
Dialog Model Clustering for User Interface

Adaptation

Guido Menkhaus and Sebastian Fischmeister

Software Research Lab, Department of Computer Science
University of Salzburg A-5020 Salzburg, Austria

{lastname}@SoftwareResearch.net

Abstract. In recent years, the dramatic growth of the PDA and mobile
phone market demonstrates that users are willing to be constrained to
small displays, limited storage and battery life, slow CPU speeds and
data transfer, in the hope of achieving truly portable access to electronic
data. Most of the limitations that users experience with current devices
will disappear in future generations. These changes will not have an
effect on the primary user interface constraint: the display size. The
actual screen size will not change, since users demand devices that can be
easily carried around and held in one hand. The article presents a hybrid
approach to the generation of adaptive UIs based on a linking strategy
of hierarchies of graphs. The nodes of this graph consist of clustered UI
elements.

1 Introduction

From the increasing miniaturization of hardware arose a broad spectrum of mo-
bile computers, which extend from mobile phones, computerized notepads, and
PDAs to notebooks. This created a heterogeneity of computing platforms that
stands in contrast to the past homogeneity of the desktop computer paradigm.
This diversity often makes a transfer of knowledge difficult on how to build user
interfaces (UI) between the platforms. The application of specific techniques for
user interfaces, which are suitable for a desktop PC graphic user interface, to a
miniaturized version fails. The objective is to develop UIs for the same applica-
tion only once and not for each particular class of computing device.

There are research projects looking into new generation UIs that no longer
consist of a conventional display. These UIs, although small in physical size,
will no longer have size constraints concerning the UI. However, user acceptance
seems to be low [1]. We think that traditional user interfaces still have a strong
potential for improvement and that this technology will prevail in the near future
on the consumer market [2].

The article presents an approach to UI adaptation. It is based on an ab-
stract UI description, which is shared among different platforms. The adapta-
tion technique tailors the UI description to minimize the mismatch between its
presentation and the platform’s capability to present it.

In Web Engineering, LNCS 2722, Oviedo, Spain, 2003.

1 of 10



The remaining of the article is organized as follows: The following section
presents a short overview of UI architecture. Section 3 introduces the concept
of adaptation mechanisms. A special adaptation technique is discussed in Sec-
tion 3.2 along with related work in Section 3.1. Results are presented in Section 4
and Section 5 closes the article with concluding remarks.

2 User Interface Architecture

Model-based UI software development has introduced concepts and techniques
that assist in the process of UI development [3, 4]. These concepts give developers
a better understanding of the field of UI design. There are three phases in the
process of UI design [5]: The semantic level design describes the tasks users
should be able to perform using the application for which the UI provides the
interaction means. The syntactic level design describes the structure and the
interaction behavior of the UI. The lexical level design consists of the detailed
description of the visual part of the UI. The semantic design level consists of
the task model. The dialog model presents the syntactic design level. The lexical
design level describes the platform and the presentation model [6]:

1. Task Model. The task model is a formal description of the service the user
accesses. It is hierarchically organized and contains information regarding
the trigger of a task, its precondition, postcondition, and the action of the
task itself.

2. Dialog Model. The dialog model describes the syntactic sequence of human-
computer interaction through UI elements and determines the ordering of
the set of tasks and actions. Since the task model is hierarchically organized,
so is the dialog model. It is usually implemented as a sequence of windows
consisting of a set of UI elements and a set of transitions that allows navi-
gation from one window to the next.

3. Presentation Model. The presentation model accounts for the different
devices from which a user may access a service. It maps conceptual elements
of the dialog model onto platform specific elements.

4. Platform Model. The platform model contains information about the ca-
pabilities, restriction, and limitations of the target platform. This model is
usually exploited dynamically at run-time.

The main obstacle to single authoring is the growing number of networking
enabled devices with a wide variety of UI capability. One of the main differences
they share is different screen size. How to enable content to be adapted to various
screen sizes? The same content may require varying numbers of windows to
display and a different navigational structure, depending on the platform. For
example, content fitting on one PC window may require 3 windows on a mobile
phone. Yet, all these windows originate from the same, single authored UI. The
platform model delivers information about the limitations and restrictions of the
target platform. The adaptation process exploits this information for adapting
the content and the navigational structure.

2 of 10



The challenge is to remodel the UI elements into a composition which allows
the user to adequately interact with the application and that respects the dialog
model independent of the target device.

2.1 Short Overview of Adaptation Mechanisms

Until recently, UI software has been designed with a specific environment in
mind, resulting in ideal properties in this environment. Any other environment
entails an adaptation of the system resulting in an output having properties less
optimal than the ideal properties. An ideal adaptable software maintains the
same ideal properties under all environments. However, in practice it is impossi-
ble to maintain the ideal properties under a varying environment. Therefore, the
goal of the adaptable software system is to result in an output having properties
close to the ideal properties. Following the notation of [7]: Let s be a software
system. E is the space of environments hosting all possible environments. ei ∈ E
is one environment having a set of properties pi ∈ P . Let I ⊂ E be the input
space, and ii ⊂ ei provides the inputs of the environment ei. O ⊂ E is the output
space, and oi ⊂ ei the output space of the system s under the environment ei.
A computation of the system s produces the results oi with properties pi in an
environment ei: s(ii) → oi : oi |= pi, pi ∈ P, ii, oi ∈ ei The equation states that
s guarantees the properties pi under the environment ei. An ideal adaptable
system maintains the same properties under all environments. Since there is no
such ideal system, the objective of the adaptable software system is to aim at
an output with properties close to the ideal properties. The adaptation process
adaptation can be regarded as an energy minimization problem, with the energy
function:

E(ei) =
1

n

n
∑

j=1

d(pi,j , pi,ideal)
2

with pi,j ∈ pi, j = 1, . . . , n being specific properties of the environment ei

and d(·, ·) being a distance measure between properties. The energy is minimal,
when the ideal properties are met after the process of adaptation.

3 Dialog Model Adaptation

In this article a dialog of the dialog model will be represented by a two-dimensional
discrete function UIelement(x, y), which is digitized both in spatial coordinates
and feature value: dialog = [UIelement(x, y)]P×Q where P × Q is the size of
the dialog, (x, y) denotes the spatial coordinate and UIelement(x, y) ∈ UIE the
type of UI element from the set of available abstract UI elements UIE. Without
loss of generality we consider only the case, where Q = 1.

Grouping UI elements that implement the dialog model into a hierarchical
structure of windows is the essential step our adaptation process that leads to
single authoring. For this, the dialog model adaptation process partitions the
UI elements implementing the dialog model into non-intersecting regions, such
that each region satisfies a homogeneity predicate and the resulting hierarchical
structure of windows minimizes an energy function.

3 of 10



Formally, the process of adaptation of the dialog model can be defined as
follows: If a dialog model consists of a set of UI elements and P is a homogeneity
predicate, then the adaptation of the dialog model is a partitioning of UI elements
into a set of connected regions (r1, r2, . . . , rn), which will eventually be converted
into a hierarchical navigationable structure of windows, such that:

dialog = ∪n
i=1(ri\navigationUIelements(ri))

ri ∩ rj = ∅, i 6= j

ri is a connected set of regions

P (ri) = true, i = 1, . . . , n

P (ri ∪ rj) = false, if ri is adjacent to rj

The adaptation of the dialog model partitions a dialog into regions of non-
intersecting UI elements complying with a homogeneity predicate. A user ac-
cessing a service supported by a dialog model needs to navigate from one region
to the next region. However, not all navigation elements are in the original dialog.
Thus, they have to be integrated into the regions, resulting from the adaptation
process. The set of all UI elements in the regions equals the UI elements in the
original dialog plus the integrated new UI elements dedicated to the navigation
between the regions, the navigationUIelements(ri).

3.1 Related Work

The above definition of the process of adaptation is very similar to image seg-
mentation as defined in [8]. Analogous to segmentation and clustering processes,
the more context and domain information is known beforehand and integrated
into the process, the better the process’ results. Approaches exploring dialog
model adaptation can broadly be divided into two categories. Processes of the
first category do not consider context knowledge such as screen size during de-
sign time. They work bottom-up and rely uniquely on dynamic adaptation of
the dialog model. The other category explicitly uses top-level domain and task
model knowledge during design time. The processes are configured with a priori
known target contexts.

Adaptation without Context Knowledge. One of the key features of the Mi-
crosoft Mobile Internet Toolkit (MMIT) is the ability to transcode content of
a Web form to the screen size of the target device. This process is called pag-
inating and chunking [9]. Pagination is similar to the fragmentation process in
IBM’s Websphere [10]. The places where the process of pagination cuts a Web
forms into two different pages depends on the device screen’s size requirements,
but not on semantic dependencies between controls. For example, textual in-
formation explaining the use of a button and the button itself are modeled as
two distinct controls. If these two UI elements were grouped into two different
regions after the adaptation process, the adapted dialog model had low usabil-
ity. In MMIT, this process may be controlled by inserting Panel controls, which
avoid page breaks between controls. The result is a set of regions, which can be
navigated in a linear, sequential way only. To access the last control of a dialog,
each new window (region) has to be linearly traversed.

4 of 10



Adaptation with Context Knowledge. Approaches of this category allow the
designer to submit to the adaptation process specific configuration information
concerning possible target device types [11]. The designer creates the appropriate
configuration for each class of device. On the one hand, these configurations are
best adapted to the requirements of the underlying service. On the other hand,
a single modification of the requirements of the service entails the modification
of each configuration.

The quality of the latter approach depends on the configuration and the
type of content that is presented. The first approach has the drawback of work-
ing only on syntactic information. We propose a hybrid approach that combines
the advantages of the first bottom-up working approach (fast design, non need
to produce sophistic configuration data) and the latter top-down approach (in-
tegration of semantic information).

3.2 Dialog Model Adaptation using UI Element Clustering

The two main challenges of the hybrid approach to dialog model adaptation are:

1. How to incorporate low-level semantic information into the dialog model?
2. How to adapt the dialog model respecting the semantic information?

No current approach to UI software development implements a clear separation
of presentation, dialog and task model, nor does any current markup language
supports the feature of integrating adaptation configuration that could guide any
adaptation process. We have developed the Multi UI Single Application (MUSA)
model and Event Handler Graph XML. MUSA implements a clear separation
of task, dialog, presentation and platform model. The Event Graph Handler
XML representing the dialog model is a markup language that allows adding
information to each element stating the semantic relation to its neighboring
elements. For more information on MUSA and Event Handler Graph XML,
refer to [12, 13]. In the next section, we introduce the dialog model adaptation
process.

Dialog Model Clustering. The adaptation technique is based on a linking
strategy of two hierarchies of graphs [14, 15]. The first hierarchy of graphs forms
a syntactic based and static structure that guarantees that the resulting regions
are connected. The second hierarchy is dynamically built up respecting the low-
level semantic information integrated into the dialog model at design time. The
two hierarchies of graphs implement the dialog model adaptation process.

The elements of the dialog model are placed as abstract UI elements into a
stack of regular grids, as illustrated in Figure 1. In the lowest level of the stack,
each cell of the grid corresponds to a single UI element. Each cell of level i + 1
represents a group of cells of level i. The adaption algorithm always forms linear
structures of 3 × 1 cells. The cells overlap in such a way that the outer cells on
level i belong to two cells of level i+1. The cells in a group of level i, represented
by a cell of level i + 1, are called the subcells or the children of this cell. The

5 of 10



Level 0

Level i

Level i + 1

Cell Cell Cell

Cell

UI
Element

UI
Element

UI
Element

UI
Element

UI
Element

UI
Element

UI
Element

Fig. 1. Stack of a regular grid of cells that places a structure on a set of UI elements.
Three UI elements form a cell on the lowest level. Cells on a lower level are candidates
for cells on a higher level.

representing cell is called the parent of its children. The clustering of a set of
UI elements into a set of regions is done within the boundaries of the induced
stack of cells and is of primary interest. To come to the final set of regions, we
dynamically build up a stack of regions. A UI element corresponds to a region
on the lowest level. Adaptation of a window is performed by clustering regions
of level i into regions of level i+1. However, regions can only be grouped within
the boundaries of a cell in which they reside, as illustrated in Figure 2, and if
they satisfy the homogeneity predicate. This guarantees that we cluster only
connected regions.

A hierarchy of regions is built up by applying a clustering process to each cell
while moving up the stack of cells. The clustering process stops at the boundary
of each cell and the cell overlap is responsible some regions taking part in two
cell-based clustering processes. The receptive field RF [15] of a region r ∈ Ri,
with Ri being the set of regions of level i, is defined as the set of all regions
on the lowest level, which represent the region r. The semantic information σ

integrated into the dialog model is assigned to each region r. σ(r) is the average
value of the semantic information of each region’s receptive field.

The adaptation process adapts dynamically the dialog model by composing
and decomposing UI elements of the dialog model into a set of regions, which re-
sults finally into a hierarchical structure of linked windows. The process consists
of the following four phases:

– Bottom-up Clustering. Regions of level i are grouped into regions of level
i + 1 within the boundaries of their cell and satisfying a predicate P .

– Top-down Separating. Regions that fail to group on level i are separated
recursively down to level 0.

– Horizontal Separation. Large-sized regions of level i, especially when they
contain a single UI element, are split into smaller regions of level i.

– Relinking. The user should be able to navigate from one region to the next
region. To ensure usability, regions are relinked by integrating additional
navigation UI element.

Bottom-up Clustering. The clustering process determines the set of connected
regions of level i of a specific cell and groups them. In order to form a new region

6 of 10



ri+1 (the subscript indicates the level) in a cell ci+2, the set of subcells of ci+2

are determined. Each subcell has a set of regions associated that are candidates
for clustering into ri+1. A region si groups into the region ri+1, if it satisfies the
homogeneity predicate P (ri+1 ∪ si) = true.

The clustering process is illustrated in Figure 2. Two regions si, ti are con-
nected i.e., they have a common subregion ui−1 and will be grouped into the
region ri+1. Regions of the lowest level are connected with their neighboring re-
gions. The overlapping structure of the stack of cells guarantees that the group-
ing process considers only those regions, which are connected or have a path of
connected regions on the lowest level, the UI element level. The homogeneity

Level 0

Level i

Level i + 1

UI
Element

Region r

CellsRegion s Region t

UI
Element

UI
Element

UI
Element

UI
Element

UI
Element

UI
Element

u

Fig. 2. Grouping process. Regions are grouped within the boundary of a cell.

predicate decides if regions are clustered or not. The predicate consists of two
parts, which both need to evaluate to true; P (r) = Size(r)∧Context(r), r ∈ Ri.

– Size. On different platforms a dialog is displayed with a varying number
and size of UI elements. If the size of a region and its parent region is lower
than a predefined threshold (e.g., three times of the screen size) the regions
are clustered, otherwise they are separated, either horizontally or top-down.
The size of a region is the size of its receptive field.

– Context. The designer of the original dialog model integrates in it semantic
information. The information deals with the semantic relation of a UI ele-
ment with its neighboring UI elements. A region si and its tentative parent
region ri+1 are grouped if their semantic intent does not exceed a predefined
threshold d(σ(si), σ(ri+1)) < Θ. In the current version of the adaptation
process, we simply assign integer values to UI elements, to indicate semantic
similarity. d(·, ·) is a distance measure like the Euclidian distance.

Top-down Separating. If the grouping process fails, because a region si does not
satisfy the homogeneity predicate P , the region need to be separated from its
connected region ti. The region need to be separated since they have a common
subregion ui−1, which needs to be assigned to a single parent region (Figure 2).

7 of 10



Complete
Region

Region Region

Region

Region

Region

Region

Complete
Region

Region Region

Region with
Navigation to

Complete
Region

Relinking

Fig. 3. A region containing a single navigation UI element will replace a complete

region. The new region takes part in the building phase on behalf of the complete

region.

The separation process assigns the common subregion to the region, whose se-
mantic value is the most similar. This means that ui−1 is removed from the set
of subregions of the other region. The process is recursively applied down to the
lowest level. For level i− 1 in Figure 2 it would be applied to ui−1, the common
subregion of si and ti, and to those subregions of regions of level i, which have
a common subregion with ui−1.

The process of bottom-up clustering and top-down separating can be seen as
an energy minimization problem. The energy is defined as follows:

E =
∑

i,rj∈Ri

∑

uj−1∈κ(rj)

∥

∥

∥

RF (uj−1)
∥

∥

∥

d(σ(uj−1), σ(rj))
2

∑

uj−1∈κ(rj)

∥

∥

∥

RF (ui−1)
∥

∥

∥

with κ being the mapping that assigns to a region r its subregions. Two re-
gions are top-down separated such that the energy of the resulting regions in
the hierarchy of graphs is minimal with respect to the size requirements of the
homogeneity predicate.

Horizontal Separation. If the size of a region ri prevents it from clustering with
other regions although it could from the context part of the homogeneity pred-
icate’s point of view, it is split into a sequence of n smaller, mutually linked
regions r0,i, r1,i, . . . , rn,i. E.g., a lengthy text message is split into a sequence of
regions containing each a part of the text message. Only the head of the sequence
continues to take part in the grouping process.

Relinking. A region that cannot further be clustered with other regions into a
region of a higher level is called complete. A complete region that has reached
the threshold of maximal allowed size or that cannot further be clustered from
a semantic context point of view does not drop out of the grouping process. In-
stead, a new region is created containing a single navigation UI element pointing
to the complete region. The new region takes the place of the complete region
and continues the grouping process on behalf of it. The process is illustrated
in Figure 3. The set of regions resulting from the adaptation process are trans-
formed applying the presentation model into a hierarchical structure of windows
containing concrete UI elements.

8 of 10



4 Results

To illustrate the adaptation technique of a dialog model we have implemented a
location-based message board [12]. The message board contains location specific
information and users can read and store messages on the message board. A
mobile user moving from location to location accesses different message boards
depending on the geographical position. Different users use different devices
to access the message board such as laptops, PDAs, or mobile phones. The
dialog model that results in the graphical UI on a HTML browser is shown in
Figure 4(a). The same dialog model but this time adapted to the small screen
of a mobile phone is shown in Figure 4(b). There are two things to note. Firstly,

(a) (b)

Fig. 4. (a) HTML browser showing the Message Board ”Main Menu”. (b) WML
browser showing the Message Board ”Main Menu”.

the menu is hierarchically structured into a two level menu, with a main menu
containing links to each menu item, which are presented on their distinct screen.
The main menu is created during the relinking process of the adaptation and
is not present in the original dialog model. The grouping process groups the
newly created navigation UI elements together, which results in the main menu.
Second, the service descriptions, which are lengthy text messages, are split into
a series of screens, which are linked with each other. The user navigates with the
”Continue” and ”Back” links from one screen containing part of the description
to the next screen.

5 Concluding Remarks

The article has presented a new approach to dynamic UI adaptation. The adap-
tation process is based on bottom-up clustering and top-down separation using

9 of 10



low-level semantic context information. It results in a hierarchical structure of
windows by clustering, separating, and relinking regions. The process is guided
by low-level semantic information that is provided by the designer of the dialog
model at design time. The adaptation process remodels dynamically a presenta-
tion of the dialog model to better fit it to the current platform model.

The presented experiments with the dialog model adaptation technique are
promising and show that the concept is sound. The use of the hierarchy of graph
has been proven flexible and is a viable concept for future UI development.

In our future work, we will elaborate the adaption algorithm to include user
specific settings such as window size of the running application or user-preferred
font size.

References

1. Alpert, M.: Machine Chic. Sci.Am (2002)
2. Marcus, A., Chen, E.: Designing the PDA of the Future. Interactions 9 (2002)

34–44
3. Pinheiro da Silva, P.: User Interface Declarative Models and Development Environ-

ments: A Survey. In Palanque, P., Paternò, F., eds.: Proceedings of DSV-IS2000.
Volume 1946 of LNCS., Ireland, Springer-Verlag (2000) 207–226

4. Szekely, P.: Retrospective and Challenges for Model-Based Interface Development.
In Bodart, F., Vanderdonckt, J., eds.: Design, Specification and Verification of
Interactive Systems ’96, Wien, Springer-Verlag (1996) 1–27

5. Schlungbaum, E.: Model-based User Interface Software Tools - Current state of
declarative models. Technical Report 96-30, Graphics, Visualization and Usability
Center, Georgia Institute of Technology, Atlanta (1996)

6. Puerta, A.: A Model-Based Interface Development Environment. IEEE Software
14 (1997) 41–47

7. Seng, A.R.: An Adaptability Framework for Mobile Applications (1999) http:

//citeseer.nj.nec.com/290640.html.
8. R.Pal, N., K.Pal, S.: A Review on Image Segmentation Techniques. Pattern

Recognition 26 (1993) 1277–1294
9. Microsoft: Mobile Internet Toolkit - QuickStart Tutorial (2002)

10. Britton, K., R.Case, A.Citron, Floyed, R., Li, Y., Seekamp, C., Topol, B., Tracey,
K.: Transcoding. Extending e-business to new environments. IBM Systems Journal
40 (2001) 153–178

11. Mandyam, S., Vedati, K., Kuo, C., Wang, W.: User Interface Adaptations: Indis-
pensable for Single Authoring. In: W3C Workshop on Device Independent Au-
thoring Techniques, SAP University, Germany, W3C (2002)

12. Fischmeister, S., Menkhaus, G., Pree, W.: MUSA-Shadow: A Location-Based Ser-
vice Supporting Multiple Devices. In: Proceedings of Pacific TOOLS, Sydney,
Australia (2002) 71–79

13. Menkhaus, G.: An Architecture for Supporting Multi-Device, Client-Adaptive Ser-
vices. Special Volume of the Annals of Software Engineering Journal on OO Web-
based Software Engineering (2002)

14. Nacken, P.: Image Segmentation By Connectivity Preserving Relinking in Hierar-
chical Graph Structures. Pattern Recognition 28 (1995) 907–920

15. Hartmann, G.: Recognition of Hierarchically Encoded Images by Technical and
Biological Systems. Biological Cybernetics 57 (1987) 73–84

10 of 10


