = 〈V2, E2〉, such that V2 = V1 and E2 = E1.

– The cost function is defined as C(e) = 1 for all e ∈ E2

– Finally, we let Y = |V | − 2 and X = |V | − 1.

Reduction. Now, we show that the answer to an instance of HP is affirmative if and

only if the answer to MTO is positive:

– (⇒) If the answer to HP is affirmative, one can delete all vertices except for the

first and the last along the Hamiltonian path. It follows that the number of deleted

vertices is |V | − 2 and since each transformation selects edges with maximum cost,

the cost of the final edge is |V | − 1.

– (⇐) Suppose that the answer to MTO is affirmative. This implies that the deleted

vertices must be in a total order sequence to create edges of cost |V | − 1. This

sequence creates a path that includes all but two vertices. Moreover, this path is

simple, as deleting a vertex makes it impossible to consider a vertex more than

once. Finally, since the cost of edges are at |V | − 1, the remaining two vertices are

source and terminating vertices of a Hamiltonian path.

5 Mapping to Integer Linear Programming

In order to cope with the exponential complexity of our optimization problem, we

transform it into Integer Linear Programming (ILP). ILP is a well-studied optimization

problem and there exist numerous efficient ILP solvers. The problem is of the form:
Minimize c.z

Subject to A.z ≥ b

where A (a rational m×n matrix), c (a rational n-vector), and b (a rational m-vector)

are given, and, z is an n-vector of integers to be determined. In other words, we try to

find the minimum of a linear function over a feasible set defined by a finite number of

linear constraints. It can be shown that a problem with linear equalities and inequalities

can always be put in the above form, implying that this formulation is more general

than it might look.

We now describe how we map the optimization problem described in Section 4 to

ILP. Our mapping takes the critical control-flow graph CFG = 〈V, v0, A, w〉 of the in-

spected program and a desired sampling period SP as input. Our objective is to find the

minimum number of vertices that must be removed from V through transformation IT .

Integer variables. Our ILP model employs the following sets of variables:

18

1. x = {xv | v ∈ V }, where each xv is a binary integer variable: if xv = 1, then vertex

v is removed from V , whereas xv = 0 means that v remains in V .

2. a = {av(i) | v ∈ V ∧ 0 < i ≤ outdegree of v}: where each av(i) is an integer variable

which represents the weight of a unique arc originating from vertex v (i.e., no two

av(i) represent the weight of the same outgoing arc). This variable is needed to

store the new weight of an arc created by merging a sequence of arcs. For example,

in Figure 3(b), initially, variable aB2(1)
= 1. However, if xB3

= 1 (i.e., vertex B3 is

removed), then aB2(1)
= 3.

3. y = {yv(i) , y
′
v(i) | v ∈ V ∧ 0 < i ≤ outdegree of v}, called choice variables, where

each yv(i) and y′v(i) is an integer variable. The application of this set is described

later in this section.

Constraints for the initial basic block. Since we always want a sample at the

beginning of the program to extract the initial value of variables, we add the following

constraints:

xv0 = 0 (1)

av0
(i)

= w(v0, u) (2)

where 0 < i ≤ outdegree of v0 and (v0, u) is an arc in A. Note that for each outgoing

arc from v0, the ILP model will have Constraint 2.

Constraints for arc weights and internal vertices. Since our goal is to ensure

that the weight of all arcs become at least SP , if there exists an arc of weight less than

SP , then the target vertex of the arc must be removed from the graph. Thus, for every

arc (u, v) ∈ A, we add the following constraint:

au(i) + SP .xv ≥ SP (3)

where au(i) represents arc (u, v).

Next, we add constraints for calculating the new weights of arcs when vertices are

deleted from CFG. We distinguish two cases:

– Case 1: If xv = 0, for some v ∈ V , then for each av(i) , where 0 < i ≤ outdegree

of v, av(i) represents the weight of a unique arc originating from vertex v.

– Case 2: If xv = 1, then for each av(i) , where 0 < i ≤ outdegree of v, av(i) =

av(i) + au(j) , where au(j) represents the weight of the arc (u, v) ∈ A. Note that in

this case, although vertex v is removed, for simplicity, we use variables av(i) as the

weight of the newly created arcs. Also note that in this case, outgoing arcs from u

automatically satisfy Constraint 3.

In order to make these cases mutually exclusive in ILP, we use the choice variables

with the following properties:

– Prop. 1: The values of yv(i) and y′v(i) are such that one of them is zero and the

other is au(j) . This property enforces mutual exclusiveness of the above cases.

– Prop. 2: If xv = 1, then for all i, 0 < i ≤ outdegree of v, yv(i) = au(j) and

y′v(i) = 0. On the contrary, if xv = 0, then yv(i) = 0 and y′v(i) = au(j) .

19

In order to enforce Prop. 1, we use a special data structure implemented in our ILP

solver called Special Ordered Set Type 1, where at most one variable can take a positive

value while all others must have a value of zero. The following constraints enforce Prop.

1 and 2:

yv(i) + y′v(i) = au(j) (4)

sos1(yv(i) , y
′
v(i)) (5)

1 ≤ xv + y′v(i) ≤ au(j) (6)

Note that Constraints 4-6 are duplicated for all i, 0 < i ≤ outdegree of v. The following

constraints implement Cases 1 and 2, respectively. These constraints target variable

av(i) which represents an arc (v, v′) ∈ A.

w(v, v′) + au(j) − y
′
v(i) = av(i) (7)

yv(i) + w((v, v′)) = av(i) (8)

For example, if v is deleted (i.e., xv = 1), then we have yv(i) = 0 and y′v(i) = au(j) by

Constraints 4-6. Moreover, when v is deleted, the weight of the newly created arc av(i)
will be au + w(v). This is ensured by Constraints 7 and 8. Note that Constraints 7

and 8 are duplicated for all i, 0 < i ≤ outdegree of v.

Now, we duplicate Constraints 4-8 for each incoming arc to vertex v. More specif-

ically, for arcs (u1, v), (u2, v) · · · (un, v), we instantiate Constraints 4-8 by further du-

plicating each variable av(i) to au1
v(i) , a

u2
v(i) · · · a

un
v(i) . We note that existence of multiple

incoming arcs in a control-flow graph is due to the existence of conditional and goto

statements in the input program. Since the depth of nested conditional statements

is not normally high, we do not expect to encounter an explosion in the number of

a-variables in our ILP model.

Handling loops. Recall that in Section 4, we argued that vertices with self-loops

cannot be removed. Self-loops are created when we apply the IT transformation on

vertices of a cycle in a control-flow graph. To ensure that self-loops are not removed,

we add a constraint to our ILP model, such that from each cycle v1 → v2 → · · · →
vn → v1, only n− 1 vertices can be deleted:

n∑
i=1

xvi ≤ n− 1 (9)

We note that cycles can be identified when we construct CFG and there is no need

for graph exploration to enumerate them.

Objective function. Finally, we state our objective function, where we aim at

minimizing the set of vertices removed from CFG:

Minimize
∑
v∈V

xv (10)

6 Experimental Settings

In this section, we present our tool chain and the experimental configurations in Sub-

sections 6.1 and 6.2, respectively.

20

CFG Creator Critical CFG Creator
CFG

C Program Variables of Interest

LLVM

LSP Calculator CPU Specifications

ILP Creator lp_solve

SP

Critical CFG

LSP

ILP model
Instrumentor

Critical CFG

Set of vertices

Monitor Creator Monitoring Mode Sampler

Instrumented Program

Input

Module

Output

Fig. 6 Tool chain.

6.1 Implementation and Tool Chain

Figure 6.1 shows our tool chain. Our tool chain consists of four main phases: (1) the

CFG phase, (2) the LSP calculation phase, (3) the ILP phase, and (4) the monitoring

phase. The CFG phase is responsible with creating the critical control-flow graph of

the program. The LSP calculation phase finds the longest sampling period. The ILP

phase is responsible for creating the ILP model and solving the optimization problem

to find the minimum number of critical vertexes which need to be collapsed. The

monitoring phase incorporates the sampler process of the time-triggered monitor which

conducts the monitoring of the program. We note that in our experiments, we are not

concerned with actual verification of Ltl3 properties. Our main objective is to study

different aspect of monitoring overhead for data extraction only. The actual verification

at runtime can be done using the tools introduced in [7].

The CFG phase contains two main components, the CFG creator and the critical

CFG creator. The CFG creator is implemented over LLVM [35]. It takes the source code

of the inspected program as input and produces the program’s control-flow graph. Note

that each vertex of the control-flow graph includes its best-case execution time and the

line number of instructions incorporated within the vertex. The critical CFG creator

is a Java application which receives the control-flow graph from the CFG creator and

the list of variables of interest (i.e., variables in Vϕ) from the user. As a result, the

critical CFG creator creates the critical control-flow graph and provides it to the LSP

calculator phase.

The LSP calculator phase contains a Java application which receives the critical

control-flow graph of the program from the critical CFG creator and calculates the

longest sampling period of the program in the form of CPU cycles. The LSP calculator

can also calculate the sampling period in the form of nano-seconds, if the user provides

CPU specifications.

21

The ILP phase contains three main components, the ILP creator, ILP solver, and

the instrumentor. The ILP creator is a Java application which receives the critical

control flow graph from the critical CFG creator, the longest sampling period from the

LSP calculator, and the intended sampling period SP . The ILP creator returns an ILP

model within the format acceptable by the ILP solver. Our ILP solver is the mixed

integer linear programming (MILP) solver, lp solve [37]. lp solve receives the ILP model

and solves the ILP problem. As a result lp solve returns the set of critical vertices which

need to be collapsed. The instrumentor receives the set of collapsed critical vertices from

lp solve and finds the instructions in the program’s source code that are incorporated

within the collapsed critical vertices. Then, the instrumentor creates a duplicate of

the program’s source code and instruments the copied source code appropriately. In

other words, after each instruction within a collapsed vertex, the instrumentor adds an

instruction which stores the variable of interest updated by the instruction within the

history. In the end, the instrumentor returns an instrumented copy of the program’s

source code.

The monitoring phase contains a Java application (monitor creator) which creates

the sampler process. The sampler process is a C program which runs in parallel with

the inspected program. The monitoring phase can create one of the following three

monitoring modes for the sampler process:

– Event-triggered (ET monitor): The program execution halts when an in-

struction changes the value of a variable of interest and invokes the sampler. The

sampler reads the new value of the variable of interest and informs the program to

resume execution.

– Time-triggered with no history (TT monitor): The sampler is time-triggered.

The sampler has a timer that represents the time-triggered monitor’s sampling pe-

riod. Hence, the sampler sets this timer to the sampling period calculated by the

LSP calculator. When the timer goes off, the sampler halts the execution of the

program and reads the value of all variables of interest. Then, the sampler resets

its timer and informs the program to resume execution.

– Time-triggered with history (TTH monitor): This setting incorporates our

ILP optimization. The monitoring is performed over the instrumented copy of the

source code that is provided by the instrumentor. The sampler functions as of the

TT monitor. In this setting, the sampler sets its timer to the intended sampling

period (i.e., SP) provided by the user, and it also extracts the data in the history,

in addition to the variables of interest.

In addition, the monitor creator receives the variables of interest and provides read

access for these variables to the sampler process.

6.2 Experimental Configurations

Our case studies are from the SNU [1] benchmark suite. The experimental setting is as

follows. In each program, the main function runs 500 times, where at each iteration the

main function receives new input values from the environment. For each program, we

find the top two variables which play the most part in the program’s runtime behav-

ior. In other words, we find the two variables which are most used by the program’s

instructions. Then, we consider these two variables as the variables of interest (i.e.,

22

variables in Vϕ). The program and the time-triggered monitor run on an MCB1700

board with the RTX real-time operating system.

To evaluate the TT and TTH monitors, we consider the following metrics:

1. The execution time of the monitored program. This value projects the amount of

monitoring overhead at run time.

2. The absolute jitter (i.e., the difference between the minimum and maximum value)

of the overhead of the monitor invocations throughout the program run. This metric

is of importance, since when the absolute jitter of the overhead of the monitor

invocations is smaller, the monitor has more predictable behavior.

3. The amount of memory used by the TTH monitor.

7 Experimental Results

In this section, we describe the results of our Experiments. In particular, we analyze the

runtime overhead of different monitors (i.e., ET , TT , TTH) in Subsection 7.1. Then,

Subsection 7.2 studies the impact of employing different monitors on memory usage

and history size. Finally, in Subsection 7.3, we present evidence that shows employing

a time-triggered monitor results in more efficient allocation of resources at runtime.

7.1 Monitoring Overhead at Run Time

We analyze the runtime monitoring overhead based on the absolute jitter of the monitor

invocations (cf. Subsection 7.1.1), the actual execution time of the monitored program,

and redundant sampling (cf. Subsubsection 7.1.2).

7.1.1 Absolute Jitter Analysis

Notice that each monitor invocation overhead (MIO) at run time is caused by:

1. the overhead of interrupting/resuming the program execution and invoking the

monitor, and

2. reading the values of the variables of interest as well as the variables stored in the

history.

Recall that one of the main goals of designing a time-triggered monitoring is to

obtain bounded monitoring overhead at run time. In other words, we hypothesize that

the absolute jitter of MIO of a TT monitor is less than the absolute jitter of MIO

of an ET monitor. To validate our hypothesis, consider Figures 7(a) and 7(b). These

figures show MIO of the three monitoring modes throughout the program run of bs and

qsort, respectively. In general, the ET monitor invocations are irregularly distributed

throughout the program execution. For instance, Figure 7(a) shows that program bs has

an execution path which does not incorporate any critical instructions, and hence, the

ET monitor is not invoked at all (the execution between 1500µs and 2000µs). Moreover,

recall that the overhead caused by each invocation is proportional to the type of the

variable of interest read by the monitor. Hence, MIO may vary considerably from one

invocation to another when the type of variables of interest vary. This, in turn, results

in a large absolute jitter for the MIO (e.g., qsort in Figure 7(b)). Thus, the ET monitor

23

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

O
ve

rh
ea

d[
na

no
se

so
nd

]

Time[microsecond]

ET
TT

50*TT
100*TT

(a) Monitor invocation overhead in bs

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

O
ve

rh
ea

d[
na

no
se

so
nd

]

Time[microsecond]

ET
TT

50*TT
100*TT

(b) Monitor invocation overhead in qsort

Fig. 7 Monitoring invocation absolute overhead.

introduces probe-effects, which in turn may create unpredictable and even incorrect

behavior from the monitored program. This anomaly is, in particular, unacceptable for

real-time embedded and mission-critical systems.

On the contrary, the TT monitor invocations are evenly distributed throughout the

program execution. In addition, since the number and type of variables of interest read

at each sample remains constant, MIO is not subject to any bursts. Recall that the TT

monitor reads all the variables of interest at each sample. Hence, the absolute overhead

remains consistent and bounded which results in a small absolute jitter for MIO (see

Figures 7(b) and 7(a)). Consequently, the monitored program exhibits a predictable

behaviour. As can be seen in Figure 7, the TT monitor may potentially impose larger

overhead compared to the ET monitor, which as a result, extends the overall execution

time of the monitored program. Nonetheless, in many commonly considered embedded

applications, designers prefer predictability at the cost of larger overhead.

For qsort, Figure 7(b) shows that the absolute jitter of MIO of the TT monitor

is less than the absolute jitter of MIO of the ET monitor. In qsort, the variables of

interest are of types array of int, int, and long. The different values of MIO of the ET

monitor in Figure 7(b) shows how different types of variables can affect the value of

MIO. For instance, when an entry in the array changes the ET monitor reads all the

variables stored within the array. On the contrary, when the long variable changes, the

ET monitor only reads the changed variable. Hence, the overhead of reading variables

of interest may vary significantly from one variable to another. Thus, Figure 7(b) is a

clear indication of how different types of variables of interest affect the value of MIO.

As for bs, Figure 7(a) shows that the absolute jitter of MIO of the TT monitor and the

absolute jitter of MIO of the ET monitor are approximately equal. For such programs,

this is caused by the condition, where all variables of interest are of the same type.

For instance in bs, all the variables of interest are of type int, and hence, the ET

monitor extracts the same type of variables at each invocation. Thus, the ET monitor

simulates the invocation condition of a TT monitor, where the type and number of

variables extracted by the monitor are all similar. As a result, the absolute jitter of

MIO of the ET monitor is similar to the absolute jitter of MIO of the TT monitor.

The situation is more complex for TTH monitors. A TTH monitor also reads the

variables of interest stored in the history at each sample. Hence, the MIO of a TTH

monitor depends on the overhead of reading the history as well. Since, the number

and type of variables stored in the history can differ from one sample to another, the

24

absolute jitter of MIO may not be smaller to the absolute jitter of MIO of the ET

monitor. For qsort, the absolute jitter of MIO of the TTH monitor with the intended

sampling period of both 50∗TT and 100∗TT is less than the the absolute jitter of MIO

of the ET monitor (see Figure 8(a)). This is not the case in all programs, for instance,

in program jfdctint, the absolute jitter of MIO of the TTH monitor with the intended

sampling period of both 50∗TT and 100∗TT is greater than the absolute jitter of MIO

of the ET monitor. Our deeper analysis shows that this is caused by a large difference

between the number of instrumentation instructions executed between two samples.

Recall from Section 5 that we use ILP to find the set of critical instructions to collapse

as to achieve the intended sampling period SP , and as a result, the variables updated by

these instructions are stored within the history. Hence, immediately after each of these

critical instructions, the Instrumentor module in our tool chain adds an instruction

which stores such updated variables into the history. We refer to these instructions as

instrumentation instructions. Since our ILP model only focuses on finding the solution

which incorporates the minimum amount of history, the instrumentation instructions

may be unevenly distributed throughout the program run. Thus, there is a possibility

that the number of executed instrumentations between two samples vary.

The fluctuation in the number of instrumentations executed between two samples

causes an increase in the absolute jitter of the MIO. Figure 8(b) shows the absolute

jitter of the executed instrumentations between two consecutive samples. It is clear that

a larger absolute jitter for the executed instrumentation causes a larger absolute jitter

for MIO. As can be seen, for jfdctint, the absolute jitter of the executed instrumentation

to achieve the intended sampling period of 50 ∗ TT , is 25, which is a large value in

comparison to the other SNU programs.

Figures 7(b) and 7(a) also show that in each monitoring mode, the execution time

of the program changes. Note that the execution time of a monitored program depends

on (1) the MIO of the monitor, and (2) the number of monitor invocations. Recall

that at each monitor invocation, the sampler process stops the program execution and

resumes its execution when the sampler finishes reading the variables of interest. Hence,

the time the program resumes its execution depends on the MIO. For instance, the

MIO of the TT monitor is larger than the ET monitor. In addition, the TT monitor

intervenes with the program more often. As a result, the execution time of qsort and bs

monitored with the TT monitor is longer than their execution time when monitored

with the ET monitor. We will discuss the characteristics of a monitored program’s

execution time in more detail in the next Subsection.

7.1.2 Execution time and Redundant Sampling Analysis

As for the affect of the monitoring overhead on program execution, Figures 9(a) and

9(b) show the execution time of the programs of SNU while being monitored with

our three monitoring modes. The results show that the execution time of a program

monitored with the TT monitor is larger than the execution time of the program

monitored with the ET monitor. This excessive overhead is caused by the following

characteristics of the TT monitor.

– The monitor invocation happens more often in the TT monitor compared to the

ET monitor.

– The MIO of the TT monitor is larger compared to the ET monitor. This is caused

by the fact that at each invocation, the TT monitor reads all the variables of interest

from the program while the ET monitor reads only one variable of interest.

25

 0

 100

 200

 300

 400

 500

adpcm-test

bs crc fft1 fibcall
fir insersort

jfdctint

lms
matmul

minver

qsort-exam

qurt
select

sqrt

Ab
so

lu
te

 J
itt

er
 o

f M
on

ito
r I

nv
oc

at
io

n
O

ve
rh

ea
d

[1
0n

s]

Event
TT

50xTT
100xTT

(a) Absolute jitter of monitor invocation
overhead

 0

 10

 20

 30

adpcm-test

bs crc fft1 fibcall
fir insersort

jfdctint

lms
matmul

minver

qsort-exam

qurt
select

sqrt

Ab
so

lu
te

 J
itt

er
 o

f I
ns

tru
m

en
ta

tio
n 50xTT

100xTT

(b) Absolute jitter of instrumentation

Fig. 8 Absolute jitter of monitor invocation overhead and instrumentation.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000

bs crc fft1 fibcall
insersort

qsort-exam

qurt
sqrt

Ex
ec

ut
io

n
Ti

m
e

[1
0n

s]

Event
TT

50xTT
100xTT

(a) Execution time of SNU programs

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000
 8500
 9000
 9500

 10000

adpcm-test

fir jfdctint

lms
matmul

minver

select

Ex
ec

ut
io

n
Ti

m
e

[1
0n

s]
Event

TT
50xTT

100xTT

(b) Execution time of SNU programs

 10000

 1e+06

adpcm-test

crc fibcall
fir insersort

jfdctint

lms
matmul

minver

M
on

ito
r I

nv
oc

at
io

n
(lo

g
sc

al
e)

Event
TT

50xTT
100xTT

(c) Monitor invocation

 10000

bs fft1 qsort-exam

qurt
select

sqrt

M
on

ito
r I

nv
oc

at
io

n
(lo

g
sc

al
e)

Event
TT

50xTT
100xTT

(d) Monitor invocation

Fig. 9 Monitoring overhead and monitoring invocation.

The side affect of high volume monitor invocation is redundant sampling. A redun-

dant sample is when the monitor takes a sample while the program has not executed

a critical instruction since the last monitor sample. The TT bar in Figures 10(a)

and 10(b) shows the number of redundant samples taken by the TT monitor at run

time, and the Event bar shows the number of critical instructions executed at run time.

The ratio of redundant samples to the number of executed critical instructions is the

metric which defines the excessive overhead of the TT monitor. We refer to this ratio

as the redundant sample ratio. Thus, a larger redundant sample ratio results in larger

excessive monitoring overhead, and hence, a longer execution time for the monitored

program.

26

 1

 10

 100

 1000

 10000

 100000

 1e+06

adpcm-test

crc fft1 fir jfdctint

lms
minver

M
on

ito
r I

nv
oc

at
io

n
(lo

g
sc

al
e)

Event
TT

(a) Redundant samples of TT monitor

 1

 10

 100

 1000

 10000

bs fibcall
insersort

matmul

qsort-exam

qurt
select

sqrt

M
on

ito
r I

nv
oc

at
io

n
(lo

g
sc

al
e)

Event
TT

(b) Redundant samples of TT monitor

 0

 0.2

 0.4

 0.6

 0.8

 1

adpcm-test

bs crc fft1 fibcall
fir insersort

jfdctint

lms
matmul

minver

qsort-exam

qurt
select

sqrt

Fr
eq

ue
nc

y
of

 R
ed

un
da

nt
 S

am
pl

es TT

(c) Frequency of redundant samples

Fig. 10 Redundant samples and their frequency.

In a program such as minevr, the monitor takes 209213 number of redundant samples

which results in a redundant sample ratio of 0.70, which is a considerably large value

compared to the other SNU programs. Consequently, the execution time of minevr when

monitored with the TT monitor is 1.33 times longer than its execution time when

monitored with the ET monitor (see Figure 9(b)). Figure 10(c) shows the average

frequency in which the monitor takes a redundant sample. Clearly, a larger redundant

sample ratio results in a higher frequency of redundant samples. Hence, it is desirable

to decrease the frequency of redundant samples. To this end, we use history to increase

the sampling period, and hence, decrease the frequency of redundant samples. In the

SNU programs, by using history to achieve the intended sampling periods of 50 ∗ TT
and 100 ∗ TT , the number of redundant samples reduces to zero. In other words, in

the SNU programs, the intended sampling periods of 50 ∗ TT and 100 ∗ TT do not

result in redundant samples, meaning that when the TT monitor takes a sample, the

program has executed at least one critical instruction. Note that this may not be the

case for programs other than the SNU programs. In other words, by using history, the

redundant samples of the TT monitor does not reduce to zero for all possible programs.

In general, the monitoring overhead imposed by the TTH monitor is less than

the TT monitor. Recall that the MIO is twofold. Our studies show that the overhead

imposed by stopping/resuming the program execution and invoking the monitor makes

up the majority of MIO. Consequently, when the TTH monitor increases the sampling

period, it also reduces the number of monitor invocations (i.e., samples). As a result,

the overhead imposed by the TTH monitor is less than the TT monitor. Figures 9(a)

and 9(b) show the reduction in the execution time of the programs when using the

TTH monitor compared to using the TT monitor.

27

In some programs such as sqrt, select, and qurt, the execution times of the programs

monitored with the TTH monitor with sampling period of 50 ∗ TT and 100 ∗ TT are

less than the execution time of the programs when monitored with the ET monitor.

Our studies show that in such programs, by using history, the number of monitor

invocations reduces by more than 50% (e.g., in sqrt the reduction is 93%). Figures 9(c)

and 9(d) show the number of monitor invocations for each monitoring mode. These

figures show that the number of monitor invocations of the TTH monitor for both

50 ∗ TT and 100 ∗ TT are less than the monitor invocations of the ET monitor. These

figures show that the TTH monitor does not introduce redundant samples, and hence,

does not impose excessive and redundant overhead. Also, our studies show that in these

programs, the overhead of stopping/resuming the program execution and invoking the

monitor still makes up the majority of the MIO. Hence, the effect of the reduction

in the number of invocations overcomes the effect of the increase in the overhead of

reading the values of the variables of interest (Recall that the TTH monitor must also

read the variables of interest stored in the history). Thus, the monitoring overhead

imposed by the TTH monitor becomes less than the overhead of the ET monitor.

On the other hand, in programs such as lms and insertsort, the execution time of the

programs monitored with the TTH monitor with sampling period of 50 ∗ TT is more

than their execution time when monitored with the ET monitor. In these programs, our

studies show that the overhead of reading the variables of interest exceeds the overhead

of stopping/resuming the program execution and invoking the monitor. Hence, the

effect of the increase in the overhead of reading the values of the variables of interest

overcomes the effect of the decrease in the number of monitor invocations. Thus, the

overhead imposed by the TTH monitor is larger than the overhead of the ET monitor.

7.2 History Size at Run Time

Regarding the TTH monitor, recall that we prohibited deletion of self-loops from criti-

cal control-flow graphs. Hence, if some critical instructions reside in loop structures, the

minimum sampling period of the loop structures, can determine the longest sampling

period. For the SNU programs, the majority of the critical instructions reside in loops,

and hence, in such a situation, employing history does not result in a considerable

increase in the sampling period (e.g., for ficall the sampling period does not increase

at all). To overcome this problem, we use profiling to estimate the upper bound of the

number of times each loop structure takes for each program. We leverage gcov to carry

out the profiling. With respect to the upper bound on the loops and type of variables

of interest updated within the loops, we devise a size for the memory location of the

history. For instance, if a loop structure runs at most 100 times and within it a variable

of interest of type integer is updated, we devise a memory location of at least the size

int size ∗ 100 for the history. In addition, we note that solving the corresponding ILP

problem for all programs of SNU take an average of 56 seconds. This clearly shows

that we are not even close to the boundaries of ILP solving.

Figure 11(a) shows the average number of instrumentation executed between two

consecutive samples. In other words, it shows the average number of data stored in the

history between samples. Figure 11(b) shows the average amount of memory consumed

by the history in between two consecutive samples. Note that the amount of history

consumption depends on the number and type of variables stored within the history.

The encouraging outcome from the experimental results shown in Figure 11(b) is that

28

 0.1

 1

 10

 100

adpcm-test

bs crc fft1 fibcall
fir insersort

jfdctint

lms
matmul

minver

qsort-exam

qurt
select

sqrt

In
st

ru
m

en
ta

tio
n

(lo
g

sc
al

e)

50xTT
100xTT

(a) Number of variables stored in the history

 1

 10

 100

 1000

adpcm-test

bs crc fft1 fibcall
fir insersort

jfdctint

lms
matmul

minver

qsort-exam

qurt
select

sqrt

H
is

to
ry

 C
on

su
m

pt
io

n
[b

it]
 (l

og
 s

ca
le

)

50xTT
100xTT

(b) Amount of history consumption

Fig. 11 Number of variables stored in history and memory consumption.

with a small amount of additional memory, we can severely increase (e.g., by 50 and 100

times) the sampling period of the TT monitor. For instance, program lms uses the most

amount of extra memory (5088 bits) to increase its sampling period by a factor of 100.

Hence, results show that by using approximately 5kbits of memory, the execution time

of lms decreases by 57% (see Figure 9(b)). Thus, the experimental results encourage

the use of TTH monitors.

7.3 Resource Management

Although the relative data may seem to indicate that event-triggered approaches use

less resources than time-triggered approaches, this is incorrect. Real-time applications

must operate even under worst-case scenarios and as such, the worst-case behavior is

of interested instead of the average case behavior.

To demonstrate this, let us consider the program sqrt and the associated measure-

ments. Figure 12(a) shows the cumulative overhead for the program. The x-axis show

the execution time of the application in seconds and the y-axis shows the overhead up

to that execution time. It clearly shows that the event-triggered system has less over-

head than the time-triggered approaches. However, this also depends on the worst-case

behaviour.

Figure 12(b) shows the upper bound on the number of events for different durations.

The x-axis shows the length of the duration in which events occurred. The y-axis shows

the maximum number of events found in at least one time interval of the given duration.

For example, the time-triggered approach resulted in an upper bound of 5000 events in

at least one observed interval of 250 seconds. The interesting point is that the event-

triggered approach consistently has a higher upper bound on the number of events for

any given duration. This means that for a real-time application, in which developers

have to reserve resource budgets to ensure the timeliness of the system, the event-

triggered approach will require a larger reservation of resources than time-triggered

approaches. This is due to, in the worst case, more events occurring and the need to

reserve resources for the worst case.

The final decision on which scheme requires the lower resource partition depends

on several factors such as interruption overhead, context-switch overhead, messaging

overhead, etc. Thus Figure 12(b) reports the value on the y-axis as the number of

observed events. However, this leaves the basic argument intact.

29

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0 50 100 150 200 250
Time [s]

O
ve

rh
ea

d
[s

] Frequency
ET
TT
50x TT
100x TT

(a) Cumulative overhead measured for sqrt

0

5000

10000

15000

20000

0 50 100 150 200 250
Time [s]

Ev
en

ts

Frequency
ET
TT
50x TT
100x TT

(b) Bound on monitoring events for sqrt

Fig. 12 Resource management

8 Related Work

In classic runtime verification [43], a system is composed with an external observer,

called the monitor. This monitor is normally an automaton synthesized from a set of

properties under which the system is scrutinized. In general, runtime verification frame-

works [15, 22, 24, 31, 32, 36, 46] use event-triggered monitoring, in the sense that every

change in the state of the program invokes the monitor for analysis. These frameworks

mainly consist of three components:

– The logic component converts a logical property into an internal representation.

– Using the internal representation, the data extraction component determines the

data required for property evaluation and instruments the program accordingly.

– The verification component evaluates the property, using the property’s internal

representation and the data provided by the instrumentation at run time.

In these frameworks, each instrumentation added to the program, invokes the ver-

ification component and provides the component with data that reflect the changes in

the program state (i.e., data required for property evaluation). Hence, these frameworks

are unsuitable for time-sensitive systems because of their event-based monitoring.

On the other hand, our initial work [12] and the approach presented in this article

use time-triggered monitoring. In particular, the approach in [12], calculates the longest

sampling period which ensures sound program state reconstruction. This method may

impose a large monitoring overhead. Hence, in [12] and [40], we propose using auxiliary

memory to increase the sampling period, which in turn reduces the runtime monitoring

overhead. In the same context, [20] introduces a sampling-based program monitoring

technique. It proposes a framework that allows quantitative reasoning about issues in-

volved in sampling-based techniques. [20] also discusses how to optimally instrument

a program using a set of markers, such that different execution paths reachable from

the same state are distinguishable. In addition, [47] also uses a sampling-based pro-

gram monitoring technique to monitor the program execution. [47] introduces state

estimation using Hidden Markov Models (HMM) to estimate the probability of satis-

30

faction/violation of a property in between samples. This method may suffer from false

positives and false negatives.

From the logical and language point of view (i.e., logical component), runtime veri-

fication has mostly been studied in the context of Linear Temporal Logic (LTL) proper-

ties [5,21,24–26,48] and in particular safety properties [27,45]. Other languages along

with their logical components have also been developed for facilitating specification

of temporal properties [30,33,49]. Runtime verification of ω-languages was considered

in [17]. In addition, [19] addresses runtime verification of safety-progress [13,38] prop-

erties. Also, [41] proposes the language Copilot for developing hard real-time monitors.

The aim of this language is to develop programs where the monitor (1) does not change

the functionality and schedule of the program, and (2) adds minimal overhead to the

program. We, however, take a different approach by focusing on developing a new data-

extraction component. We design a method where predictable monitors are added to

observe the behaviour of existing programs. We also present optimization techniques

and experimental evidence on the effectiveness of our approach.

Regardless of the type of monitor, runtime verification frameworks must impose low

monitoring overhead to be considered practical. [4,27] reduce the overhead by rewriting

safety properties such that the evaluation of properties (i.e., the verification compo-

nent) requires the least information regarding the state of the program at run time.

[10,11] reduce the number of instrumentation added by the data-extraction component,

by determining locations in the program which do not affect property evaluation. [9]

distributes the instrumentation cost added by the data-extraction component, among

multiple users. Consequently, each copy of the program only extracts a subset of the

data required to evaluate a property. [9] uses a central server to collect the partial data

and provides the complete set of data to the verification component for property eval-

uation. [28] controls the overhead imposed by the framework by temporarily disabling

monitoring of selected data, with the use of supervisory control theory of discrete event

systems and PID-control theory of discrete time systems. [18] extracts only a subset of

the data required to evaluate program properties, by removing/adding instrumentation

relevant to the program state at run time. [3] discards instrumentation added by the

data-extraction component with respect to the execution path of the program at run

time. [3] manually predicts the execution path that the program will take at run time

with respect to the inputs given to the program. Regarding the predicted path, [3]

only keeps the instrumentation required for property evaluation.

9 Conclusion

In this article, we proposed a time-triggered approach for runtime verification. In this

technique, a monitor interrupts the program execution within fixed time intervals to

inspect the health of the program. We explored the problem by defining it in formal

terms and then showed that a time-triggered monitor can soundly verify an Ltl3 [7]

property (with no next operator) at run time. We also formulated an optimization

problem for using minimum auxiliary memory to build a history of events occurred

and maximize the sampling period. We showed that this problem is NP-complete. As a

practical solution to cope with the complexity, we encoded our problem in integer linear

programming (ILP). Our approach is fully implemented in the RiTHM3 tool chain that

3 To access the tool, please visit http://uwaterloo.ca/embedded-software-group/
projects/rithm.

31

takes a C program as input and (1) constructs a time-triggered monitor with an optimal

sampling period, and (2) instruments the input program in order to build a history

of optimal size. Experimental results show that time-triggered monitoring provides a

predictive overhead on the system. Moreover, using negligible auxiliary memory, one

can increase the sampling period, which results in less overall overhead and faster

execution of the system under scrutiny.

For future work, we are considering several research directions. We are currently

working on adaptive monitoring, where the monitor adjusts its sampling period based

upon the structure of the input program or the property under inspection. Such adap-

tive sampling will be highly beneficial to overcome loop problems. Another interesting

direction is to develop efficient polynomial-time heuristics and approximation algo-

rithms to solve our optimization problem. Also, one may consider developing hybrid

monitors that take advantage of both event-triggered as well as time-triggered tech-

niques.

10 Acknowledgement

This research was supported in part by NSERC Discovery Grant 418396-2012, NSERC

DG 357121-2008, ORF-RE03-045, ORF-RE04-036, ORF-RE04- 039, APCPJ 386797-

09, CFI 20314 and CMC, STPGP-430575, and the industrial partners associated with

these projects.

References

1. SNU Real-Time Benchmarks. http://www.cprover.org/goto-cc/examples/snu.html.
2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
3. C. Artho, D. Drusinksy, A. Goldberg, K. H. andM. Lowry, C. Pasareanu, G. Roşu, and

W. Visser. Experiments with test case generation and runtime analysis. In Proceedings of
the 10th International Conference on Advances in Theory and Practice of Abstract State
Machines, ASM’03, pages 87–108, 2003.

4. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification.
In Proceedings of the 5th International Conference on Verification, Model Checking, and
Abstract Interpretation, VMCAI’04, pages 44–57, 2004.

5. A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodology (TOSEM), 2009. in press.

6. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL Semantics for Runtime Verifi-
cation. Journal of Logic and Computation, 20(3):651–674, 2010.

7. A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodology (TOSEM), 20(4):14, 2011.

8. E. Bodden. Efficient hybrid typestate analysis by determining continuation-equivalent
states. In nternational Conference on Software Engineering (ICSE), pages 5–14, 2010.

9. E. Bodden, L. Hendren, P. Lam, O. Lhoták, and N. Naeem. Collaborative runtime verifi-
cation with tracematches. In Proceedings of the 7th International Conference on Runtime
Verification, RV’07, pages 22–37, 2007.

10. E. Bodden, L. Hendren, and O. Lhoták. A staged static program analysis to improve the
performance of runtime monitoring. In Proceedings of the 21st European Conference on
Object-Oriented Programming, ECOOP’07, pages 525–549, 2007.

11. E. Bodden, P. Lam, and L. Hendren. Finding programming errors earlier by evaluating
runtime monitors ahead-of-time. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE’08, pages 36–47, 2008.

12. B. Bonakdarpour, S. Navabpour, and S. Fischmeister. Sampling-based runtime verifica-
tion. In Formal Methods (FM), pages 88–102, 2011.

32

13. E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of Temporal Property Classes.
In Automata, Languages and Programming (ICALP), pages 474–486, 1992.

14. F. Chen and G. Roşu. Java-MOP: A monitoring oriented programming environment for
java. In Tools and Algorithms for the construction and analysis of systems (TACAS),
pages 546–550, 2005.

15. F. Chen and G. Roşu. Java-mop: A monitoring oriented programming environment for
java. In Proceedings of the 11th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’05, pages 546–550, 2005.

16. S. Colin and L. Mariani. Run-Time Verification, chapter 18. Springer-Verlag LNCS 3472,
2005.

17. M. d’Amorim and G. Rosu. Efficient Monitoring of omega-Languages. In Computer Aided
Verification (CAV), pages 364–378, 2005.

18. M. B. Dwyer, A. Kinneer, and S. Elbaum. Adaptive online program analysis. In Pro-
ceedings of the 29th International Conference on Software Engineering, ICSE ’07, pages
220–229, 2007.

19. Y. Falcone, J.-C. Fernandez, and L. Mounier. Runtime Verification of Safety-Progress
Properties. In Runtime Verification (RV), pages 40–59, 2009.

20. S. Fischmeister and Y. Ba. Sampling-based Program Execution Monitoring. In ACM Inter-
national conference on Languages, compilers, and tools for embedded systems (LCTES),
pages 133–142, 2010.

21. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Proper-
ties on Running Programs. In Automated Software Engineering (ASE), pages 412–416,
2001.

22. K. Havelund. Runtime verification of c programs. In Proceedings of the 20th IFIP TC
6/WG 6.1 International Conference on Testing of Software and Communicating Systems:
8th International Workshop, TestCom ’08 / FATES ’08, 2008.

23. K. Havelund and A. Goldberg. Verify your Runs. pages 374–383, 2008.
24. K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer. Electronic

Notes in Theoretical. Computer Science, 55(2), 2001.
25. K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Automated Software

Engineering (ASE), pages 135–143, 2001.
26. K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), pages 342–356, 2002.
27. K. Havelund and G. Rosu. Efficient Monitoring of Safety Properties. Software Tools and

Technology Transfer (STTT), 6(2):158–173, 2004.
28. X. Huang, J. Seyster, S. Callanan, K. Dixit, R. Grosu, S. A. Smolka, S. D. Stoller, and

E. Zadok. Software monitoring with controllable overhead. Software tools for technology
transfer (STTT), 14(3):327–347, 2012.

29. R. M. Karp. Reducibility Among Combinatorial Problems. In Symposium on Complexity
of Computer Computations, pages 85–103, 1972.

30. M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky. Monitoring, Checking, and
Steering of Real-Time Systems. Electronic. Notes in Theoretical Computer Science, 70(4),
2002.

31. M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and O. Sokolsky. Formally
specified monitoring of temporal properties. In Euromicro Conference on Real-Time Sys-
tems (ECRTS), pages 114–122, 1999.

32. M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-mac: A run-time
assurance approach for java programs. Form. Methods Syst. Des., 24(2):129–155, 2004.

33. M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: A Run-Time
Assurance Approach for Java Programs. Formal Methods in System Design (FMSD),
24(2):129–155, 2004.

34. O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. In Computer Aided
Verification (CAV), pages 172–183, 1999.

35. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis
and transformation. In International Symposium on Code Generation and Optimization:
Feedback Directed and Runtime Optimization, page 75, 2004.

36. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance based
on formal specifications. In Parallel and Distributed Processing Techniques and Applica-
tions(PDPTA), pages 279–287, 1999.

37. ILP solver lp solve. http://lpsolve.sourceforge.net/5.5/.

33

38. Z. Manna and A. Pnueli. A Hierarchy of Temporal Properties. In Principles of Distributed
Computing (PODC), pages 377–410, 1990.

39. P. Meredith, D. Jin, F. Chen, and G. Roşu. Efficient monitoring of parametric context-
free patterns. Springer Journal of Automated Software Engineering, 17(2):149–180, June
2010.

40. S. Navabpour, C. W. Wu, B. Bonakdarpour, and S. Fischmeister. Efficient techniques
for near-optimal instrumentation in time-triggered runtime verification. In International
Conference on Runtime Verification (RV), pages 208–222, 2011.

41. L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: A Hard Real-Time Runtime
Monitor. In Runtime Verification (RV), 2010. 345-359.

42. A. Pnueli. The temporal logic of programs. In Symposium on Foundations of Computer
Science (FOCS), pages 46–57, 1977.

43. A. Pnueli and A. Zaks. PSL Model Checking and Run-Time Verification via Testers. In
Symposium on Formal Methods (FM), pages 573–586, 2006.

44. J.-F. Raskin and P.-Y. Schobbens. The logic of event clocks - decidability, complexity and
expressiveness. Journal of Automata, Languages and Combinatorics, 4(3):247–286, 1999.

45. G. Rosu, F. Chen, and T. Ball. Synthesizing Monitors for Safety Properties: This Time
with Calls and Returns. In Runtime Verification (RV), pages 51–68, 2008.

46. J. Seyster, K. Dixit, X. Huang, R. Grosu, K. Havelund, S. A. Smolka, S. D. Stoller, and
E. Zadok. Aspect-oriented instrumentation with GCC. In Runtime Verification (RV),
pages 405–420, 2010.

47. S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A. Smolka, and E. Zadok.
Runtime verification with state estimation. In Runtime Verification (RV), pages 193–207,
2011.

48. V. Stolz and E. Bodden. Temporal Assertions using Aspectj. Electronic Notes in Theo-
retical Computer Science, 144(4), 2006.

49. W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee. MaC: Distributed Monitoring and Checking.
In Runtime Verification (RV), pages 184–201, 2009.

34

