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Abstract

Embedded systems are usually an integral component of
a larger system and are used to control and/or directly mon-
itor this system by using special hardware devices. The
complexity of the whole system, which the embedded con-
trol system monitors, increases steadily. Consequently, the
initial version of the control software that is used at the time
of deployment may be inadequate and may need to be up-
dated. Often this requires the whole system to be shut down
to have the software replaced. This is not a desirable solu-
tion.

In this work, we propose a non-blocking mechanism em-
bedded into an infrastructure for RTLinuxPro for determin-
istic replacement of system functionality, task timing, and
data-flow for hard real-time systems. We explain the mech-
anism, discuss its implementation using RTLinuxPro, and
present a case study of a stop watch in which we replace
single functionality and timing behavior at runtime without
compromising the timeliness of tasks or the correctness of
the output values. The contribution is to show how such a
mechanism can work, how it can be implemented, and what
problems arise in multi-mode real-time applications.

1. Introduction

Embedded hard real-time systems have a growing de-
mand for flexibility and evolving requirements [2]. This
includes invalidating an old version of the control soft-
ware and activating a new one possibly while the system
is running. Traditional embedded hard real-time systems
are monolithic; that means the developer designs the appli-
cation (hardware and software), verifies its properties (e.g.,
timeliness and logical correctness), builds the hardware tar-
get, and deploys the software on this target. In case some
functionality needs to be changed, the developer halts the
system, deploys the new software on the target, and restarts
the target. Updating the system software may require the

system to be shut down or even to replace hardware. Mod-
ern embedded real-time systems host potent microproces-
sors as the core system component and functionality is im-
plemented in software instead of dedicated hardware (see
[1, 5, 8]). This supports the growing demand for flexibil-
ity and allows for support of evolving requirements and the
resulting functionality updates without replacing hardware
and more significantly, it allows for system updates and ex-
changing functionality at runtime.

Exchanging functionality of a running application can
be implemented in several ways. In general, one specific
functionality (feature) comprises several functions. When
exchanging functionality, the system can either replace it
or use the new functionality as add-on to the existing one.
Replacing functionality implies that the system discards ex-
isting (old) functionality. For instance, it can do so by deal-
locating the code and then unloading it. When the system
needs new functionality as add-on to existing one, it does
not require the existing (old) functionality to be discarded.
Add-on functionality may use parts of the old functionality
but does not have to. A disadvantage of add-ons is that over
time old functionality cumulates in the memory.

In this paper we propose a non-blocking mechanism em-
bedded into an infrastructure of how to replace functional-
ity, timing, and data-flow in a deterministic way at runtime
without interrupting the running hard real-time application.

The remainder of the paper is structured as follows. Sec-
tion 2 explains the concepts used in the mechanism and
in the implementation. Section 3 discusses related work
that supports functionality replacement in non–real-time,
soft real-time, and hard real-time applications. Section 4
presents the replacement mechanism and Section 5 shows,
how this mechanism is embedded into an infrastructure im-
plemented for RTLinuxPro. Section 6 demonstrates how we
can replace functionality and timing in a running hard real-
time application using a stop-watch case study. Section 7
evaluates the mechanism and its implementation and shows
the problems and pitfalls when implementing multi-mode
applications. Finally, Section 8 draws conclusions from this
work.
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2. Concepts

In our implementation, we use standard principles and
concepts from the domain of real-time systems that we
briefly outline in the following paragraphs.

2.1. Programming Model

Logical correctness and timeliness are the two most im-
portant aspects of a real-time system. Different models
provide solutions of how to achieve time determinism and
value determinism. On top of these models, programming
languages and systems provide means of how to program
control systems with real-time constraints.

For this work, we use the timed model, as proposed in
[7]. The timed model uses time-triggered periodic compu-
tation of tasks and each task executes the stages (1) reading
inputs (e.g., sensor data), (2) call task-specific functional-
ity, and (3) write outputs (e.g., update actuators). The time
between (1) and (3) can be seen as the logical execution
time of a task (LET). The task is released at the begin-
ning and terminated at the end of the LET. The release and
the termination event are time-triggered. Within these two
events, the task-specific functionality is executed according
to a scheduling scheme. The start of the LET specifies the
point in time when the input values are read. The end of the
LET specifies the point in time when the output values are
written (even if the task has completed before that time and
the output would already have been available). The worst
case execution time (WCET) of a task is the maximum time
span a task may execute on a specific platform. Since a task
needs to terminate before the end of its LET, the WCET is
smaller or equal than the LET. The timed model is time and
value deterministic.

2.2. TDL & Infrastructure

The Timing Definition Language (TDL) implements the
timed model. It bases on Giotto and includes extensions
such as the concept of a module, improved language syntax,
and clean-house implementations of the underlying infras-
tructure on several hardware platforms.

TDL introducedmodulesas a compilation unit, to sup-
port modular decomposition. A module is equivalent to a
real-time application. Each module contains one or more
modes. A mode is a state of operation of a control ap-
plication, which is executed periodically. For example,
an airplane control application could consist of a take off,
touch down, and a cruise mode. Each mode consists of
a set oftasks. A task encapsulates a computation to be
executed by a control application. A task has a WCET
and a frequency, which determines the LET of the task.
The relation between frequency, LET, and mode period is:

LET = mode period/frequency. For a detailed description
of TDL see [13].

TDL uses an embedded machine (E-machine) [7] to en-
sure timing consistency of task executions. Figure 1 shows
the E-machine in its context. The TDL compiler compiles
the TDL program into embedded code (E-code). The E-
machine runs on the target, gets information from the en-
vironment through sensors, and updates the environment
through actuators. It is a virtual machine that interprets
the platform-independent E-code and calls the platform-
dependent functionality code.
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Figure 1. The embedded machine in its con-
text.

3. Related Work

Replacing functionality is already common in non–real-
time systems. Oberon [14] was one of the first program-
ming languages allowing for dynamic functionality loading
at runtime. Also, Java [9] allows for loading and unload-
ing of classes at runtime. In general, systems using shared
libraries also usually allow for replacing these librariesat
runtime. For example, Linux withdlopenand dlsymbut
also Windows. However, these solutions are not apt for the
domain of real-time systems, since they provide no timing
guarantees and can only act as a vision what to achieve in
the real-time domain.

In the area of soft real-time (i.e., the task should meet
the deadline, but misses causes no catastrophes), function-
ality replacement is also common and some systems im-
plement it. For example, B. Ravindran describes in [11] a
resource management architecture for engineering dynamic
real-time distributed systems together with resource man-
agement middle-ware algorithms. In his work, he considers
migrating application program components between host
machines, however, this approach is still limited to the area
of soft real-time computing and does not guarantee timeli-
ness for hard real-time tasks. Montgomery proposes in [10]
to use pseudo-linked files to replace functionality at run-
time. It does not require a custom execution environment
and is a straightforward method. The approach presented
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in this paper is similar, except, (a) it does not require the
software developer to use function pointers for replaceable
functions, (b) it provides time determinism and thus pro-
vides deterministic behavior in the case of the replacement
action, and (c) incremental replacement actions do not cu-
mulate in the memory as they do in the heap in Mont-
gomery’s approach. On the other hand, we require the de-
veloper to use our runtime environment, though it is part of
a large tool chain.

In [12], Real et al. propose a mode-change protocol es-
pecially tailored for promptness of mode changes after the
mode-change request has occurred. Mode-change protocols
can be used to switch from one version of the software to
another. Following the proposed taxonomy in [12], the our
approach is synchronous. It is always schedulable, prompt-
ness depends on the length of the hyper period of the appli-
cation, and it is always consistent. In contrast to their work
and other work with offsets, our protocol aims at determin-
ism in the time domain. Using the proposed system, the
developer is able to tell the exact moment in time, the sys-
tem will switch and thus is able to understand and analyze
side effects especially in distributed real-time systems.

4. Replacement Mechanism

The mechanism consists of two parts, one executed of-
fline and the other executed online. The developer usually
runs the offline part on his workstation. This part consists
of an admission test and tells the developer, whether the
replacement action can be done without additional modifi-
cation of the system or he must replace further parts such
as E-code. The online part of the mechanism describes how
the system executes the replacement action.

4.1. Offline

If the timing of the application has been changed, then
standard tools can check for time and value determinism.
If only the functionality code has been changed, then the
following provides the offline check that lists what actions
need to be done.

The setF contains all codeifiable functionality and the
setF contains all application-specific functionalityf . The
setF ′ contains all new functionalityf ′, that will replace
F . Each application runs a number of taskst out of the
set of all tasksT . To define the relation between tasks and
functionality, we use the mappinguses : T → F with
uses(t) = f for which f is the functionality that Taskt
requires anduses−1 defines which functionality is used by
which task. We defineold : F ′ → F with old(f ′) = f
for which f ′ is the functionality that replacesf . We de-
fine wcet : F → N to describe the worst-case execution
time of one functionality. We defineLET : T → N and

LET (t) = n for which n is an integer number and is the
logical execution time of taskt.

If ∀f ′ ∈ F ′ : wcet(f ′) ≤ wcet(old(f ′)) (1) holds,
then the replacement action will be granted and require
with no further changes of the application. If (1) does
not hold and∀f ′ ∈ F ′ : wcet(f ′) ≤ LET (uses−1(f ′))
(2), then the developer will have to perform a schedulabil-
ity check of the whole node, but will not necessarily have
to change the timing specification. In the worst case, if
∃f ′ ∈ F ′ : wcet(f ′) > LET (uses−1(f ′)) (3), then the
developer will have to do a schedulability check and gener-
ate new E-code for the node.

4.2. Online

The online behavior of the mechanism relies on time
determinism of the underlying system. The new elements
are loaded into the system and at a certain point in time
t, the application switches from the old to the new version
(e.g., from the old functionality to the new functionality).
The momentt must guarantee, that the application is in a
switch-able state, i.e., the replacement action does not alter
the behavior of the application in an unintended way (e.g.,
replacing a function while the application is executing it).
A time-deterministic system allows the developer to spec-
ify the momentt.

Listing 1 shows our implementation and how the system
identifies this momentt is automatically at runtime. The
update task runs concurrently with the E-machine. When-
ever the processor is idle (i.e., all tasks released by the E-
machine have finished execution), the update task will re-
sume operation. The update task uploads the new elements
on the target. During the registration, the update task pre-
pares the elements to be used later. For example, it gener-
ates data structures for new functionality or calculates the
new value of the program counter (PC) in case of modified
E-code. After the registration has finished, the update task
will assign theupdateF lag the valuetrue.

The E-machine operates as usual, however, at the end
of a mode period, it checks whether theupdateF lag has
the valuetrue. If yes, then it will update its internal func-
tion pointers and will change the E-code program counter to
point to the new location. Similar to the concept of drivers
and guards in TDL, this check and the assignments runs in
logical zero time. The LET of the tasks and the internal
logical time allows us to implement this: although the op-
eration takes physical time, we do not update the logical
time internally managed by the E-machine. Functionality
switches WCET, similar to driver WCET, is accounted for
in the WCET analysis of the task.

[
Update task:

upload
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register
updateFlag ← true

| |
E-machine instrumentation:

i f ( endof (hyperperiod ) ∧ updateFlag )
F = F ′

pc = newPC
active E code = new E code
updateFlag ← false

end i f
]

Listing 1. Moment t in our implementation.

5. TDL for RTLinuxPro

RTLinuxPro (version 2.1) is a hard real-time, POSIX-
compatible operating system. The real-time kernel at the
heart of RTLinuxPro is built on top of the interrupt-control
hardware and is responsible for the execution of real-time
tasks. It treats the Linux kernel as a low priority task and im-
plements real-time applications via kernel modules. These
modules augment the kernel and the kernel executes these
modules according to a selected scheduling scheme. If pro-
cessing time is left (i.e., all real-time threads are idle),then
the kernel will execute non–real-time tasks in the Linux en-
vironment.

Figure 1 shows an overview of the TDL infrastructure in
RTLinuxPro. The E-machine and the application-specific
modules augment the Linux kernel. A control panel runs
in user space and allows the developer to interact with the
running E-machine. The following sections describe the im-
plementation in more detail.

Control panel

real−time FIFO−queues

RTLinux kernel

Interpreter

Registration

E-code reader

Data structuresData structures

Module TDL M2Module TDL M1Module E-Machine

ModulefM2

1

ModulefM2

2

ModulefM1

1

ModulefM1

2

ModulefM1

3

...

...

Glue codeGlue code

Figure 2. The TDL infrastructure implemented
in RTLinuxPro.

5.1. RTLinuxPro Compiler Plugin

Although TDL itself is platform independent, the E-
machine is not. To execute a TDL module on a specific plat-
form, the TDL compiler generates platform-independent E-
code but also platform-specific glue and functionality code.

• E-Code [7]. Platform independent binary code called
E-code describes the timing and data flow behavior of
the TDL application. The E-Code file contains a full
description of constants, types, structures, ports, tasks,
drivers, guards and modes, as well as a set of instruc-
tions that will be sequentially executed by a specific
platform dependent E-machine.

• Glue code. The E-code does only state the ID of
a functions, which the E-machine has to call. The
glue code provides means for the E-machine to call
the functions specified in the E-code. It comprises
port definitions, driver calls, guard calls, and RTLin-
uxPro specific functions such as module initialization
or cleanup. The TDL compiler derives the code for
the port, driver, and guard sections from the TDL pro-
gram. The E-machine needs the RTLinuxPro specific
section to load and unload TDL modules dynamically
at runtime. The TDL compiler generates these sections
through target-specific plugins such as the RTLinux-
Pro compiler plugin.

• Functionality skeleton. The TDL compiler gener-
ates a skeleton for the necessary functionality code.
This code contains all function prototypes that are used
in the TDL program and need to be implemented by
the application developer. Figure 2 shows that each
functionality is implemented by its own kernel mod-
ule. The developer only has to code the functional-
ity behavior though, the generated skeleton includes
all other functions and data (e.g., module key, loading
and unloading functions).

5.2. RTLinuxPro E-Machine

Figure 2 shows how the E-machine and two modules
(M1 andM2) and their functionality augment the Linux ker-
nel. The E-machine consists of three functional blocks: the
E-code reader, the E-code interpreter, and the registration
service (update task).

RTLinuxPro Applications. Each TDL module is a sep-
arate RTLinuxPro application. An RTLinuxPro application
is equivalent to a Linux kernel module and therefore needs
to provide standard kernel module life cycle methods such
asinit module andcleanup module (see [6]). One
kernel module can spawn several real-time threads using the
function pthread create. Only threads created with
this function have real-time properties. Since RTLinuxPro
applications are kernel modules, they run in kernel space
and have to communicate with user-space applications via
real-time FIFO queues.
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E-code Reader. During the initialization phase, binary E-
code is passed to the E-machine via a real-time FIFO. The
E-machine parses the E-code whenever there is time left
and creates all necessary internal data structures needed for
module registration and execution. The E-code reader gets a
lower priority than the E-machine interpreter and real-time
tasks and therefore does not interfere with the timeliness of
concurrently executing modules. If the length of the E-code
file and the worst-case utilization of the whole system is
known, then the time needed for parsing can be calculated
in advance.

Interpreter. The interpreter is responsible for the runtime
behavior of the E-machine. It schedules modules dynami-
cally and interprets their E-code instructions sequentially.
Listing 2 shows the runtime thread routine. The func-
tiongetNextScheduledModule returns either the first
TDL module in the ready queue orNULL (in case no TDL
module has been registered).

The E-machine executes the following steps for each
TDL module. The functionrunBlock executes a se-
quence of E-code instructions1 until it reaches areturn
instruction. Execution starts at the TDL module’s cur-
rent program counter, which is increased by one after
each instruction. The instructionscall, if, jump,
return andswitch are executed immediately, whereas
the instructionsschedule and future are stored to
be used in one of the following functions: The function
dispatchTasks evaluates the offline generated dispatch
table and storedschedule instructions. It releases the
scheduled tasks one after the other until either the time bud-
get of the module has elapsed or there are no more sched-
uled tasks. If the budget of the module has elapsed, then
the currently running task thread will get suspended. The
intrinsic property of TDL similar to related timed-model
computational systems, using only simple tasks with no
synchronization points, allows us to implement this with-
out a resource reservation mechanism. If there are no more
tasks to release and the budget has not elapsed, then the E-
machine will wait until the time budget of the current mod-
ule will have elapsed. Low priority threads such as the up-
date thread, can use this time.

At each point in time at most one task is executing. If
a module is registered, then the runtime thread of the E-
machine will be active. If the E-machine and all application
tasks threads are idle and a module is in its initialization
phase, then the update thread will be running. The priority
requirements of Equation 1 of task priorities are crucial to
guarantee timeliness.

priority(E-machine runtime thread) >

1For a list of instructions and their explanation see [7].

priority(Task threads) >

priority(Initialization thread) (1)

The E-machine runtime thread controls all other threads.
The task threads are time critical and must not be inter-
rupted by initialization threads. However, they are also not
allowed to interrupt the E-machine runtime thread. Finally,
the update thread has the lowest priority and will run only,
if all other threads are idle.

The remaining functions of Listing 2 are
setModeTime, which updates the mode time, and the
functions calculateNewBudget and reschedule,
which handle the module-level scheduling.

whi le (true ) {
Module m = getNextScheduledModule ( ) ;
i f (m != NULL ) {
runBlock (m ) ;
dispatchTasks (m ) ;
setModeTime (m ) ;
calculateNewBudget(m ) ;
reschedule ( ) ;

} e l s e {
runtimeThread .exit ( ) ;

}
}

Listing 2. E-machine runtime behavior.

Scheduling. The E-machine uses a two-level dynamic
scheduling algorithm similar to the one proposed in [4].
The E-machine uses the first level to schedule TDL modules
(module-level scheduling)and the second level to schedule
tasks within modules(task-level scheduling). For task-level
scheduling, each module calculates an independent earliest
deadline first (EDF) [3] schedule for each of its modes at
module initialization. The whole processing time, assigned
to the TDL module by module-level scheduling, is divided
into fractions and is assigned to individual tasks according
to the pre-calculated EDF schedule within the module.

Registration service. The registration service provides
a service to dynamically register new TDL modules at
the RTLinuxPro E-machine. It uses the module-loading
mechanism of the Linux kernel. When a new TDL mod-
ule is loaded, the kernel calls theinit module func-
tion of the kernel module that encapsulates the TDL mod-
ule. This Linux specific function was previously defined
by the TDL compiler and is used to register functionality
code at the E-machine. The registration service provides
a register module function that is called from within
init module. The parameters of this function are used to
pass function pointers to the E-machine, that correspond to
the module specific functionality code. The developer does
not care about these function calls, since they are generated
by the TDL compiler.
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The function pointers are a key element in the imple-
mentation of the functionality-replacement mechanism. At
runtime, the E-machine follows the function pointers and
invokes functionality code such as task drivers, guards, or
task implementations. We use these function pointers to
update/replace functionality code. When a module registers
new functionality code, the update task stores the new func-
tion pointers, but the E-machine does not immediately use
them. Whenever the mode period of a module’s mode ends,
the E-machine is allowed to switch to the new functionality
code.

5.3. Control Panel

The control panel is a user-space Java application that
gives control over the running E-machine and displays sta-
tus information about the E-machine and loaded modules.
For debugging purposes the control panel can force the E-
machine to halt and resume execution (the button labeled
“Halt E-machine”). The button labeled“load new module”
opens a dialog to select a shell script to load a new module.
The script needs to call the Linuxinsmod andcat pro-
grams to insert the module and pass its E-code to a FIFO
queue. The button labeled“unload” calls thermmod pro-
gram to unload marked TDL modules. A module is marked,
if the check box in the very right column of the table is en-
abled. The buttons labeled“replace functionality” and“re-
place E-code”execute shell scripts to replace the behav-
ior of the marked module, respectively. Since functionality
code is encapsulated in separate modules, it is replaced by
unloading and loading the corresponding kernel modules.
E-code is replaced by passing new binary E-code file to the
E-machine through a FIFO queue.

The communication between the user-space Java ap-
plication and the E-machine is implemented via real-time
FIFO queues (see Figure 2). These FIFO queues cannot
interrupt the real-time behavior, because reading from the
FIFO queues is done by low priority threads and writing
to them is non-blocking. If a FIFO queue is full, because
the control panel does not read its content, then this con-
tent will be overwritten by further write calls. This can lead
to incorrect panel information, but cannot interfere with the
real-time application.

6. Case Study

As proof of concept, we implemented a case study that
is simple, shows the key points of our work, and cannot be
done with related work while guaranteeing value and time
determinism on the local node when replacing functionality
at runtime. The application is a simple stop watch with two
buttons: start/stop and lap. In the first version of the soft-
ware (see Figure 3(a)), the stop watch starts counting when

Running
time

Intermediate
time

Stopped
time

Lap

Start/stop
Start/stop

Start/stop

Lap

(a) Stop watch vers.
one.

Running
time

Intermediate
time

Stopped
time

Lap

Start/stop

Lap

Start/stop

Start/stop

(b) Stop watch vers. two.

Figure 3. Stop watch v1 and v2.

the start/stop button is pressed. It stops counting when this
button is pressed again2. If the user presses the lap button
while the stop watch is counting, then the display will show
an intermediate time until the user presses the lap button
again. Then the stop watch will continue to display the cur-
rent running time again.

module StopWatch {
sensor
int S_startstop uses getButtonStartStop ;
int S_lap uses getButtonLap ;

ac tua to r
int A_sec uses setSec ;
int A_tenth uses setTenth ;

task T_sec [150 ms ] {
i nput int sens_lap ;

int sens_startstop ;
output int o_sec := 0 ;
s t a t e int s_sec := −1;

int s_lap := 0 ;
int s_startstop ;

uses t_sec_Impl (sens_lap ,
sens_startstop , o_sec ,
s_sec , s_lap , s_startstop ) ;

}

task T_tenth [50 ms ] {
i nput int sens_lap ;

int sens_startstop ;
output int o_tenth := 0 ;
s t a t e int s_tenth := −1;

int s_lap := 0 ;
int s_startstop ;

uses t_tenth_Impl (sens_lap ,
sens_startstop , o_tenth ,
s_tenth , s_lap , s_startstop ) ;

}

s t a r t mode main [1000 ms ] {
task

[ 1 ] T_sec{sens_lap := S_lap ;
sens_startstop := S_startstop ;}

[ 1 0 ] T_tenth{sens_lap := S_lap ;
sens_startstop := S_startstop ;}

ac tua to r
[ 1 ] A_sec := T_sec .o_sec ;
[ 1 0 ] A_tenth := T_tenth .o_tenth ;

}
}

2For sake of brevity, it is not possible to reset the stop watchto zero.
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Listing 3. TDL program of the stop watch ap-
plication.

Listing 3 shows the TDL program of the stop watch. The
two visible counters on the stop watch run autonomously,
i.e., the task which displays seconds (Tsec) runs once
per second and the task which displays tenths of sec-
onds (Ttenth) runs ten times per second. TaskTsec and
Task Ttenth do not communicate with each other. The
functionality code forTsec (t sec Impl) increases a
counter each time it is executed (the timer value is stored
in the state ports sec). The functionality code forTtenth

(t tenth Impl) increments its counter by ten each time
it is executed. The actuatorsAsec andAtenth update the
external display of the stop watch.

The stop watch has two buttons: start/stop and lap. Fig-
ure 4 shows the functional behavior of version one of the
stop watch. If the user presses the start/stop button, then the
watch will start counting. If the user presses the lap but-
ton, thent sec Impl andt tenth Impl will continu-
ously report the counter value at which the button has been
pressed. However, the watch will continue to increase the
internal counter (storing the intermediate time ins lap). If
the user presses the lap button again, then the two tasksTsec

and Ttenth will continue reporting the computed counter
value of each execution (i.e., the running time).

Stop

1 2 3 4 5 6 7 8 9 0

0 1 2 3 4 5 6 7 8 9 0

0 1 2

Start

Time

2 3 4 5 6 7

osec

stenth

otenth

ssec

10 2
Tsec

Ttenth

0 1 81 1 1 1 1 1 0 1 2 3 4 5 69

tenth
secDisplay 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1

0 1 81 1 1 1 1 1 0 1 2 3 4 5 69 6 6 6

Lap Lap

0

Figure 4. Value output of the stop watch ver-
sion one.

6.1. Specifications & Timing Values

In our test lab, we have several workstations running
RTLinuxPro to build research prototypes. These machines
run an AMD 2600 processor mounted on a Matsonic 8167C
motherboard, and have two Ethernet cards: one for Internet
(a VT6102 Via Rhine II) and one for real-time communica-
tion (a 3C509c TX).

For our system, RTLinuxPro guarantees a worst-case ex-
ecution time of a context switch of 15us and we use the pro-
vided “advance timer” concept of the system to take care of
this extra time.

In our implementation, we do not use interrupts for ac-
cessing any kind of value (e.g., sensor values). We poll

values, which is the natural implementation in the timed
model. This eliminates most of the jitter and context
switches. The remaining part is taken care of in the LET
of the tasks. The semantic specification of the case study in
TDL uses 45 lines of code that compiles into 242 lines of C
code (exclusive the functionality code) and 130 E-code in-
structions (excluding the E-code header of 16 ports, 2 tasks,
14 driver, 1 mode).

6.2. Functionality Replacement

Now, we extend the functionality of the stop watch by re-
placing the implementation of the two tasks (t sec Impl
andt tenth Impl). Their new functionality should be
(see Figure 3(b)): whenever the user presses the lap button,
the display shows the current intermediate time (instead of
switching between intermediate time and current time as in
version one). This new functionality code does not have a
greater WCET than the previous version (just different con-
stants in the assignment), so we do neither have to ship new
E-code nor have to recalculate the utilization of the whole
node. Also, we do not have to change the TDL program
specified in Listing 3. Instead, we change the functionality
code, compile it, generate a Linux kernel module, and load
it into the kernel. The initialization mechanism inside the
module triggers the update task of the E-machine. The up-
date task registers the new functionality code and at the end
of a mode period (in the example shown in Figure 5 at the
end of the second mode period) the new functionality code
takes effect.

Display

complete

0 1 2 3 4 5 6 7 8 9 0 0 0 0 4 40 4 4 47 7 7 7 7 7 7 7 7 7

0 1 2 3 4 5 6 7 8 9 0 0 0 0 4 40 4 4 47 7 7 7 7 7 7 7 7 7

Start

Time

code
Update

Version Version 1 Version 2

0 1 2

2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 990 1 08 9

osec

stenth

otenth

ssec

0 0 2

Ttenth

Tsec

Lap Lap Lap StopLap

tenth
sec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2

Update

Figure 5. Replacing functionality: Output of
the stop watch version one and after an up-
date of version two.

6.3. Timing Replacement

To update the timing or the data-flow of tasks, we have
to modify the TDL program. For the case study, we will
change the resolution of the stop watch and decrease it to
200 milliseconds. Listing 4 shows the modified part of the
TDL program. Line 6 and 11 now denote the new timing
behavior. To decrease the resolution, we decreased the fre-
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quency of TaskTtenth and the actuators from ten (see List-
ing 3) to five.

1 / / . . . p r i o r code l e f t ou t . . .
s t a r t mode main [1000 ms ] {

3 task
[ 1 ] T_sec { sens_lap := S_lap ;

5 sens_startstop := S_startstop ;}
[ 5 ] T_tenth { sens_lap := S_lap ;

7 sens_startstop := S_startstop ; }

9 ac tua to r
[ 1 ] A_sec := T_sec .o_sec ;

11 [ 5 ] A_tenth := T_tenth .o_tenth ;

13 mode [ 1 ] i f startStop ( S_startstop )
then stopped ;

15 }
/ / . . . f u r t h e r code l e f t ou t . . .

Listing 4. Snipplet of the TDL program of stop
watch version 3.

Using the timing/data-flow replacement mechanism, we
now update the software at runtime. Figure 6 shows the
timing of the update mechanism together with the timing of
TaskTtenth prior to and after the update. During the first
mode period, we issue the update request. It triggers an im-
mediate release of the update task (Tupdate). The priority of
the update task is lower than the priority of the E-machine
and any of the application specific tasks. Consequently, the
scheduler only executes it, when all other tasks are finished
and the system would be idle. For example in Figure 6,
the dispatcher does not resumeTupdate in the second mode
period until TaskTsec has completed.Tupdate finishes ex-
ecution near the end of the second mode period, however,
the E-machine does not switch to the new timing until the
end of the mode period. At the end of the second mode
period shown in Figure 6, the registration service updates
the timing behavior and the E-machine uses the new E-code
from this moment on. As the figure shows in the third mode
period, TaskTtenth is only executed five times a mode pe-
riod3.

7. Evaluation

The proposed mechanism is non blocking. This implies
that the mechanism is free of locks and does not have a crit-
ical section. Consequently, its implementation does not re-
quire any synchronization mechanism such as a mutex or a
semaphore and it does not interfere with the running hard
real-time application in any circumstance. As TDL itself
guarantees time and value determinism and the mechanism
does not interfere with TDL, we can replace program func-
tionality, timing, and data-flow of system and still guarantee
time and value determinism.

3The output on the display now requires to multiply the value with two
to display the correct tenth of a second.

The mechanism requires determinism in the time do-
main. Although the update task sets up the new function-
ality, timing, or data-flow while the system is idle, the es-
sential migration from the old to the new version is time
triggered. So, the proposed mechanism only works with
systems that implement the timed model such as TDL [13]
or Giotto [7].

The proposed mechanism and our implementation only
supports replacing task timing and inter-task data-flow at
the same time. This is neither a limitation of the mechanism
nor of the implementation and they can easily be altered to
support separate replacement of task timing and data-flow.

The implementation allows only one active update task at
a time. To run several update tasks concurrently requires ad-
ditional offline checks and different runtime behavior. The
update task is initialized by the system developer and can
be released at any time (it is event triggered). Since we
cannot guarantee the timeliness of the update task that has
started prior to the second update task — we can guarantee
a WCET of the update tasks, for we know the utilization of
the node — concurrent update tasks hinder time and value
determinism of the update behavior of the system.

TDL modes complicate the WCET calculation and re-
placement actions. A mode consists of several, possibly
concurrently executed task invocations and actuator up-
dates. When the application switches from one mode to
another, it may change the timing behavior and functional-
ity of the application. Although modes and mode switches
are defined prior to system deployment, they still compli-
cate the calculation of the WCET and the replacement ac-
tion. After a mode switch, the succeeding mode may lead
to a higher utilization of the node, and then a mode depen-
dent calculated WCET of the update task would be invalid.
To guarantee the timeliness, the WCET of the update task is
calculated for the highest possible utilization of the node. If
the update task registers new E-code that does not include
the mode to which the application would switch to at the
end of the current mode period, then the system will fail.
To prevent this, the new E-code must not reduce the num-
ber of available modes and ”old” modes must remain in the
application.

In the runtime environment, state information is kept in
two places. System state is present in the input and output
ports of the tasks, only local state is encoded in the task.
Replacing one task with another results in loss of local state
information, however, the system state is still present, since
replacing the tasks does not flush the information already
stored in the output ports. At the beginning of the new hyper
period, the input ports of the task are immediately written.
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Figure 6. Replacing the timing of Task Ttenth.

8. Conclusions

In this paper, we proposed a mechanism for function-
ality, timing, and data-flow replacement for hard real-time
systems. The mechanism is non-blocking as it does not
require a critical section and does not interfere with the
running hard real-time application. The mechanism trades
promptness of the update request present in related work
for time determinism of the replacement action, which is
an important property for our further research. The mech-
anism itself is embedded in an infrastructure implemented
in RTLinuxPro. Using this infrastructure, we present a case
study of a stop watch, in which we exchange functionality
of the lap button and decrease the timing resolution of the
stop watch.

Although, we are now able to replace functionality, tim-
ing, and data flow at runtime in hard real-time systems, the
evaluation shows that multi-mode applications complicate
replacement actions and require special treatment by the
developer. In our future work, we plan to further inspect
functionality and especially timing replacement actions for
multi-mode applications in the timed model and extend the
work towards multi-node software replacement actions in
distributed real-time systems.
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