
Time-triggered Communication for Distributed Control Applications in
a Timed Computation Model

Guido Menkhaus, Michael Holzmann and Sebastian Fischmeister, University of Salzburg, Austria

Abstract

Distributed real-time control applications consist of
sets of tasks that interact with the physical world
through sensors and actuators and are executed on a
dispersed set of locations that are interconnected by
a communication subsystem. Timeliness and safety
requirements of the application demand
deterministic execution of tasks and predictive
communication. Deterministic and predictable
systems can be build, if upper bounds for processing
and communication latencies are known and event
arrivals have deterministic distributions.
In this paper we describe the timing definition
language (TDL) system architecture implementing
time-triggered computation and time-triggered
communication. The TDL system implements the
timed computation model and its architecture
consists of two parts: TDL-Exe (for time and value
deterministic execution of tasks) and TDL-Com (for
predictive communication of values). The paper
presents TDL-Exe and describes implementation
details of TDL-Com.
Keywords: real-time control systems, timed
computation model, time-triggered communication,
system architecture

1 Introduction

Most modern control applications are implemented
in software, dedicated to perform specific tasks and
interacting with the physical world through sensors
and actuators. Physical and software processes differ
conceptually in their treatment of the role of time
[1]. Physical processes evolve in real-time and
software processes evolve in so-called soft-time.
Soft-time coincides with real-time only at the
instances of input and output activities. Timed

real-time programming deals with the activities of
mapping soft-time to real-time [2].
Real-time control systems are often implemented as
distributed systems where a set of computational
nodes is interconnected by a communication system.
The dispersal of application resources,
organizational issues, and fault-tolerance
mechanisms are design rationales for distributed
systems. In such a system, each node executes a set
of tasks contributing a specific functionality to the
overall control system. Individual tasks cooperate
and results of one task may require to be
communicated to tasks located at different nodes.
The design of a real-time distributed control system
can broadly be divided into global and local design
issues [3]:

• Global design decisions.Global design
decisions deal with activities that are relevant to
more than one computational node (e.g.,
communication concerns). These activities
must be coordinated among the computational
nodes and require to work consistently together
towards the goal of the control system.

• Local design decisions.Local design decisions
are concerned with activities within a single
computational node (e.g., the set of tasks
released on this node need to be invoked and
executed in a consistent and synchronized
way).

The correctness of a real-time control system
depends on the computed values and on the point in
time, at which these values are available. A key
problem of distributed real-time systems is the
timely interaction between the system and the
environment while maintaining consistency and
correctness of data. To achieve consistency in

In Proc. of the 23rd Intl. Digitial Avionics and System Control Conference (DASC'04), 2004.

1 of 12



distributed systems in the time and value domain,
the system must be made deterministic. Being
deterministic is mandatory for software systems that
control physical systems that are ruled by
deterministic physical laws [4].

• Non-determinism.A non-deterministic system
does not have a unique output sequence to a
given input sequence. An external observer
cannot consistently predict the behavior of the
system. In a deterministic (i.e. predictable)
system the development of future states of the
system can be predicted.

• Value determinism.A systems is said to be
value deterministic, if the same sequence of
inputs produces the same sequence of outputs.

• Time determinism.If the system produces for
the same sequence of inputs the same sequence
of outputs at always the same time, it is
time-deterministic.

Determinism in time-triggered systems is
accomplished by introducing a logical execution
time (LET) and a logical computation time (LCT)
for each task as well as a logical transmission time
(LTT) for communicating messages between
computational nodes.

• Logical execution time.Input and output ports
define logical points of interaction between
tasks. The start of the LET marks the point in
time when the values from input ports to a task
are read. The end of the LET marks the point in
time when the results of the computation of a
task become available at the output ports to
other tasks or actuators. Even if the output of a
task became available prior the end of the LET,
the output values will not be released prior to
the expiration of the LET.

• Logical computation time.The LCT specifies a
fixed time interval in real-time in which the
task is active. The task is schedulable, if there
is enough soft-time available within the interval
to execute the task. According to a scheduling
scheme, the task starts after it has been
released, may be preempted, but resumes and
completes its execution before the LCT has

elapsed. The release and the termination of a
task are time-triggered events emitted at the
start and the end of the LCT. The LCT of a task
is always greater or equal to its worst case
execution time (WCET).

• Logical transmission time.The LTT is
determined by a time-triggered communication
schedule. The schedule defines when the
communication system transfers values from
one computational node to another and when
the next transmission will take place. The LTT
of transferring a value from one node to another
is always greater or equal to the worst case
communication time (WCCT) [5].

The LTT is important for the inter-node
communication and modeled in the global design
decisions. The LCT is determined during the local
design decisions and deals with computational
resources on a single node.

• Centralized Application.For control
application executed on a single computational
node, the length of the LET equals the length of
LCT (see Figure 1). Local intra-node
communication is instantaneous, which means
that reading inputs and writing output happens
conceptually in zero time.

• Decentralized Application.To sustain the
principle of instantaneous communication in a
distributed control application, the LET
consists of the LCT and the LTT (see Figure 2).

Release Terminate

Logical execution time = Logical computation time

Reading

input

ports

Writing

output

ports

t t +T

Task t

SuspendStart Resume Stop

Figure 1. Logical execution time in a centralized
application.

Information necessary to determine the LET of a
task is the invocation frequency that the control law
of the controlled object requires. The length of the

2 of 12



Release Terminate

Logical execution time

Reading

input

ports

Writing

local and non-

local output ports

t t +T

Task t

SuspendStart Resume Stop

Communication

Logical computation time Logical transmission time

Time slot k Time slot l

Figure 2. Logical execution time in a decentral-
ized application.

LCT must be larger than the WCET. The
schedulability test of the TDL compiler verifies this
property. The length of the LTT is determined by the
WCCT, which represents the upper bound required
to transmit a message from the sender to the receiver
over the network.
In this paper we present the TDL system architecture
that allows for the design of control applications
using time-triggered computation and time-triggered
communication. The TDL [6] bases on the concept
of a fixed LET of tasks. The communication system
of TDL provides the programmer with timing
abstraction for implementing distributed control
systems with hard real-time constraints. For an
end-to-end time-triggered approach, it is necessary
to provide time and value determinism for the global
and local design.
The remaining of the paper is structured as follows:
Section 2 presents the motivation of the work.
Section 3 discusses related work such as TTP and
FlexRay. Section 4 presents the TDL system
architecture for centralized and decentralized
system. Section 5 provides details about the
implementation and characteristics of the
decentralized system are discussed in Section 6.
Section 7 concludes the paper.

2 Motivation

The software implementation of distributed real-time
control applications must be predictable yet flexible.
Predictable, because hard real-time applications are
time and safety critical. Flexible, because all tasks
do not have to be specified fully pre run-time.
Non-deterministic system require over-sizing of

computing and communication resources to avoid
time delays in worst load case situations: for
example in dynamic control systems, in which the
upper limit of processing and communication
latencies is unknown and the event or task arrival
have non-deterministic distributions [7].
Event-triggered systems offer more choices for
scheduling task computation and communication.
However, it is difficult to build deterministic systems
utilizing event-triggered communication together
with jitter introduced by communication-error
correction.
In time-triggered systems, communication and
computation of tasks are predictable. Predictability
implies deterministic temporal system behavior
under the imposed timing and functional constraints.
For those systems the functional timing
requirements are always met. Static schedules are
used to plan task executions on each computational
node. But for this, the release time of tasks must be
known a priori. Time-triggered communication
provides predictable message transmission. Static
schedules drive the communication system and
determine the timely transmission of messages.

3 Related Work

A number of time-triggered systems have been
devised in the context of distributed control
applications for safety critical hard real-time
systems.
The time-triggered protocol (TTP) [8] provides
time-triggered communication of messages and
static cyclic scheduling of application tasks. A
member of the TTP family is the time-triggered
protocol TTP/C, intended for safety critical hard
real-time applications, and TTP/A, intended for
low-cost field bus applications. TTP/C provides
distributed fault tolerant clock synchronization, error
detection, membership service, and redundancy
management. Cyclic scheduling of application tasks
is described with the task descriptor lists (TADL).
The TADL specifies the time of starting and
stopping a task and the WCET of a task. It describes
the temporal behavior of the system before the
systems starts. The finishing time of a task is
determined by the number and length of

3 of 12



preemptions. Results are immediately available to
other tasks on the same node after the finishing time.
A consortium of companies supports and promotes
the FlexRay Communications System [9, 10], which
is a communication infrastructure for high-speed
control systems targeting the automotive domain.
The communication cycle of FlexRay consists of a
static and a dynamic segment. Each communication
cycle starts with the static segment. Similar to the
time-triggered protocol, all communication is
divided into slots, which the developer assigns to
individual nodes. Following the static segment, the
dynamic segment is intended for aperiodic messages
such as burst transmissions or diagnosis information.
The dynamic segment utilizes the flexible
time-division multiple access (FTMA) protocol
ByteFlight [11] that uses message identifiers as
means for messages scheduling. Applications using
FlexRay can be implemented with OSEKtime [12].
OSEKtime is responsible for starting tasks according
to a periodic task execution scheme (similar to the
TADL) and it monitors the task deadlines. The
time-triggered tasks can preempt each other.
TTP and Flexray provide time-triggered
communication that ensures time determinism on a
global level. However, on a local level, i.e., on a
single computational node, time determinism and
value determinism cannot be guaranteed. We present
the TDL system architecture for time-triggered
computation and communication that aims at value
and time determinism on a global and local level.

4 TDL System Architecture

The design process for a TDL control application
can be split into a local design process, targeting a
centralized single processor solution, and a local and
global design processes for distributed control
applications. The run-time environment for a
centralized processor TDL control application is the
TDL runtime environment (TDL-Exe), consisting of
the E machine [13]. The TDL-Communication
environment (TDL-Com) complements it for
distributed control application.
We first present the activities of the local design
process and the local runtime environment before
discussing the global design process and the

TDL-Com.

4.1 Centralized System

The following steps lead to a TDL application for
the centralized, single processor solution (see Figure
3).

1. Task-Set Declaration.A TDL program can be
modeled using a visual task modeling tool [14].
The essential idea of the timed computation
model is time-triggered cyclic computation in
which the LET, the LCT, and the WCET
describe the timing behavior of a task.

The most important programming abstractions
of TDL are modules, modes, tasks, and ports:
The highest-level programming construct is a
module. A module declares a set of modes,
which specify sets of tasks and other activities
that are executed periodically and in parallel. A
TDL module can only be in one mode at a time,
but can change from one mode to another at the
end of a period. A module may have a start
mode. If a module has a start mode it is an
executable TDL program and the application
described by the TDL program starts executing
in this mode. A task has a set of input ports,
output ports and a set of drivers that handles the
data for the ports. Ports are logical points of
interconnection between tasks and modes. Task
drivers copy values from an output task port to
an input task port, and there are drivers for
sensor readings and actuator updates. Mode
drivers read sensors and update mode ports,
which are a subset of the task output ports.

2. Task Timing Definition.A TDL mode specifies
the invocation period, i.e., the length of one
computation cycle. The LET of a task is
determined with respect to the invocation
period of the mode to which the task is
assigned. It is calculated by dividing the
invocation period of the mode by the tasks
frequency.

Task drivers, sensor drivers, and actuator
drivers differ in the fact that task and sensor
drivers are called at the beginning and the end

4 of 12



Environment

Driver code TDL−Exe (E machine) Driver code

Platform

Sensor Actuator

TDL model

Simulink

E code

Modeling tool

TDL program

Application
object code

Application
source code

System
libraries

runs on

calls

callscalls

executes

off−line

on−line

simulates

generatesgenerates

compiles and links intocompiles into

generates

Figure 3. Centralized TDL system architecture for a single processor application.

of the LET, whereas actuator drivers are treated
like tasks having their own invocation period.

If the set of tasks is schedulable, the TDL
program is time-safe. However, time safety
depends on the correct analysis and calculation
of the WCET of each task for the given
platform.

3. TDL Program.The visual modeling tool
generates a TDL program.

4. TDL Model.On the basis of a TDL program, a
TDL model generator produces a Simulink
model [15]. Simulink is designed for the
simulation and modeling of control laws. For
modeling, Simulink provides a graphical user
interface for building models as block
diagrams. It includes a comprehensive block
library of sinks, sources, components, and
connectors. The Simulink model that results
from the TDL program (the TDL model) can be
simulated to validate the timing and functional
behavior. This is especially helpful, if the
application code has been modeled in Simulink.

5. E code.The TDL compiler compiles a TDL
program into E code for the E machine [16].
The E code is a platform-independent
assembler language that targets the E machine.
The E machine executes E code that ensures the
timing consistency of the task and driver
executions. The E code consists of a small set
of instructions for basic control flow and
processing, that allows for synchronous driver
calls, task scheduling and initializing the
execution of a set of E code instructions at
some point in time in the future.

6. TDL-Exe (E machine).The TDL runtime part
of the architecture is represented by the
TDL-Exe consisting of the E machine. The
E machine is a virtual machine that executes
the platform-independent E code and calls the
platform-dependent application code.

5 of 12



Com FT Nat

Com FT Nat

Com FT Nat

TDL-Com

TDL-Exe

N1

TDL-Com

TDL-Exe

N2

TDL-Com

TDL-Exe

Bus

N3

Figure 4. Distributed TDL System architecture.

4.2 Decentralized System

The TDL system architecture for a decentralized (or
equivalently distributed) real-time control system is
modeled by a set of TDL nodes that are
interconnected by a real-time communication
system. Each node consists of a TDL-Exe and a
TDL-Com part (see Figure 4).
The TDL-Exe is not concerned with the global
design of the communication between nodes,
because the synchronization is done implicitly by
the timing definitions of the tasks on each node.
Each task provides the data items that need to be
transmitted to a different node. However, the timing
definitions of tasks on each node are designed in
mutual agreement with tasks running on other nodes.
TDL-Com supplies a data communication system
that allows for transmitting values from task output
ports of a TDL program to input ports of a task
running on a different node. TDL-Com uses a
time-triggered communication subsystem to
transmit data. It works autonomously: sending and
receiving of messages happens without any
interaction from the application program.

4.3 TDL-Com Interfaces

TDL-Com exposes three interfaces to TDL-Exe (see
Figure 4):

1. Com Interface.The Com interface mediates
between TDL-Exe and the communication
subsystem of TDL-Com. It allows the
TDL-Exe to submit and retrieve data values via
drivers that are connected to input and output
ports. Input and output ports define logical

points of interaction between tasks and the
Com interface. The drivers copy values of
output ports of a task to the input ports of the
Com interface, which forwards them to the
communication network interface. The Com
interface has a set of output ports, whose values
are destined for input ports of tasks, which are
then retrieved via tasks drivers.

2. FT Interface.The FT interface allows for
access to information related to fault tolerance.
Redundantly produced and communicated
values have status fields, which provide
information, for example, on the number of
active replicas, the status of fault-tolerant
communication, or the confidence values of
fusion algorithms.

3. Native Interface.The native interface allows
for access to platform specific services, such as
the error counter of the CAN controller.

4.4 TDL-Com Architecture

Figure 5. Distributed TDL Architecture

Figure 5 illustrates the TDL system architecture of a
network node of a distributed TDL application.
TDL-Exe provides the runtime environment which

6 of 12



executes TDL applications. TDL-Com builds on a
time-triggered communication subsystem. The
communication subsystem of each network node
processes autonomously all communication
activities. The communication network interface is
the interface between the communication controller
and the TDL-Com layer. The communication
network interface contains messages, which are sent
and received by the communication subsystem.
TDL-Com reads data from the communication
network interface and passes it to the TDL-Exe
layer. TDL-Com writes data to the communication
network interface to send data submitted by the
TDL-Exe layer. The interface between TDL-Exe
and TDL-Com is the Com interface that allows for
data exchange via drivers and ports.
The communication schedule list determines the
temporal behavior of the communication subsystem.
Each node stores such a list. This list specifies at
which point in time (time slot) a node is allowed to
send messages and at which point in time it will
receive messages.
Figure 5 shows an example of sending and receiving
a message. TaskT1 produces a value A and submits
it to TDL-Com in step 1. In Step 2, TDL-Com
copies valueA to locationL1 within the
communication network interface (it will be
communicated in time slot 2 with messageM1).
When sending messageM1in Step 3, the
communication subsystem reads the data from the
indicated locationL1 in the communication network
interface, generates the messageM1and transmits it.
In Step 4, the communication system receives
messageM2during time slot 3. It stores its data at
the indicated locationL2 . TDL-Com copies the data
itemD from the communication network interface to
the valueD within the Com interface (Step 5).
Finally, taskT2 consumes the value in Step 6.

Temporal Synchronization of TDL-Com. As
described above, there are temporal dependencies
between the TDL-Exe, TDL-Com, and its
subsystems. For example, a value has to be
produced, copied, and marshaled before its
transmission. The dependencies result from the fact
that the time-triggered communication subsystem
runs autonomously and the progression of time

drives the timing of the whole node. The activities
of the TDL-Com and the TDL-Exe layer need to be
synchronized to the activities of the communication
subsystem.
From the point of view of TDL-Exe, communicating
values between tasks (reading input and writing to
output ports) is transparent in centralized as well as
in the decentralized applications. However, in
centralized applications, the LCT determines the
LET of a task (i.e., LCT = LET). In decentralized
applications, if values of output ports of this tasks
need to be transmitted to a task on a different node,
the LET consists of the LCT plus the LTT (i.e., LET
= LCT + LTT). The LTT always succeeds the LCT.
LET includes the transmission time of a message.
Consequently, from the point of view of TDL-Exe,
inter-node communication happens conceptually in
zero time (i.e., transparent to the single-node
computation model).
TDL-Com and communication subsystem
synchronize their timing via a communication
schedule list. TDL-Exe is implicitly coordinated
with the communication subsystem by the timing
definitions of the tasks on each node. However, from
the communication schedule list and the local design
of timing definitions of the tasks may raise global
design restrictions (scheduling restrictions), that
need to be resolved.

4.5 TDL-Com Toolchain

The construction of the communication schedule list
of the communication subsystem is an off-line
activity. The schedule is then used on-line (during
runtime) to ensure predictive communication.
Figure 6 illustrates the off-line activities of the
TDL-Com toolchain.

• Off-line. The off-line part of the toolchain
determines the communication requirements
for the distributed application and generates a
global communication schedule list and the
TDL-Com schedules for each network node.

To generate the global communication schedule
list, the TDL-Com Compiler determines the
communication requirements of the whole
decentralized application. It scans TDL
programs and modules and detects accesses to

7 of 12



non-local data ports. Access to remote ports
results in communication requirements.
Optimization of communication can by
achieved, for example, by packaging several
data items within the same invocation period
into a single message.

A TDL-Com Compiler plug-in maps the
communication requirements into the format of
a vendor-specific bus scheduling tool, which
generates the network schedule for a specific
communication platform (e.g., TTP, FlexRay,
TTCAN). The plug-in reads and analyzes the
generated network schedule and provides the
TDL-Com Compiler with information to
generate the TDL-Com schedule lists for each
node.

• On-line.The TDL-Com layer provides
interfaces to TDL-Exe and to the
communication subsystem (see Figure 5). It
copies values to be transmitted between the
Com interface and the communication
controller interface and vice versa, marshals
values into communication frames and supports
voting for fault tolerance. The behavior of the
TDL-Com layer is statically pre-defined before
runtime. The activities are cyclically repeated.

Figure 6. Overview TDL-Com tool chain

5 TDL-Com Prototype
Implementation on Top of CAN

The prototype implementation of the TDL-Com uses
time-triggered CAN (TTCAN) [17] as
communication protocol. TTCAN extends the CAN
protocol by providing time-triggered communication
via the standard physical CAN link. CAN [18] is a
mature standard and widespread in the field of
automation as well as in the automotive field.

We implemented a proprietary version of the
TTCAN protocol in software which we call software
TTCAN (sTTCAN). The reasons were as follows:
(1) It allows for adaptation to the needs of the
TDL-Com prototype implementation, (2) there were
no embedded boards equipped with TTCAN
controllers available, (3) the TTCAN chip was still
in evaluation status, (4) lack of a supporting tool
chain. A benefit of the TTCAN software
implementation is that it can be run on standard
embedded boards and ECUs without the need to
change or modify the hardware to profit from
reliable, time-triggered communication. Like the
TTCAN implementation by Bosch [19], we support
transmitting sporadic messages within dedicated
time slots. The objective of our implementation is to
provide an implementation for the OSEK/VDX
operating system.

The TDL-Com implementation bases on the
Motorola MPC 555 Power PC derivate and the
OSEK/VDX operating system. The processor chip
already integrates a variety of common I/O (e.g., two
CAN controllers). KANIS OAK EMUF boards,
hosting the Motorola MPC 555 processor, are the
target hardware for our implementation. Each
network node consists of one KANIS OAK EMUF
board, the boards are interconnected via a CAN bus
link. Each board features two physical CAN links
including bus drivers and on-board connectors.

The prototype is implemented under OSEK/VDX
using OSEKWorks, an OSEK implementation by
WindRiver and the development environment
supplied by WindRiver [20].

8 of 12



5.1 Clock Synchronization

Time-triggered communication requires a
synchronized time base among the participating
nodes to provide a time division multiple access
(TDMA) bus arbitration scheme. TDMA allows for
a number of nodes to access a single transmission
channel without interference by allocating unique
time slots to each node within each channel.
The sTTCAN implementation of clock
synchronization is inspired by TTCAN [17].
TTCAN uses a master-slave clock synchronization
scheme based on the idea of the TTP/A fireworks
protocol [21]. A dedicated station, the master,
periodically sends a synchronization frames, which
other nodes use to synchronize their local clocks to
the clock of the master.
We describe the clock synchronization algorithm
using the notation of event-recording automata [22].
Timed automata have been introduced to model the
behavior of real-time systems. They augment finite
state automata with a set of clocks. Event-clock
automata are timed automata that correlate the value
of clocks and the occurrence of events and maintain
their correspondence.
An automaton consists of a set of locationsV and a
finite set of event-recording clocksX. We writexl

to denote that the clockx ∈ X is assigned to a
locationl ∈ V . The infinite word
w = (s, t0)(s, t1) . . . is emitted by the master node
and is the input to the automaton that describes the
clock synchronization system.1pi

, with an
equidistant periodpi = ti − ti−1 for all i is the
frequency of the occurrence ofs. The content of
messages is the value of the clock of the master
node at timest0, t1, . . .. We writexl

s to denote the
time of the clockx at locationl at reception of
synchronization messages of the master node. We
write xm

s to denote the value of the clock of the
master node at the time when sending the messages.
At reception of messages at locationl, we compute
the deviationdl

s between the value of the master
clockxm

s and the value of the clock at locationl (we
assume an instantaneous transmission of messages):

dl
s = v(xl

s)− v(xm
s ).

Clock values are measured in ticks. They are split
into a macro tick and a micro tick part. We write

〈v(x)〉 to denote the micro tick part of a clock and
bv(x)c to denote the macro tick part ofv(x), such
thatv(x) = bv(x)c+ 〈v(x)〉. Macro tickstM are
counted in our implementation in OSEK system
timer ticks. A macro tick is composed of a specific
numberm of micro tickstm (CPU timer ticks), such
thattM = m0 · tm at timet0.
To synchronize a clockxl

s, the nominal number of
micro ticks for every macro tick is increased to slow
down the clock and it is decreased to speed it up. To
compensate for a clock deviation ofdl

s in periodpi

in the next synchronization period, the number of
micro tickstmi,corr need to be added to the nominal
number of micro ticks that make up a macro tick
during the next periodpi+1. tmi,corr is computed by
dividing the deviation by the length of periodpi.
Thesign(dl

s) indicates a positive or a negative clock
deviation.

tmi,corr = sign(dl
s)

dl
s

bpic .

The number of micro ticks that make up a macro
tick for the next periodpi+1 is computed as

tM = (mi−1 + tmi,corr) tm.

with mi = mi−1 + tmi,corr. tmi,corr is usually a
fraction number and the value is split into an integral
and a fractional part. The integer part is immediately
corrected as shown above. The fraction part is
accumulated and corrected within the current period
by adding or subtracting one moretm as soon as the
absolute sum exceeds 1.
Valuation of clocks uses the time stamping
mechanism of the MPC555 CAN controller. It
automatically generates a time stamp at the time of
start of frame [18] of an incoming message. The
usual method of generating time stamps with
interrupts is imprecise because of interrupt latencies.
Furthermore, using interrupt service routines to
generate the time stamps causes delay of running
tasks and increases CPU load, which might
negatively influence the temporal predictability of
the system.
With the current implementation of the clock
synchronization algorithm we achieve an accuracy
of 20µs, i.e., a maximum deviation of +/- 10µs of
the slave clocks from the master clock. The CAN

9 of 12



bus is currently run at 100kBit. Increasing the
transmission speed of the CAN bus from 100kBit to
1MBit and thus decreasing the length of the bit cell
on the bus and improving the synchronization
algorithm by adding rate correction of the local
clocks we expect to improve the overall accuracy
down to 5µs.

5.2 Time-Triggered Communication

The clock synchronization algorithm of sTTCAN
coordinates the OSEK system timer of the
OSEK/VDX operating system of the involved nodes,
which allows for the implementation of
time-triggered communication based on the CAN
bus using solely OSEK API functions.
Time-triggered communication is done in a
periodically, recurring pattern, the so called
communication round [21]. The synchronization
message that is periodically sent by the master node,
indicates the start of a new communication round. A
communication round is subdivided into time slots,
in which only one dedicated node is allowed to
access the network and to transmit messages. The
length of time slots is fixed and is measured in
OSEK system timer ticks (macro ticks,tM ) and
denotes the LTT for the message sent in the time
slot. After reception of the synchronization message
(at the beginning of a communication round), the
nodes start transmitting messages according to
statically predefined communication schedules that
assigns communication time slots to nodes (see
Figure 7).

Figure 7. A communication round.

The structure of the static communication schedule
list is inspired by the message descriptor list
(MEDL) introduced by Kopetz [8]. The schedule is
locally stored at each node and it defines for the
local node the time slots that it may use to access the
network to transmit messages.
Sending messages is implemented as follows:
OSEK alarms are successively set up for each entry

in the communication schedule list indicating the
time slots for the local node. Whenever an alarm
fires, the alarm-callback routine triggers the CAN
controller to send the message buffer denoted in the
current schedule entry. The next alarm is set-up
according to the next entry in the communication
schedule list until the list is completely processed.
With the beginning of the next communication
round the processing of the communication schedule
list restarts from the beginning.
Table 1 shows the structure of the communication
schedule for one node with two entries: The node
sends a four byte message contained in buffer one in
the time slot which starts attM = 2 (time slots are
counted always relative to the start of the
communication round). It then sends a two byte
message contained in buffer two in the time slot
which begins attM = 15.

Pos. Alarm #Buffer Length

1 2 1 4
2 15 2 2

Table 1. Structure of the communication sched-
ule.

Receiving messages is done automatically by the
CAN controller, no software interaction is required.
The received data is stored within one of the 16
buffers of the CAN controller. The TDL-Com stack
fetches the data from the message buffers and copies
it to the Com interface where TDL tasks can access
it.
Verification of the reception time of messages, done
by protocols for safety-critical applications such as
TTP or Flexray, has been omitted in the current
implementation for performance reason.

5.3 TDL-Com Com-layer

The prototype implementation of TDL-Com consists
of a set of specific drivers and supports only the
Com interface yet. The message buffers of the CAN
controller are directly used as communication
network interface (see Figure 5). For
communicating data to a receiving node, TDL-Exe
executes a set of specific drivers that are declared in
the E code of the TDL program that is executed on

10 of 12



the sending node. These drivers copy the values of
output ports of a tasks directly to CAN controller
message buffers. Drivers declared in the E-code of
the TDL program on the receiving nodes get these
messages, extract the values, and copy the value to
the correct task input ports.
The timing of the communication subsystem and the
E machine rely both on the local OSEK system
timer and on the fact that the OSEK system timer of
all involved nodes are synchronized. If an input port
of a task receives a value from a different node
timely arrival of the value at TDL-Com is ensured.

6 Discussion

The TDL system architecture allows for the design
of deterministic control applications using
time-triggered computation and time-triggered
communication. It provides the programmer with
timing abstraction for implementing distributed
control systems with hard real-time constraints.
However, the current approach of the TDL-Com
implementation has a drawback: It leads to a
runtime behavior of the application which exhibits
unbalanced CPU and network load. The TDL
semantic defines, that the first period of all tasks
within a mode period (hyper period) starts
simultaneously at the beginning of the mode
period [5]. In a centralized TDL application, the
period of all tasks equals the LET and computation
of the tasks can be equally distributed over the hyper
period of the application. In a decentralized system,
the LET model defines for each task that the interval
of computation (defined by the LCT) coincides at the
beginning of the task period whereas communication
activities (defined by the LTT) succeeds
computation and thus occurs towards the end of the
period. Because the periods of all tasks of a TDL
application start simultaneously at the beginning of
the hyper period, there is a peak in computation
(higher CPU load) at the beginning of the hyper
period, whereas communication (network traffic)
dominates at the end of the period. To balance the
CPU and the network load and to distribute it
equally over the hyper period, we currently work on
new approaches, which overcome this drawback of
the current model on which TDL-Com is based on.

7 Conclusion

The timing definition language (TDL) provides
programming abstraction for the implementation of
control systems. The TDL system architecture
consists of a runtime environment for deterministic
execution of tasks and predictive communication of
messages for distributed control applications.
Determinism and predictability are requirements for
safety-critical and fault-tolerant systems. The timed
computation and communication model bases on
these principles.
In this paper, we introduced TDL-Com, a
time-triggered communication system. The
TDL-Com toolchain produces static scheduling lists,
which describe the communication behavior of the
whole distributed application. A globally
synchronized time base is the basis for
interconnected tasks. The tasks that run on different
computational nodes need to be coordinated in the
time domain to operate in a consistent and highly
synchronized manner.

8 Acknowledgments

We thank the team of the Software Research Lab of
the University of Salzburg for their help in
developing and implementing the ideas presented in
this paper.

References

[1] E.A. Lee, S. Neuendorfer, and M.J. Wirthlin,
2003, Actor-Oriented Design of Embedded
Hardware and Software Systems.Journal of
Circuits, Systems, and Computers, 12(3):231 –
260.

[2] C.M. Kirsch, 2002, Principles of Real-Time
Programming.LNCS, 2491.

[3] E. Fuchs and D. Millinger, 1998, Task set
design tools for an embedded distributed
control system. InProceedings of the 8th ACM
SIGOPS European workshop on Support for
composing distributed applications, pages
182–188. ACM Press.

11 of 12



[4] N. Halbwachs, 1997,Synchronous
Programming of Reactive Systems. Kluwer.

[5] B. Horowitz T. A. Henzinger, C. Kirsch, 2001,
Giotto: A Time-triggered Language for
Embedded Programming. InProceedings of
EMSOFT 2001, LNCS. Springer.

[6] J. Templ, 2003, TDL Specification and Report.
Technical Report C059, Computer Science,
University of Salzburg, Mar.

[7] B. Ravindran, 2002, Engineering Dynamic
Real-Time Distributed Systems: Architecture,
System Description Language, and
Middleware.IEEE Trans. Softw. Eng.,
28(1):30–57.

[8] H. Kopetz, 1997,Real-time Systems: Design
Principles for Distributed Embedded
Applications. Kluwer.

[9] R. Belschner, J. Berwanger, C. Ebner,
H. Eisele, S. Fluhrer, T. Forest, T. Führer,
F. Hartwich, B. Hedenetz, R. Hugel, A. Knapp,
J. Krammer, A. Millsap, B. M̈uller, M. Peller,
and A. Schedl, 2002,FlexRay
Communications System — Requirements
Specification. BMW AG, DaimlerChrysler
AG, Robert Bosch GmbH, General
Motors/Opel AG4, April. Version 2.0.2.

[10] Flexray website, 2004.www.flexray.com .

[11] BMW AG. ByteFlight Specification. available
atwww.byteflight.com .

[12] OSEK Group, 2001,OSEK/VDX
Time-triggered Operating System Specification,
Version 1.0, July.

[13] T.A. Henzinger and C.M. Kirsch, 2002, The
Embedded Machine: predictable, portable
real-time code. InProc. ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI), pages 315–326.

[14] G. Stiegelbauer and A. Werner, 2004,
Integration von TDL und Simulink:
Komplexiẗatsreduktion beim Entwurf von
eingebetteter Software. InProceedings of the

2nd Workshop: Automotive Software
Engineering, Ulm, Germany.

[15] MathWorks, www.mathworks.com.Simulink.

[16] C. Kirsch T. A. Henzinger, 2002, The
Embedded Machine: Predictable, Portable
Real-Time Code. InProceedings of the ACM
SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

[17] T. Führer, B. M̈uller, W. Dieterle, F. Hartwich,
R. Hugel, and M. Walther, 2000, Time
Triggered Communications on CAN (Time
Triggered CAN - TTCAN). InProceedings 7th
International CAN Conference, Amsterdam,
Netherlands.

[18] Bosch, 1991,CAN Specification, Version 2.
Robert Bosch GmbH, September.

[19] F. Hartwich, B. M̈uller, T. Führer, and
R. Hugel, 2000, CAN Network with Time
Triggered Communication. InProceedings 7th
International CAN Conference, Amsterdam,
Netherlands.

[20] WindRiver web site.
http://www.windriver.com/ , 2004.

[21] H. Kopetz, 1995, TTP/A The fireworks
protocol. InSAE International Congress and
Exposition, Detroit, Michigan, February.

[22] R. Alur, L. Fix, and T.A. Henzinger, 1999,
Event-clock automata: a determinizable class
of timed automata.Theor. Comput. Sci.,
211(1-2):253–273.

12 of 12




