
Mobile Software Agents for Location-based
Systems

Sebastian Fischmeister

Software Research Lab
Department of Computer Science

University of Salzburg
Phone: +43.676.7770167
Fax: +43.662.8044.6403

Fischmeister@SoftwareResearch.net

http://www.mobileshadow.net

Abstract. As mobile computing matures, location-awareness as part of
context-awareness gains more attention; especially, location-aware ser-
vices for mobile users. This paper concentrates on the software engineer-
ing issues of location-aware services and presents Mobile Shadow as an
successful example of a design and an implementation of a scalable, fault
tolerant, and component-based service infrastructure for location-aware
services. The paper presents the basic concepts used in Mobile Shadow,
the requirements, and the resulting component architecture.

Keywords: location-aware, context-aware, infrastructure, proactive ser-
vices

1 Introduction

The continuous trend of miniaturization of hardware and the exponential growth
of computation power has created a wide spectrum of small mobile comput-
ing gadgets. These gadgets enable the ’anytime and anywhere’ communication
paradigm, which has lead to the trend of wireless communication technology
such as the global system for mobile communication (GSM) or the wireless local
area networks (WLANs). These two trends form the basis of mobile computing.

Due to the high proliferation of mobile computing gadgets and technology,
concepts such as context-awareness and especially location-awareness have re-
gained interest. Only ten years ago, the location of a computer user did gen-
erally not change. Today, the user carries his notebook from one location to
another, connects to the network, and continues using network-based services.
A location-aware system would notice such a location change and would offer
services specific to that new location.

An example of such a location-aware service is a reminder service. John wants
to carry books home with him for the weekend. Therefore, he wants to receive
a reminder, when he is going home. Hence, he sticks a post-it on the exit door
of the office building to remind him not to forget the books. Instead of a post-it

In 'Agent Technologies, Infrastructures, Tools, and Applications for E-Services', LNAI 2592, 2002.

1 of 13



note, John could use an electronic location-aware service to remind him not to
forget his books. John would enter the reminder text and most constraints (e.g.,
building exit, after 5pm) and the service will send a reminder as soon as all
constraints are fulfilled (i.e., John leaves the building after 5pm).

The Mobile Shadow project at the University of Salzburg provides an infras-
tructure for such services. The system aims at three issues: proactive location-
awareness, scalability/fault tolerance, and components & adaptivity. A loca-
tion system basing on 802.11 WLAN technology enables proactive location-
awareness. A decentralized infrastructure and the use of mobile code technology
tackle the scalability and fault tolerance issues. And the use of agent technology
and a component-based design support adaptivity by manipulation of the user.

Related research projects mainly concentrate on the locating issues and not
on software engineering issues; Example projects are Cricket [15], Cyberguide
[2], Active Bat [3], EventManager [13], or active badge [17]. Each system usually
has one proof-of-concept service. The most closely related system is the stick-
e document approach [4]. However, this system has never been implemented
and only ran as a simulation at a workstation. Furthermore, the project did
not concentrate on the software part of location-aware services. Another closely
related project is the Lancaster Tour Guide [5]. The project provides a location-
aware service for tourists in the Lancaster area. The project bases on an 802.11
WLAN and provides location-sensitive tourist information upon request. Thus,
it is a reactive service only. The system bases on an extended version of HTML
and uses thin client devices.

The remainder of the work is organized as follows. Section 2 introduces the
concepts for proactive location-aware services and mobile code. Section 3 de-
scribes the Mobile Shadow system and presents a scenario and implementation
details. Section 4 explains the different types of adaptivity available in the Mobile
Shadow system. Finally, Section 5 concludes the paper.

2 Concepts

The following paragraphs provide an introduction to the core concepts of the
Mobile Shadow architecture.

2.1 Locating versus Location

Systems combine the entities object and location in one of the two following
relations:

1. Where is object o1? — At location l1.
2. Who is at location l1 ? — The objects o1 and o2.

The first query refers to the mapping from objects to locations (see Figure
1(a)) and the second from locations to objects (see Figure 1(b)). We define sys-
tems using the first type of mapping (object → location) as locating systems

2 of 13



and the second (location → objects) as location system. The key difference be-
tween locating and location systems is the fact that locating systems focus on the
identification of locations of objects, whereas location systems identify objects
at locations. Each system requires different methods and mechanisms to provide
the result to the query (for detailed discussion about the differences between
these two mappings see [8]).

(a) Mapping objects to
locations (λ).

(b) Mapping locations to
objects (ω).

Fig. 1. Locating systems map objects to locations, whereas location systems
map locations to objects.

2.2 Reactive versus Proactive Behaviour

Another important concept in the area of context-awareness is what we call
proactivity versus reactivity. Currently, most location-aware systems offer re-
active services only. The technology to build such reactive systems is already
available [11] whereas current technology does not support proactive services
out of the box [7].

Reactive services rely on the prevailing request-response communication mech-
anism, where the service complements the client’s incomplete knowledge. The
client actively “pulls” information from the service by issuing an explicit re-
quest. The most well known service, which uses this mechanism, is the World
Wide Web (WWW) and the Hypertext Transfer Protocol (HTTP). When a user
wants to visit a site, she enters the name, presses return (thereby issues the re-
quest), and will get the answer (the WWW server of that site will return the
requested document).

Proactive services deliver or “push” information to a client without explicit
request. Therefore, the user need not send an explicit request and will receive
information automatically. Such proactive services work autonomously as back-
ground processes and they prompt/inform the user as configured. To use such a
service, the client must subscribe to the service. During the subscription process,
the client creates a profile, which forms the basis for distinguishing wanted and
unwanted information. The reminder service mentioned in the introduction is a
typical proactive service. The service would miss its purpose, if the client always
has to query whether a reminder is set or not. Therefore, the reminder service
runs in the background and prompts the user, whenever a reminder is set.

3 of 13



2.3 Mobile Code

The advent of Java in 1994 and its built-in support for simple network program-
ming revived mobile code paradigms. Although, prior projects existed, many
researchers started researching mobile code at that time [10]. In general, mobile
code is about moving data and/or code. There are four different mobile code
paradigms: code-on-demand, remote evaluation, and mobile agents.

The Code-on-demand paradigm got widespread with the advent of Java ap-
plets. The client requests code from a server, the server returns the binary code,
and the client runs this code. In this paradigm, only code is transferred via the
network. The remote evaluation paradigm bases on transferring code. The client
transfers code to the server, the server executes the code and returns the result
to the client. Finally, the mobile agent paradigm is a mixture of the previously
mentioned paradigms. A mobile agent consists of code, data, and a program
state (i.e., it resumes operation at the remote host where it has left off before).
The key property of it is “autonomous”. The client sends a mobile agent to
the server and the server executes it. After the execution, the mobile agent can
autonomously decide to move to another server or to return to the client. In
this paradigm, the program code, the data, and the program state are trans-
ferred through the network. In this work we use mobile agent and mobile code
component synonymously.

3 Mobile Shadow

The University of Salzburg has built an architecture for proactive cell-based
location-aware services. It is called Mobile Shadow [1]. In contrast to related
work, Mobile Shadow bases on a locating system; it is optimized to answer
queries such as who is nearby the building exit.

In this project concerning the software architecture, we aim at particular
goals: modifiability/adaptivity, scalability, and fault tolerance. Modifiability is
important, because we want to provide a platform for location-based services
and thus want to add new services later on. To ease the user interaction, we also
need to support adaptivity. By adaptivity we mean adaptation by manipulation
by the user (see [12] for a discussion about the different concepts). The other
goal is scalability; scalability is important, because most location-based services
do make sense only when they cover a large area and to cover a large area and
many users, the service must be scalable and the service platform must provide
scalability features to services. Another aim is fault tolerance; if the system
covers a large area, the system must not fail completely, if one service crashes
or one cell crashes.

3.1 System Architecture

Several cycles of architecture design and evaluation lead us to a decentralized
and localized architecture (see Figure 2). Each cell has its own communication

4 of 13



technology and a connection link to the adjacent cells. In the figure each cell
includes only a service pool which runs a replica of a local service (i.e., S1 to
S7). Each user accesses the services directly in his cell. For instance, user A
stands in cell A and accesses the service S5 and S7 in Cell A through the cell’s
own communication system. User B stands in cell B and also accesses the services
through the cell’s own communication system.

This architecture satisfies our requirements. Concerning scalability, different
users in different cells access different replica of the same service. Therefore the
service access will not become a bottleneck. Also, we can multiply the number
of service pools in one cell, so we also can perform dynamic load balancing.
Concerning fault tolerance, if the communication technology in one cell fails, it
does not affect the other cells. For example, if the communication technology in
cell A fails, User B in cell B can still access the services.

Fig. 2. The decentralized and localized architecture of Mobile Shadow.

3.2 Computation Model

Mobile Shadow meets the stated requirements and implements the suggested
scalable, fault tolerant, and modifiable architecture through different models.
What we call space model describes how we map the reality onto the system
architecture (see below for a description of all models). The user model and the
service model show how we represent users and services in this virtual reality.
The user-space and the service-space model explain how we handle user and
service movements. And finally the user-service model shows how we model user
access to services.

Space Model. In the Mobile Shadow system, each physical place also has exactly
one logical counterpart. The physical environment is split into several separate
small cells and each of these cells has a virtual representation. For example, the
location “building exit” exists as “shadow building exit” location, too.

5 of 13



Furthermore, the space model allows adding a hierarchical structure as a tree
on top of it. Several cells can be virtually merged into one larger cell and several
cells can be treated as one larger cell but still exist separately. For example, our
computer science building consists of several cells, however, the whole building
also represents a virtual location “computer science building”.

User Model. Each user owns a virtual “alter ego” (a mobile code component).
This component, called user agent, always resides at the logical counterpart
of the current user’s location. Therefore, if a user agent resides at the virtual
“building exit” location, then the real user also resides at that location.

Additionally, each agent is associated with several roles. Each role defines
the specific set of services available for the user. For example, staff members can
access different services than students or visitors.

Each service consists of a trigger and a service implementation. The user
agent runs the trigger and the local infrastructure runs the service implemen-
tation. A trigger consists of trigger constraints, a personal configuration, and a
trigger action. The user can configure what triggers his agent has and the user
can also set the personal configuration of each trigger via a small command line
application or a web interface. The trigger constraints define conditions in order
to call the trigger action such as time, location, or available services. Once all
these constraints are satisfied, the trigger action activates the local service and
transfers the personal configuration of the user for this service.

(a) A stu-
dent user
agent.

(b) An example user
agent for a Mobile
Shadow developer.

Fig. 3. Example user agents. Each user can have several roles and different triggers
for each role.

Figure 3 shows two user agents, their roles, and the included triggers. Al-
though some roles may share the same triggers such as the local MessageBoard
(see below), they also offer a different set of services (e.g., see Figure 3(b) the
developer role, ) or have different access permissions (e.g., the lecture reminder
service is equivalent to the reminder service, however, the user has predefined
reminders).

6 of 13



User-Space Model. To provide location-aware services, Mobile Shadow trans-
forms user movements into virtual movements. Thus, if the user moves from
location A to location B, then the user agent will move from the virtual location
A to the virtual location B; Once the user agent arrived at the new place, it
accesses the local resources such as a local database, other local user agents, and
local available services.

Service Model. Services, similar to users, have a virtual representation. For ex-
ample in a tour guide service, a museum painting offers a specific service; e.g., an
insight into the art of the previous century. This painting owns a virtual service
at its location. The service offers this information to user agents who visit this
location. The service can even notify the user of its existence, depending on the
trigger configuration of the user agent.

Real world services and services—i.e., services that are only available in the
virtual user space—are available in Mobile Shadow. Such services are often real
world services transformed and extended into digital services. For example, a
local message board service (see GeoNotes [6]); the service is similar to a black-
board, however, the notes are in an electronic form and the blackboard provides
different notes at different locations. A user can read, add, or remove notes at
any location she wants to.

Service-Space Model. The service-space model is static in contrast to the user-
space model. So far, the Mobile Shadow project only consists of real and virtual
services that do not move. However, one could think of moving services such as
services that chase viruses. Service such as the painting service have a specific
location and work with localized or personalized data.

User-Service Model. When a user agent moves to a new location, this location
change activates the triggers of each service. The trigger tries to fulfill the trigger
constraints. In case it succeeds, the trigger action activates this service and
transfers the personal configuration parameters. Afterwards, the activated and
personalized service processes the local data. If the service finds some information
that may be interesting for the user, it will notify her according to the personal
setup (e.g., via short message service or via display message or via email).

3.3 Mobile Shadow Component Architecture

Each location-aware service consists of two parts: the service and the trigger.
The trigger contains the user specific configuration parameters, the trigger con-
straints, and the trigger action. In simple cases, the configuration cannot be
changed and the action is a simple method invocation. The service contains all
server-side business logic such as database access or data processing. The user
agent manages the roles and triggers (e.g., deactivating them before moving to a
new location or activating them after moving) and provides the basic function-
ality for the triggers (e.g., finding the service dock). The service dock controls

7 of 13



Fig. 4. Component concept of Mobile Shadow. The system has a modular design,
which enhances support for adding and exchanging components.

the services (e.g., registration of new services or starting and shutting down ser-
vices) and provides some basic functionality (e.g., finding a service or gaining
database access). The control agent manages the communication between Mobile
Shadow and the location system and provides interfaces to external resources
such as partner research projects. Furthermore, the control agent manages the
user agents, e.g., it is responsible to move user agents to their new location. Fi-
nally, the mobile agent system provides the basic infrastructure for mobile code,
which also includes an inter-agent messaging system. Finally, the location system
tells the control agent, when an agent did move from one place to another.

3.4 Example Scenario

A location-aware service is the reminder service. The introduction already pre-
sented the objectives of the service. Among other services, Mobile Shadow pro-
vides this reminder service.

User John wants to carry books home with him for the weekend. Therefore,
he wants to receive a reminder, when he is going home. In the Mobile Shadow
system, he opens the WWW interface to add location-based reminders. He en-
ters/selects following data: cell id (pull down list), reminder text (maximum of
140 characters1), reminder start time and start date, reminder end time and
end date, how often he wants to be reminded of this one event (e.g., John could
wish to be reminded every day to lock his door, then the number of reminders is
infinite). The cell identification is equivalent to the location. The correct cell for
this example is the building exit cell (i.e., AP Hall). The reminder text is “Hey!
Don’t forget the books for the weekend!”. The reminder start time is “5pm” and
the start date is “today”. The reminder end time is “11pm” and the end date is
“today”. The reminder is only active between the start time and the end time.
1 Messages may be delivered via the short message service to for cellular phones. Such

messages have a limit of 140 characters.

8 of 13



This prevents for instance, that John also receives the reminder, when he leaves
for lunch. Finally, John can also define the number of reminders that he wants
to receive. In this example, John sets the reminder count to “1”. Therefore, John
will receive only one reminder and then the system will deactivate the reminder.
After the John filled out all the required fields, he submits the data and thus
configures the trigger carried around by his user agent.

Fig. 5. Example Scenario “John and the books.”. John must not forget to carry
books home for reading, thus he did set a location-based reminder in the exit cell of
his building.

Fig. 6. Each time the agent arrives at a new place, it receives an event from
the agent system and then it activates the triggers.

Figures 5 and 6 show what is going to happen, when John is leaving the
building after 5pm. John moves through the building and thus enters and leaves
several locations. At each location the user agent receives the NewCell event from
the Mobile Shadow platform. Finally, John and his user agent enter the building
exit cell. Arriving in this cell, the user agent again activates the triggers. The
reminder trigger checks its constraints and executes the trigger action. Because
it is past 5pm and before 11pm, the date is today, and the reminder is still
active (the reminder count is greater than zero), the service will return a valid

9 of 13



reminder. Now, the user agent uses the short message service (SMS) and sends
the reminder to the John’s cellular phone.

3.5 Implementation

The Mobile Shadow research project has consisted of two phases. Researchers
at the University of Constance built the first prototype of the Mobile Shadow
system. This first prototype implemented the whole functionality except the lo-
cation system. Therefore, user agents had to be moved manually to demonstrate
the system. The first prototype was implemented in Java, used the Aglets mobile
agent system as basic infrastructure, and MySQL as database management sys-
tem. Researchers at the University of Salzburg built the second prototype of the
Mobile Shadow system. This prototype now includes the location system, the
interface to Mobile Shadow, and three running services. The second prototype
is implemented in Java but uses the Grasshopper Agent system [16] (to increase
independence from the underlying system) as basic infrastructure and MySQL
as database management system.

Fig. 7. Computer science building ground floor and integrated Mobile
Shadow infrastructure. The building plan shows five WLAN access point and how
the Mobile Shadow system is integrated into it.

Based on an evaluation of wireless communication technologies [7], the second
prototype was built on top of an 802.11b wireless local area network [14]. Figure
7 shows the ground floor of the computer science building. In addition the figure
shows five access points of the WLAN and the integrated Mobile Shadow system.
There are a total of 11 access points distributed on three levels of the building.
However, the component architecture in Section 3.3 showed that the location
system is only loosely coupled, so we can easily exchange the WLAN location
system by commercial ones or research projects such as Cricket [15], Cyberguide

10 of 13



[2], or Active Bat [3], which would provide a more exact locating system than
the WLAN system.

To realize the location system, the WLAN hardware vendor Proxim coop-
erated with the university and provided information about the implementation
of the hand-off protocol (a client switches from one access point to another). In
order to detect location changes, the locating system of Mobile Shadow analyses
the network traffic between the access points and a central access point con-
troller. When a client switches from one access point to another, then the new
access point registers the client at the central controller. Therefore, the location
system knows when to move the user agent. The system determines the desti-
nation of the user agent by querying adjacent access points. Once it has found
the destination, it notifies the control agent of the location change.

In addition to a virtual place for each location, the Mobile Shadow system
also requires a place to store ’homeless’ user agents. This place is called garage.
Once the user turns off the WLAN device, the locating system can no longer
track the user. After a timeout, the location system issues a location change to
the garage place. Then, the Mobile Shadow system moves the user agent to the
garage. Besides easier maintenance, this simplifies the restore process once the
user again turns off the device. In case of a restore (the user joins the WLAN
again), the system knows where it can to find the agent2.

4 Adaptivity

The computation model on which Mobile Shadow bases and its modular design
allow adapting the system in three simple and efficient ways: (1) the user can
define an specific configuration for each service (e.g., the user can define the list
of friends for the FriendFinder service or the kind of notification of reminders),
(2) the user can add triggers and thus subscribe to new services, and (3) the
system designer can change user roles so they suit the new requirements.

Fig. 8. Manipulation of the user agent setup. The user can adapt her user agent
at three different layers.

2 To provide a scalable solution for the garage, we use a peer to peer model that is
beyond the scope of this paper.

11 of 13



Manipulation of the User Configuration. The easiest way of adapting the system
to the personal needs of a user is to change the configuration of the trigger. Each
service offers different parameters and each user can adjust this parameters to
her personal needs via a web service. For example, the main intention of the
FriendFinder service is to automatically notify the user whenever one of his
friends enters the same location. The basic setup is to define this list of friends
(i.e., enter the phone numbers of them). But there are also general settings, which
are not specific for a certain trigger. For example, Mobile Shadow uses SMS as
default notification service, but some users prefer other notification services.
Therefore, users can also configure the notification mechanism (e.g., show a
message on the device or send an email).

Manipulation of Triggers. The second possibility for a user to adapt the system
is to add or remove triggers to and from his user agent. A separate WWW
interface allows configuring these components and thus allows the user adapting
her subscription setup. Due to use of component technology and Java, the user
can execute the changes during runtime and no restart is necessary.

Manipulation of User Roles. Finally, the third possibility to adapt the system is
to introduce new role components. The user agent is only the vehicle that carries
and manages the roles. The roles provide the basic features to the triggers.
Different users may need different basic features and therefore need different
types of roles. For example, staff members belong to a different role than students
(see the previous example in Section 3.2).

We do not allow users to assign or program roles themselves. The main
reason is security. The role concept allows us to run a strict security policy
(e.g., developers can access anything, staff services have read-write database
access, student services have read-only database access) that the underlying
agent platform can enforce. Otherwise we risk running into security problems as
agent systems are not yet secure enough [9]. Therefore, if a user needs a special
role, then she must ask the system designer and developer to assign or implement
the new one.

5 Conclusion

Mobile Shadow is an infrastructure that provides support for proactive location-
aware services. The main aims of the research project are to provide a sound soft-
ware architecture that supports modifyability/adaptivity, scalability, and fault
tolerance. The paper presents details about the concepts used in Mobile Shadow,
its design and implementation that allow us to meet the requirements. In contrast
to the related work, Mobile Shadow does not concentrate on technical solutions
of locating an object but it concentrates on the software architectural issues of
service platforms for location-aware services.

As future work, the researchers plan to open the agent system codebase so
any user can program his own user agent. Due to the success and the novelty of

12 of 13



the approach, the researchers plan to evolve the Mobile Shadow prototype to a
product.

References

1. Mobile Shadow. WWW Site. http://www.mobileshadow.net/.
2. G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton. Cy-

berguide: A Mobile Context-Aware Tour Guide. Baltzer/ACM Wireless Networks,
3(5):421 to 433, October 1997.

3. M. Addlesee, R. Curwen, S. Hodges., J. Newman, P. Steggles, A. Ward, and A. Hop-
per. Implementing a Sentient Computing System. IEEE Computer, 34(8):42 to
48, August 2001.

4. P. Brown. The stick-e document: a framework for creating context-aware applica-
tions. Electronic Publishing, 8(2&3):259 to 272, Jun & Sep 1995.

5. N. Davies, K. Cheverst, K. Mitchell, and A. Efrat. Using and Determining Location
in a Context-Sensitive Tour Guide. IEEE Computer, 34(8):35 to 41, August 2001.

6. F. Espinoza, P. Persson, A. Sandin, A. Nyström, E. Cacciatore, and M. Bylund.
Geonotes: Social filtering of position-based information. In Proceedings of Ubicomp
2001, Atlanta, GA, 2001.

7. S. Fischmeister. Cell-based Pervasive Networking Technologies for Location-Aware
Services. Technical Report C46, Software Research Lab, University of Salzburg,
Austria, February 2002.

8. S. Fischmeister and G. Menkhaus. L2: A Novel Concept for Cell-based Location-
Aware Services. Technical Report C45, Software Research Lab, University of
Salzburg, Austria, February 2002.

9. S. Fischmeister, G. Vigna, and R. Kemmerer. Evaluating the Security Of Three
Java-Based Mobile Agent Systems. In Proc. of IEEE Mobile Agents 2001, Lecture
Notes in Computer Sciences, December 2001.

10. A. Fuggetta, G. Picco, and G. Vigna. Understanding Code Mobility. IEEE Trans-
actions on Software Engineering, 24(5):342 to 361, May 1998.

11. J. Hightower and G. Borriello. Location Systems for Ubiquitous Computing. IEEE
Computer, 34(8):50 to 56, August 2001.

12. E. Horvitz. Principles of Mixed-Initiative User Interfaces. In Proceedings of CHI’99,
ACM SIGCHI Conference on Human Factors in Computing Systems, May 1999.

13. J. F. McCarthy and T. D. Anagnost. EventManager: Support for the Peripheral
Awareness of Events. In P. Thomas and H. W. Gellersen, editors, Handheld and
Ubiquitous Computing, number 1927 in Lecture Notes in Computer Sciences, page
227 to 236. Springer Verlag, Germany, September 2000.

14. B. O’Hara and A. Petrick. The IEEE 802.11 Handbook: A Designer’s Companion.
Standards Information Network IEEE Press, 1999.

15. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket location-
support system. In Proc. of the sixth annual international conference on Mobile
computing and networking (MobiCom 2000), page 32 to 43. ACM Press, 2000.

16. IKV++ GmbH Informations und Kommunikationssysteme. Grasshopper: The
Agent Platform - Technical Overview. IKV++ GmbH Informations- und Kom-
munikationssysteme, February 1999.

17. R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge Location
System. ACM Transactions on Information Systems, 10(1):91–102, January 1992.

13 of 13


