
The Supervisor-Worker Pattern

Sebastian Fischmeister and Wolfgang Lugmayr
Distributed Systems Group

Argentinierstr. 8/184-1, A-1040 Vienna
Technical University of Vienna, Austria

{fischmeister,lugmayr}@infosys.tuwien.ac.at

Aug. 1999
revised June 2000

Abstract

Mobile agents and mobile computing have grown in importance recently. The Supervisor-Worker pattern is an
architectural pattern that helps architects solving the problem of protecting the mobile agent from leakage and
tampering. The fundamental Master-Slave Pattern is widespread and heavily used in traditional applications.
The Supervisor-Worker pattern inherits many of the Master-Slave pattern’s benefits. It also solves several of the
security issues of mobile agents.

The Supervisor-Worker Pattern

Intent

The intent of this architectural pattern is to protect a mobile agent from a local attack. More specifically it protects
the mobile agent from leakage and tampering[2]. While protecting the mobile agent the advantages of closely
related patterns and the mobile agent paradigm are not lost.

Motivation

Scenario Consider this travel planning example: You live in Europe and want to stay one week in New York and
you need a flight to New York, a room for one week and a flight back. An additional point is that the flight and
the stay should be cheap though meet your needs. To book this trip the following components are needed: flight
databases containing flights, airlines, reservations, and prices and hotel databases containing hotels, prices, and
reservations.

To use the mobile agent paradigm two more software components are required. First, mobile agents that have
the ability to move from host to host on their own volition. Second, the agent system which is executed on top of
an operating system and provides all the infrastructure for the mobile agents. The agent system also executes the
mobile agents. It is obvious that there are more than one agent systems needed to run an application.

In the mobile agent paradigm the solution to the scenario would look like this: you create an mobile agent,
then define all the constraints (e.g. a range for the flight costs, duration of the stay, preferred airlines, etc.; for a
detailed description see section), and initiate the agent; now the agent moves around in the net to find a flight and
a room which suits you. It decides locally at the current hosts what to do next and only keeps the data which will
be used in future (so, for example, expensive flights will not be carried).

Copyright c�1999, Sebastian Fischmeister and Wolfgang Lugmayr. Permission is granted to copy for the PLoP 1999 conference. All
other rights reserved.

1

In Proc. of 6th Annual Conference on Patters Languages of Programming (PLOP"99), 1999.

The main drawback of this paradigm are the lack of security and also its technical feasibility. A lot of research
has been done in this area but the remaining problems are untrusted and malicious hosts, which can attack mobile
agents. Travel agencies could try to cheat, so their offers will be taken as the one which suits best. There are
several ways this could be done, but all are done via tampering or leakage.

Leakage: the acquisition of information by unauthorized recipients.

Tampering: the unauthorized alteration of information (including programs).

For example the local agent system of the travel agency may modify the offers the agent has collected so far
(changing the prices) so that then its offer will be the cheapest one. Or the local agent system changes the list of
travel agencies the agent is going to visit too, so the chances that its offer will be the best one increases. Both
attacks are tampering - the local agent system modifies the agent’s data.

Another example is that the local agent system scans the agent for the lowest price found so far and then makes
a better offer, so that at least at this moment its offer is the best one. Or the local agent system could try to get the
list of travel agencies that will be visited too, then ask the prices there before it makes its final offer. Both attacks
are leakage - the local agent system spies out data and misuses it by changing itself.

The solution for this problem is that the agent does not take such information with it. Because the less con-
fidential information the mobile agent takes with it the less it has to trust the hosts. A agent without confidential
information is less likely to be attacked, especially for leakage and tampering.

The underlying pattern is the Master-Slave pattern [1]. Buschmann described that for reasons of fault-tolerance,
efficiency, “separation of concerns”, exchangeability and the possibility of concurrent execution you can divide
a whole task into several smaller ones which are carried out by several slaves in parallel and controlled by one
master. The key point from the Master-Slave pattern, for this paper, is the separation of concerns - separating the
master from the slaves. The master will hold all information and the slaves visit the travel agencies. So the core
design of the Master-Slave pattern will be reused.

Although the Master-Slave pattern has many benefits, it does not introduce mechanisms for collecting infor-
mation and controlling workers. The solution given above that the agent does not take confidential information
with it needs these mechanisms. Based on the Master-Slave pattern and the separation of concerns, one part will
just collect information and the other part will control it. So you need a different design from the Master-Slave
pattern. To ensure that all the information is processed in the right way and actions are done at the right time a
central knowledge-base and a central management unit are needed. This central knowledge-base and the central
management unit will be protected from malicious hosts. The Supervisor-Worker pattern, which is built on top of
the Master-Slave pattern, provides this infrastructure.

Utilizing Supervisor-Worker Pattern

Agent

Supervisor FlightWorker HotelWorkercontrols

controls

ConstraintManager

Figure 1: Participants in the Supervisor-Worker Pattern (Scenario)

In our travel planning example utilizing the Supervisor-Worker pattern the structure would be designed like
Figure 1. You create the supervisor, who controls the flightworker and the hotelworker. So the supervisor is the
managing component and is decoupled from the two workers. These workers are independent and move around
in the net. The flightworker tries to find a flight to New York and back which meets the specification and the
hotelworker tries to find a hotel in New York. Their tasks are defined by the supervisor which coordinates them;
it keeps track of all dependencies and constraints. For example that the date of the arrival of the flight is the same
as the beginning of the reservation of the room. In order not to lose advantages of the mobile agent paradigm the

2

supervisor is a mobile agent itself. Now tampering and leakage are prevented because the workers do not have
any interesting information. After each hop they send back their data to the supervisor - the flightworker sends
back the flights it has found and the hotelworker sends back the hotels found in the local database. The data will
be sent back as a message and to protect it simple cryptographic algorithms can be used to protect it from leakage
and tampering. The supervisor itself only resides on trusted hosts so it will not be attacked.

This design solves the problems of leakage and tampering. Neither can a malicious agent system spy out
any useful information and misuse it, nor does it make sense to modify the mobile agent, because the supervisor
coordinates everything and if necessary disposes the workers and creates new ones. Besides this many benefits of
the Master-Slave pattern can still be used, for example the tasks can be split and executed concurrently.

Applicability

� The Supervisor-Worker pattern should be used when you want to protect a mobile agent from a malicious
host concerning tampering and leakage.

� The Supervisor-Worker pattern should be used when a task that can be broken down and serviced by multiple
agents.

Structure

Agent
 move(dest:URI)

creates

controls

fulfillsTask
*

Worker

 doTask()
 returnResult()
 terminate()

1+

Supervisor

 splitTask()
 delegateSubTask(x:Task)
 combineResults()
 checkConstraints()

1

1
subTask
* 1

ConstraintManager

Resultcontains <name,value>
tuples

1
*

«interface»
IConstraintManager

 addConstraint(t:Task,c:Constraint)
 deleteConstraint(Task:t,c:Constraint)
 checkConstraints(t:Task,r:Result): boolean
 checkConstraint(t:Task,c:Constraint): boolean
 getConstraints(t:Task): Vector

available:
ROUTING, EXECUTION,
RESULT, MERGING

«interface»
IConstraint
 type: int

Figure 2: Structure of the Supervisor-Worker Pattern

Participants

The whole class diagram consists of two parts: the mobile part and the constraint managing part. The mobile
agent part is described in the next paragraphs. The detailed description of the constraint managing part is beyond
the scope of this paper. Only the interfaces are defined, so the method calls are still transparent.

3

Mobile Part

The mobile part contains the classes and methods (according to Figure 2) needed for performing an action, fulfill-
ing the whole task and returning a result.

Agent implements all basic features needed for mobility. Furthermore every agent has its own ConstraintMan-
ager; when the task is divided, only some constraints remain important for each subtask (these constraints
will be carried with the worker), but the division also carries new constraints (these constraints will be stored
by the supervisor).

Supervisor implements all features concerning task division, worker-control, and report merging. It develops
strategies for completing the whole task, creates sub-tasks and stores additional information about them
(sub-task worker relation, merge dependent constraints, etc.)

Worker implements all methods needed for accepting and fulfilling tasks and sending reports to the supervisor. It
also provides the execution environment for tasks, in which they can be executed on each host.

Task is the basic abstraction of a job that has to be done. The results are stored within the task-object, and when
sub-tasks are merged, the results for all sub-tasks can be freed. The dependencies between the sub-tasks are
stored by the supervisor (eg. it is useless to book a flight, when you do not have a hotel).

Result is a class which stores tuples. These tuples have the following structure: < name: String, value: Object
>. For each task there can be several results (several workers could carry out the same subtask and return
different results).

Constraint Managing Part

The constraint managing part is an encapsulated component which implements the following interfaces:

IConstraintManager defines all methods needed to add, modify, delete and check constraints.

IConstraint , simplified for this paper, contains a variable to determine which type of constraint it is. This is one
possible solution and it is adapted for this paper.

Constraints

As mentioned several times there are different kinds of constraints to be defined (also listed in Figure 2). The four
constraints concern: routing, execution, results and tasks.

The first type (routing constraints) defines variables which are important for the moving phase of the mobile
agents. These could be a limitation like a domain restriction. You could limit the movement to certain domains, eg.
you want the agents just to move in your intranet; you could limit the number of hosts the agents (more important
for the workers) are allowed to visit; you could limit the number of retries so your agents do not get stuck trying to
move to a host which is always down. These constraints have to be checked before anything concerning mobility
is done. So if the worker found a new host where new information could be found or where the task has to be
executed too, it would have to check if the constraints allow it to move there, otherwise it will have to choose
another one.

The second type (execution constraints) defines the environment of the agent system to which the workers
move. These could be a limitation of the agent system, so your workers check if it is the correct one, or one which
is up-to-date (in combination with the version number) and provides the special APIs the workers need. The
constraints could define which hardware resources should be available and furthermore which minimal resources
the worker needs (eg. the amount of memory storage). Also software constraints could be specified, if a specific
version of the database-access software is required to fulfill the task or an LDAP-service. In contrast to the first
type these constraints are variable and a lot more specific for each task. This type has to be checked before every
execution of the task because if the local agent system does not provide all the needed APIs or does not have
enough memory, the task could not be finished either.

The third type (result constraints) is even more variable than the second one. Constraints of this type define
task specific conditions like: how much money should the trip cost, how long do I want to stay, which are my

4

preferred airlines, etc. They are coded by the user himself and often are the same for all sub-tasks. If the result of
the action the worker did does not meet them, the actions should be undone. So when the worker found flights but
they are too expensive or they do not fit into the time-frame then it does not make any sense to report them to the
supervisor or carry the results further.

The last type (task constraints) defines the relations between the several sub-tasks. These are not influenced
by the user because they are generated by the supervisor itself. So, for example, when a task is divided into two
sub-tasks and one sub-task cannot be fulfilled, then a constraint could say the other sub-task is useless and should
be canceled. These are the only constraints which are stored by the supervisor. All other constraints are stored in
the workers and they check the constraints before each move, before each execution, and before they send back
any result. The task constraints have to be checked before the results of the sub-tasks are merged and eventually a
new worker has to be created for undoing a sub-task which has been fulfilled, because another sub-task could not
be fulfilled.

Collaborations

Figure 3 shows the Supervisor-Worker pattern in a use-case diagram. The user has a task which has to be fulfilled,
so he defines the task and the constraints for it. In order to fulfill a task you have to set actions, fulfill constraints
and return the result. Actions are done by the workers at each host they visit. A ConstraintManager is responsible
that the defined criteria are met and finally the Supervisor takes the responsibility for the whole task and only it
decides when the whole task is finished and the results are returned.

User

fulfill task

fulfill constraints

do actionsreturn result

Figure 3: Use-Case diagram of the problem

The collaboration between the participants in the Supervisor-Worker pattern is depicted in Figure 4. Method
calls for checking constraints are not shown to avoid clutter (constraints are checked before every method call),
but they are given in the description.

1. The user creates the supervisor and delegates the special tasks.

2. The supervisor splits the tasks into different sub-tasks and moves (obeying its routing constraints) to a host
near the area where the workers will work.

3. The supervisor creates workers and delegates the sub-tasks (obeying its execution constraints).

4. The workers jump to various hosts (obeying their routing constraints) and while finishing their task (obeying
their execution constraints) send reports to the supervisor (obeying their result constraints).

5. The supervisor merges the results (obeying its merging constraints) and will eventually start from point 2, if
the task is not finished.

6. The supervisor reports the result to the user.

In the activity diagram (Figure 5) you have the activities described for each component.

5

{while !jobdone}

{while !jobdone}

:User

:Supervisor

:Worker

«create»

delegateTask(x)

ack

splitTask(x)

«create»

delegateSubTask(y)

doTask(y)
returnResults

returnResults

There may/should be
multiple reports.

returnResults

move(dst)

move(dst)

combineResults()

Figure 4: Interaction diagram of the Supervisor-Worker pattern.

Consequences

Benefits The benefits that directly come from the Supervisor-Worker pattern are:

� Security - There is no need for the workers to carry all information found so far with them, so the likelihood
of a modification attack is reduced and other threats like tampering and leakage are prevented. Furthermore
cloning is no longer necessary.

� Maintainability - The decoupling of the components - Supervisor, Worker, and ConstraintManager - en-
hances the maintainability of the whole design. Each component can be exchanged without touching the
others’ code or interfaces.

� Simplicity - The simple and straight forward design of this pattern improves its usability and it can easily
incorporated in frameworks or combined with other patterns.

Side-Effects Besides the consequences that directly come from the pattern there are many positive sides-effects
that come from closely related patterns. These sides-effects are:

� Fault tolerance - If one worker fails to return within a given deadline the supervisor could start another one
or redefine the subtasks and then start a new one.

� Concurrent execution - There can be many workers working for one supervisor and each of these workers
operates independently. This speeds up collection results of the sub tasks and so speeds up the whole
process.

Liabilities The are also some liabilities and trade-offs which have to be considered.

� Cryptography - The security relies on safe transmission of the messages which are sent back to the super-
visor. Nevertheless the local agent system is interested in transmitting its data safely. So there have to be
mechanisms that prevent these messages from being read by outsiders.

� Complexity - Division of tasks is not always simple and depends very much on the situation. Therefore
creating and handling the constraints can get complex.

6

divide into subtasks

jump to host

create Workers

{wait for results}

Supervisor Worker

analyse the task

jump to host

return result

return result

[else]

combine results

[task not finished or
constraint failed]

finish task

[else]

[task not finished or
constraint failed]

Figure 5: Activity diagram for the supervisor and a worker

� Overhead - As there is more than just one agent roaming the net (at least one worker and one supervisor)
the overhead of network transmission and managing these multiple agents has grown.

� Requirements - Trusted hosts are needed so the supervisor can reside there. In the worst case this will be
your local computer and the supervisor never moves to another host.

Known Use

This pattern will be implemented in the Gypsy Project[3, 5]. The Gypsy Project provides the main facilities needed
to implement and test this pattern. For the test scenario the agent will collect system information from various
hosts and then do additional result based actions. The constraints in this scenario will be routing constraints. Every
worker gets a routing constraint which tells him which computer it should check. The results then are sent back to
the supervisor and in the end it will create a short report about all computers.

Sample Code

Here is a sample implementation for the supervisor and a worker. Some parts are simplified and the interfaces are
also not given.

First of all the doTask()method will be called in the supervisor object. Then the supervisor will be transfered to
the first host where it starts splitting the whole task and setting up the sub-tasks. While splitting the task it creates
several workers which will send back their results. The supervisor waits for these results and finally merges them.
If the task is not finished then the whole process will start over again.

public class Supervisor extends Agent {
private ConstraintManager cm;
private Vector tasks ;
private Vector sentWorkerIds ;

protected void doTask () {
do {

getCurrentHost (). transfer (this);
splitTasks ();
waitForResults ();

7

mergeResults ();
} while (! supertask . finished ());
sendResultsHome();

}

private void splitTasks () {
// 1. apply strategy to devide the task
// 2. refine constraints for the subtasks
for (int i = 0; i < tasks . size (); i++) {

Worker w = newWorker(subtask , constraints);
sentWorkerIds .add(w.getId ());
getCurrentHost (). transfer (w);

}
}

}

When the supervisor splits the tasks and assigns the worker-task relation, the worker will immediately start
planning its trip and will be moved to another host. There the local agent system instantiates the worker and calls
its doTask() method. In this method the worker runs its task and then returns the results. Finally it will move on to
the next host.

public class Worker extends Agent {
private ConstraintManager cm;
private Task task ;

Worker (Task t) { task = t ; }

protected void doTask () {
do {

task . run ();
addResult(task . getResult ());
getCurrentHost (). transfer (this);

} while (! task . finished ());
}

private void addResult(Result r) {
if (cm.checkConstraints (task , r))

sendResultToSupervisor (r);
}

}

Related Patterns

The patterns which related to this one are the Master-Slave[1, 4]. As stated in section the core design of this
pattern is incorporated into the Supervisor-Worker pattern. Both main components of the Master-Slave pattern
also exist in this pattern: the master, which is equivalent to the supervisor, and the slave, which is equivalent to the
worker.

References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software Architecture:
A System of Patterns. John Wiley and Sons Ltd, Chichester, UK, 1996.

[2] George Coulouris, Jean Dollimore, and Tim Kingberg. Distributed Systems: Concepts and Design. Queen
Mary and Westfield College, University of London, 1996.

8

[3] Mehdi Jazayeri and Wolfgang Lugmary. Gypsy: A Component-based Approach to Mobile Agent Systems.
Technical Report TUV-1841-99-09, Distributed Systems Group, Technical University of Vienna, Argentinier-
strasse 8, A-1040 Vienna, Austria, 1999.

[4] Danny B. Lange and Mitsuru Oshima. Programming andDeploying JavaMobile Agents with Aglets. Addison-
Wesley Longman, 1998.

[5] Wolfgang Lugmary. The Gypsy Environment. World Wide Web Site, 1998. ������������	
���������	�
����������.

9

