
Network-Code Machine: Programmable Real-Time Communication Schedules

Sebastian Fischmeister, Oleg Sokolsky and Insup Lee
University of Pennsylvania

sfischme@seas.upenn.edu, {sokolsky, lee}@cis.upenn.edu

Abstract

Distributed hard real-time systems require guaranteed
communication. One common approach is to restrict net-
work access by enforcing a time-division multiple access
(TDMA) schedule.The typical data representation of offline-
generated TDMA schedules is table-like structures. This
representation, however, does not permit applications with
dynamic communication demands, because the table-like
structure prevents on-the-fly changes during execution. A
common approach for applications with dynamic commu-
nication behavior is dynamic TDMA schedules. However,
such schedules are hard to verify, because they are usually
implemented in a programming language, which does not
support verification.

Network code is a behavioral model for specifying real-
time communication schedules. It allows modeling arbi-
trary time-triggered communication schedules with on-the-
fly choices, and it is also apt for formal verification. In
this work, we present network code and show how we can
use a model checker to verify safety properties such as
collision-free communication, schedulability, and guaran-
teed message reception. We also discuss its implementation
in RTLinux and provide performance measurements.

1. Introduction

Distributed hard real-time systems such as industrial pro-
cess control, drive-by-wire systems, or hardware-in-the-
loop require guaranteed communication in bounded time.
Hard real-time communication provides such a guarantee
and implements it by a real-time protocol.

A common strategy for media access control in real-time
protocols is to utilize a collision avoidance mechanism such
as time-division multiple access (TDMA). TDMA restricts
access to the medium by dividing time into slots and as-
signing slots to individual nodes. If the TDMA schedule is

This research is supported in part by NSF CCR-0209024, NSF CNS-
0410662, NSF CNS-0509327, NSF CNS-0509143 ARO DAAD19-01-1-
0473, ARO W911NF-05-1-0182 and OEAW APART-11059.

correct and all nodes have synchronized clocks, then there
will be no collision on the medium and all communica-
tion will happen in bounded time. TDMA is typically im-
plemented either by static table-driven schedules or a dy-
namic policy-driven schedule. Static table-driven sched-
ules (see [18, 12, 11, 23]) consist of one table, in which
one row usually describes one communication (i.e., one
TDMA slot). The table’s columns identify, for instance, the
sender, the receivers, and the data attributes. This approach
is static, because the system executes one row after the other
and there are no variations. Dynamic policy-driven sched-
ules (see for example [24, 4] and a survey [13]) utilize an
algorithm, which implements the protocol’s media-access-
control policy and decides dynamically, which node gets
which communication slot. The policy can implement any
arbitrary schedule with on-the-fly decisions.

Network code is an executable abstraction for specifying
a behavioral model for medium-access control algorithms
for real-time communication, specifically TDMA. A virtual
machine implemented for real-time Linux permits execut-
ing the specification and realizes a distributed real-time sys-
tem by sending and receiving packets on an Ethernet net-
work.

A major challenge with dynamic TDMA schedules for
distributed hard real-time systems is to analyze the schedule
and ensure safety properties. Since dynamic TDMA sched-
ules are typically policy-driven, the developer must verify
(1) the TDMA access scheme and so (2) its implementa-
tion. Verification falls into the following categories:

• Peer-reviewed and tested implementation. There are
several published and implemented protocols with dy-
namic behavior such as RETHER [24], PowerLink
Ethernet [4], FTT-Can [23], Byteflight [5]. Such pro-
tocols’ media-access control bases its properties on the
peer-review process for publishing and a tested imple-
mentation. Neither of these two provides as strong ev-
idence as formal verification.

• Formally verified protocols. Some protocols’ speci-
fications have been verified using tools such as Up-
paal [20] or SPIN [16]. For a list of examples
see [25, 19, 1]. Such protocols’ media access control

In Proc. of the 12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'06), 2006.

provides verified guarantees on the protocol’s specifi-
cation level; however, the implementation might still
contain bugs. So this cannot provide as strong evi-
dence for certain properties as a formal verification of
the implementation.

• Formally verified implementation. Theories such as
model-checking [7] and abstract interpretation with
tools such as CBMC [8], Blast [14] or SLAM [3] pro-
vide an initial step to verify source code (in our case
the protocol’s sources).

Network code is a peer-reviewed abstraction for model-
ing real-time communication schedules. In contrast to re-
lated approaches, its abstraction is at the level of tasks and
communication. By that, it decouples task and communica-
tion scheduling, which makes it apt for formal verification
of semantic and temporal aspects at that level. We will show
in this work how we apply a model-checking tool to verify
safety properties.

The paper’s remainder is structured as follows: Section 2
provides an overview of the model and the system. Section
3 presents the network code. Section 4 shows how our ab-
straction maps to communication schedules. Section 5 elu-
cidates how we use VERSA to verify the schedule’s proper-
ties. Section 6 outlines our implementation in RTLinux and
its performance. Section 7 discusses the used concepts and
the implementation and, finally, Section 8 draws the conclu-
sions from this work.

2. Overview

This work’s goal is to create a runtime system for de-
terministic, dynamic, and verifiable communication sched-
ules. Such runtime requires (R1) control of timing, (R2)
control of values, (R3) control of resources (i.e., the shared
medium), (R4) control of dynamic behavior, and (R5) sup-
port for verification such as model checking of the sched-
ule. In the remainder of the paper, we will advert to these
requirements with the abbreviations (R1-R5).

2.1. Assumptions and the Basic Model

A distributed real-time program consists of a set of pe-
riodic, preemptible tasks. Tasks communicate with other
tasks via channels, which have a logical identifier. Tasks
communicate necessary and optional data. Necessary data
are communicated via variables, synchronized across the
distributed system in bounded time. Optional data are com-
municated via asynchronous messages whenever there is
bandwidth left on the communication medium. Task’s nec-
essary communication instances are known a priori and are
static over the course of the program. To calculate the
schedule offline, we forbid dynamic creation of necessary

communication instances. Task’s optional communication
instances are considered dynamic and will not be commu-
nicated in bounded time. To have value determinism, neces-
sary data are guaranteed to provide the latest value available
in the distributed system.

Tasks run on processors, which are connected by a
shared communication medium. Processors communicate
with each other exclusively via the medium and our imple-
mented middle ware; in particular, there is no shared mem-
ory. We assume that time is given in discrete units. Further,
we assume the presence of a global clock and all times are
measured on this clock. The communication medium pro-
vides an atomic broadcast service, therefore either all pro-
cessors receive a message or none of them do.

The network-code schedule is generated offline and all
necessary communication instances are known thereat. We
do allow dynamic creation of tasks, but such task’s commu-
nication is limited to optional data. We assume a reliable
tool chain to generate the runtime.

We note that our approach is not necessarily to provide
better throughput than policy-based protocols but to make
them verifiable and thus predictable. It is our aim to provide
a viable abstraction for real-time communication, which
acts as input for the runtime system and the verification sys-
tem.

2.2. System Overview

Figure 1 shows the concrete system architecture and the
specific interfaces. The runtime system consists of two ele-
ments: the shared variable space and the network-code ma-
chine. The shared variable space manages data and pro-
vides control of the values (R2) for the real-time appli-
cations. Real-time applications access values via get and
set functions. The network-code machine (NCM) imple-
ments the media access control. It executes a verified (R5)
network-code program. The code’s instructions control ac-
cess to the communication medium (R3). The code’s timing
instructions provide control over timing (R1). Real-time ap-
plications can spontaneously transmit and receive data us-
ing the send msg and rec msg operations (R4). To satisfy
R5, we show how we use VERSA, a model-checking tool,
to analyze and verify network code programs.

3. Network Code

Network code is an executable abstraction for specifying
real-time communication schedules. In the following, we
present the instruction set and provide an example.

3.1. Basic Instruction Set

The basic instruction set contains the minimal set of
primitives to code communication schedules. A sched-

RT App2 RT AppnRT App1

Network-code machine

Shared variable space

create(0,1)L0:
send(1,0,1000)
future(1000,L0)
halt()......

...

send msg(),
rec msg()

get(), set()

Code instr. Verification with VERSA

Network-code program

Communication medium

Figure 1. Concrete architecture.

ule is precomputed and does not allow for variables in the
program. All instructions affect only the local node (e.g.,
destroy frees the message’s memory locally only).

Communication Control. There are four operations.

• Create. The instruction create(msgid, loc) creates
a message from a memory location. The parameter
msgid identifies the message to be created. The pa-
rameter loc identifies the memory location from which
the message’s values will be taken.

• Destroy. The instruction destroy(msgid) destroys a
message. The parameter msgid identifies the message
to be destroyed. The message msgid is only accessible
at the local node, after it was created and before it was
destroyed.

• Send. The instruction send(ch, msgid, relT ime)
schedules a message transfer. The parameter ch spec-
ifies the channel (messages are sent and received on
channels). The parameter msgid identifies the mes-
sage to be communicated. The parameter relT ime
specifies message’s lifetime, i.e., the timespan, which
the message’s packets are alive and valid.

• Receive. The instruction receive(ch, loc) retrieves a
message from the message queue. The parameter ch
specifies the channel, from which a message will be
retrieved. The location loc specifies the memory ad-
dress in the input/output layer to be written to.

Timing and State Control. There are four operations.

• Future. The instruction future(dl, jmp) schedules a
wake up call via a trigger. The parameter dl specifies,
when the trigger will become enabled. The parameter
jmp specifies, at which label the scheduler should start
execution.

• Halt. The instruction halt() halts the scheduler until a
trigger enables it again.

• If. The instruction if(g, jmp) implements a condi-
tional jump. If the guard g evaluates to true, the sched-
uler will continue at address jmp. Otherwise, the pro-
gram counter will increase by one.

• Mode. The instruction mode(m) switches between
operational modes. Currently supported modes are
sched, usched, and init. The mode sched allows only
to communicate scheduled data, i.e., the schedule con-
trols access to the medium. The mode usched allows
unrestricted access to the medium, i.e., the medium
is available to all nodes for transmission of packets.
The mode init invokes the routines to synchronize with
other nodes and to start up a distributed real-time sys-
tem.

Error Handling. Our failure model includes integrity er-
rors (e.g., errors in the code or the system’s software) and
network errors (e.g., errors while sending and receiving val-
ues). The model excludes hardware errors that do not man-
ifest as the above ones (e.g., memory bit flips, power fail-
ures). Errors are detected by the runtime system, specifi-
cally either the interpreter while it executes an instruction
(e.g., it tries to receive a message, but the input queue is
empty) or the dispatcher (e.g., it tries to send a packet, but
the network card reports an error). The errors are always
propagated to the interpreter.

• Handle. The instruction handle(err, jmp) registers
an error handler. The parameter err specifies the error
to be handled. The parameter jmp specifies the ad-
dress, at which the scheduler should immediately con-
tinue execution if an exception occurs. Available errors
are: integrity, sending, receiving.

If an error occurs, all queues are flushed and the sched-
uler continues at address jmp. If no handler for error
err is present, then the scheduler will quit.

3.2. Composite Instructions

The basic instructions can be composed to provide high-
level operations. The following presents the ones required
for the example. An extended list is available in [10].

• Goto. The instruction goto(jmp) implements an un-
conditional jump. It is simulated by the instruction if
and a guard, which always returns true.

• Wait. The instruction wait(dl) halts the scheduler for
some time. It is simulated by a future instruction with
a trigger deadline dl and subsequently a halt instruc-
tion. The wait instruction augments the schedule’s
readability.

• Ftasyncsend. The instruction ftasyncsend
(guaranteedCh, backupCh, msgid, relT ime,
duration) is a composite instruction for sending
a value if the original send failed. The parameter
guaranteedCh identifies the channel, in which a
message should be present. The parameter duration
specifies the asynchronous period’s duration, if the
message needs not be sent. The guard checks whether
this message has been transmitted. If it has not,
then the instruction will send the message msgid
with lifetime relT ime on channel backupCh. If the
message has been sent, then the instruction will switch
into usched mode.

• Ftasyncreceive. The instruction ftasyncreceive(
guaranteedCh, backupCh, loc, duration) will lead
to one of the following: it will switch into usched
mode for the duration duration or receive a message
from channel backupCh and store its value in the lo-
cation loc of the input/output layer. It will do the first,
if a message is present in channel guaranteedCh, and
will do the second otherwise.

3.3. Example

Network-code schedules are more expressive than table-
based ones [9]. This property can be exploited to conserve
resources. Consider the following scenario: A control sys-
tem bases its decision on inputs from two nodes. The slot
size is ten time units and, in this example, one commu-
nication needs one slot. The application’s period is four
slots. The two nodes n1 and n2 transmit their data. For
dependability reasons each node has a backup node; node
n′

1 for the first node and n′
2 for the second. They transmit

data, if the original node fails to transmit its data. Figure
2 shows a table-based schedule, which implements this ex-
ample. Each box represents a communication slot, and the
label inside specifies the message, which a node sends in
that specific slot. The table structure prevents on-the-fly de-
cisions, so all four slots are used each round.

0

n1 n
′

1
n2 n

′

2

0 10 20 3010 20 30 40

Figure 2. Example schedule (static TDMA).

In such a scenario, a table-based schedule may waste re-
sources. Whenever the original node successfully transmits
its message, the backup can remain silent. A schedule with
on-the-fly decisions can implement such behavior as shown
in Figure 3. After each original node’s transmission, each
determines, whether the backup node needs its slot. If not,
the slot is available for other traffic. A scheduler, which

implements such a policy, must maintain state information
such as a list of transmitted packets.

0

n1 n
′

1
n2 n

′

2

0 10 20 3010 20 30 40

Figure 3. Example schedule (simple).

The listings below implement Figure 3’s schedule us-
ing network code. Node n′

1 waits for its slot, i.e., time
10, and sends the data, if necessary. Node nr implements
the receiver and follows a similar scheme. This node re-
ceives all transmissions and uses the composite instruction
ftasyncreceive to enable unscheduled communication, if
the original transmission arrived.

Node n′
1:

L0 : wait (1 0)
c r e a t e (A2 ,_)
ftasyncsend (n1 ,n′

1 ,A2 , 1 0 , 1 0)
d e s t r o y (A2)
wait (2 0)

goto (L0)

Listing 1. Node n′
1

Node nr :
L0 : wait (1 0)
r e c e i v e (n1 ,_)
ftasyncreceive (n1 ,n′

1 ,_ , 1 0)
wait (1 0)
r e c e i v e (n2 ,_)
ftasyncreceive (n2 ,n′

2 ,_ , 1 0)
goto (L0)

Listing 2. Node nr

4. Semantics

In the following we define an abstract model for TDMA
communication schedules with on-the-fly decisions. This
allows us to show how we use network code to implement
arbitrary time-triggered schedules.

4.1. Abstract Model for TDMA Communi-
cation Schedules

A TDMA system consists of nodes and point-to-point
communication via a broadcast medium. The set N in-
cludes all system’s computation nodes n, which use the
medium. The set C = {(ni, nj)|ni ∈ N, nj ∈ N} contains
all the communication instances of the distributed applica-
tion and the tuple c = (ni, nj) describes a point-to-point
communication instance c between ni and nj in which ni

is the sender and nj is the receiver. Given a communi-
cation instance c, we refer to c.s as the sender and c.d as
the destination. The power set P(C) contains all possible
sets of communication instances. A subset B ∈ P(C) is a
valid broadcast communication instance with ∀ci, cj ∈ B :
ci.s = cj .s.

Example 1. Given the schedule in shown in Figure 2, we
have N = {n1, n

′
1, n2, n

′
2, nr}, C = N × N , and for

example B1 = {(n1, n
′
1), (n1, nr)}, B2 = {(n′

1, nr)},
B3 = {(n2, n

′
2), (n2, nr)}, and B2 = {(n′

2, nr)}.

A TDMA schedule restricts access to the network to
individual nodes using time division and slots. Such a
schedule requires a definition of time, time stamp, and
slot. A time stamp t specifies a point in time. A slot
sl = [tst, tend) ∈ SL consists of (1) the start time tst and
(2) the end time tend with tst < tend.

Example 2. Figure 2’s schedule consists of four slots:
sl1 = [0, 10), sl2 = [10, 20), sl3 = [20, 30), sl4 =
[30, 40).

A linear schedule sched = (SL, assign) consists of (1)
a set of slots SL available for scheduling and (2) a mapping
assign : SL → B ∪ {ε} with assign(sl) mapping a slot
to a specific broadcast instance or leaving it empty, i.e., ε.
A schedule is non-overlapping, if ∀sl ∈ SL : �x ∈ SL :
(sl.tst < x.tst < sl.tend) ∨ (sl.tst < x.tend < sl.tend). A
non-overlapping schedule is implicitly collision-free.

Example 3. Given the previous examples, Figure 2’s sched-
ule is sched1 = (SL1 = {sl1, sl2, sl3, sl4}, assign1) with
assign1(sl1) = B1, assign1(sl2) = B2, assign1(sl3) =
B3, and assign(sl4) = B4.

The mapping assign relates at most one broadcast com-
munication instance with a single slot. We now define
tree schedules, which implement ad-hoc decisions while
scheduling. The mapping massign relates multiple broad-
casts with a single slot. It is defined as massign : SL →
P(B).

Example 4. The function massign1 for Figure 3 is
massign1(sl1) = {B1}, massign1(sl2) = {B2, ε},
massign1(sl3) = {B3}, and massign(sl4) = {B4, ε}.

To make decisions, we define a function Θ, which takes
a set of broadcasts and selects one of them based on some
state state; thus, Θ : P(B) × state → B.

Now we define a tree schedule as tsched =
(SL, massign,Θ). A tree schedule tsched is collision-
free, if ∀sl ∈ SL : #Θ(massign(sl),) ≤ 1. The classes
of tree schedules tsched and linear schedules sched are
equivalent, if ∀sl ∈ tsched.SL : #(msched(sl)) ≤ 1.

4.2. Network Code as Tree Schedules

In this section, we show that we can map network-code
programs to tree schedules as defined in Section 4.1.

Network code splits communication instances into a
sending and a receiving part. The sending part consists of
the instructions create, send, and destroy; the receiving
part consists of receive. Each part is executed on the lo-
cal node. A broadcast communication instance is realized

by executing the sending part on one node and executing
receiving parts on multiple nodes.

A slot is defined by a start time and an end time. The
instructions future and halt allow for specifying such a
start time. The slot’s start time is computed by: the time
stamp, when the last halt has been executed plus the du-
ration specified by future’s parameter dl. The slot’s end
time is computed by: the slot’s start time plus the duration
specified by send’s parameter relT ime.

Example 5. We will realize a broadcast B1 =
{(n1, n

′
1), (n1, nr)} in slot sl1 = [0, 10). To do so,

we require three network programs and will communicate
this data in channel four. Node n1 runs this program:
wait(0); create(,); send(4, , 10); destroy();. Node n′

1

and nr run this program: wait(10), receive(4,).

To implement a linear schedule sched = (SL, assign)
with network code, we first need to define all slots SL and
then realize the mapping assign. We can define slots using
the instructions future and halt as shown above. To real-
ize the mapping assign, we apply a total order to the map-
ping’s domain and iterate through. Slots are totally ordered
by their start time; sl1 < sl2, iff tst(sl1) < tst(sl2). Re-
member that slots in a linear schedule are non-overlapping.
As we iterate, we generate the code for the slot (the future
and halt instructions) and the code for the defined commu-
nication instance (the create, send, destroy, and receive
instructions). Finally, we connect all the slots by concate-
nating them starting with the first and ending with the last
slot.

Example 6. Example 5 already realizes a linear schedule
sched2 = ({sl1}, assign2) with assign2(sl1) = B1. This
is a schedule consisting of only one slot.

If assign(x) = ε for a slot x ∈ SL, then we use the in-
struction mode to switch from scheduled into unscheduled
mode. At the slot’s end, we switch back into scheduled
mode.

To implement a tree schedule tsched =
(SL, massign,Θ) with network code, we need to de-
fine slots SL, realize the multi-slot mapping massign, and
implement Θ. Regarding slots and the mapping massign,
we use the same technique as described for linear sched-
ules. However, instead of a simple concatenation, in tree
schedules Θ defines successors for each slot. We realize
Θ using the conditional instruction if . if executes an
arbitrary function, whose output is true or false. This
arbitrary function uses the state information supplied by
Θ to determine the next slot. To realize Θ, we create
a chain of if instructions similar to a switch-statement
and concatenate one slot with all successor slots using
this construct. In [9], we provide more details about this
construct.

Example 7. Listing 1 shows the implemented tree schedule
for Figure 3. The instruction ftasyncsend is a composite
instruction and Listing 3 shows its full source.

ftasyncsend (guaranteedCh , backupCh ,
0 msgid , val , duration) =

i f (#guaranteedChNotEmpty , L0)
send (#backupCh , #msgid , #val)
goto L2

L0 : mode (usched)
5 f u t u r e (#duration , L1)

goto L2
L1 : mode (sched)

h a l t ()
L2 : nop ()

Listing 3. Expanded for of composite instruc-
tion ftasyncsend.

5. Verification

Network code is a viable abstraction for real-time com-
munication schedules. First, we show how we can use
the abstraction for in the model-checking tool VERSA [6].
Then we apply VERSA to the abstraction and show what
correctness criteria we can check.

5.1. VERSA and NCM Encoding

VERSA [6] is a tool for modeling and analysis of sys-
tems with resource and timing constraints. It is based on
the real-time process algebra ACSR [21], which allows us to
specify resource requirements of a process and assign tim-
ing constraints to its executions.

The ACSR modeling approach is to represent a real-
time system as a collection of concurrent processes
p1|p2| . . . |pn. Each sequential process pi is a state machine
that can perform two kinds of steps: instantaneous sending
or receiving of an event, or time-consuming resource ac-
cess. As concurrent processes execute, they communicate
with each other by exchanging events and contending for
access to shared resources. The handshake that is involved
in the synchronous exchange of events is assumed to happen
instantaneously, while resource access takes time.

ACSR modeling is particularly suitable to capture the
NCM abstraction. We utilize the treatment of resources
built into the ACSR semantics to arrive at a model that is
more concise and more transparent – thus easier to under-
stand and maintain. Network nodes are modeled as pro-
cesses, which access the communication medium. Commu-
nication is modeled by resource access, i.e., if a node broad-
casts a message, then it will access the single resource com-
munication medium. If messages overlap, e.g., two nodes
are broadcasting messages at the same time, then VERSA

will detect a resource conflict. We use auxiliary processes
to model additional safety properties as outlined below.

5.2. Modeling Network-Code Programs

The overall approach to the translation of network pro-
grams into ACSR process is as follows. Each node in the
network is represented as a collection of processes that can
be grouped into three categories. The first category repre-
sents network instructions, described in detail below. The
second category includes one message scheduler per net-
work channel. Finally, the third category includes the guard
processes. The latter two categories become clear as we dis-
cuss the network instruction processes. Furthermore, each
message sent on the network is represented as a short-lived
process whose lifetime is from the execution of the send
command until the message is delivered to the receiving
nodes.

An instruction instr at address a is represented as a pro-
cess Runa. Processes in this category are instantaneous,
that is, they do not contain time-consuming steps. The pro-
cess for the halt() instruction is the idle process, which is
“garbage collected” by the state-space exploration engine.
Processes for other instructions perform an event that corre-
spond to the executed instruction and becomes the process
for the subsequent instruction. For example, in Listing 2
Line 1, the instruction receive(n1,) is represented using
an input event as Run1 = receiven1,nr

?.Run2. This pro-
cess will block if no other process can perform the match-
ing output event, that is to say, when the input queue of the
channel n1 in the node nr is empty. Several instructions
require special treatment, described below.

To represent conditional instructions, we introduce an
auxiliary process that captures each guard’s status. The
guard process representing the guard g is able to send two
events, gtrue and gfalse, depending on the state of the guard.
To execute a conditional instruction, the network-node pro-
cess has a non-deterministic choice between receiving the
two guard events. The choice is resolved by the guard pro-
cess. By modeling guards in this way, we significantly sim-
plify the model by making the translation modular.

Two kinds of instructions spawn new concurrent pro-
cesses. An instruction future(dl, jmp) at address a is rep-
resented as Runa = Runa+1|Delaydl

jmp. The new pro-
cess Delaydl

jmp idles for dl time units and then behaves
as Runjmp. The send instruction also spawns a new con-
current process that captures the message status. It goes
through three phases: scheduling of the transmission, the
transmission itself, and the delivery phase. While the mes-
sage is in the output queue, the process interacts with the
message scheduler for the channel. By adjusting prior-
ities of this interaction, we can experiment with various
message-scheduling policies without changing the rest of
the model. During the transmission, the process preforms

resource access steps, using the resource network . The
number of these steps is determined by the message size. If
another ACSR process enters the transmission phase, then
the attempt to use the same resource will result in a deadlock
that signals a scheduling problem. Once the transmission
phase has completed, the message is delivered to the nodes
in the network. This is represented by spawning a new pro-
cess for each node in the network. The process sends the
event receivec,n, which synchronizes with the receive in-
struction in the network program of node n (see above).
After sending the event, the process becomes idle.

5.3. Example

The translation of the network code into the collection of
ACSR processes is automatically performed by traversing
the parse tree of the network code in the depth-first manner.
We do not present the translation procedure here to save
space. Instead, we illustrate the translation using a simple
example.

We run two network nodes. The top part of Figure 4
shows the network-code program of both. The lower part
of Figure 4 shows how VERSA interprets the translated
program. Horizontal lines represent the evolution of active
ACSR processes. Shaded areas represent instantaneous exe-
cutions. Arrows illustrate how new processes are spawned,
while a cross denotes that the process has been removed.
The execution proceeds as follows: Node 0 sends two mes-
sages simultaneously, each with a length of one time unit.
The messages are set to expire after two and three time
units, respectively. The transmission scheduler (not shown)
releases the first message immediately and the second one
after the first one is delivered. At time 1, the first broad-
cast is completed and the other one begins. Node 1 initially
schedules two receive instructions; one after two time units
and the other after four. The first instruction, executed at
time 2, receives the message, but the second fails. At time 4,
when the second receive happens, the second message has
already expired. The process Run6 is blocked, and VERSA
detects the violation.

5.4. Safety Checks for Network Code

Assumptions and integrity checks. The translation
sketched above assumes that the network program in each
node is syntactically correct and well structured. Indeed, we
can expect that every reasonable network program will sat-
isfy these assumptions. The checks for these assumptions
are performed by a parser for the network programs in a
straightforward manner.

We assume that 1) every guard referenced in a condi-
tional instruction is defined in the guards section of the pro-
gram; 2) every address listed in a conditional or future
instruction corresponds to a legal instruction; 3) for every

instruction, except halt and a conditional instruction with
guard true, the subsequent address contains a legal instruc-
tion. We also assume that each execution of a network pro-
gram reaches a halt instruction in a finite number of steps.
This assumption ensures that the model is non-Zeno, that
is, it cannot perform an infinite number of instantaneous
steps in a zero time. This important check is performed by a
depth-first search of the graph of dependencies between the
ACSR processes representing instructions in the network
code. The same check also lets us establish whether every
instruction in the network program is reachable.

Behavioral checks. This group of checks ensures that the
network program in each node handles the messages in
a sensible manner. Considering a node in isolation per-
mits these checks. Particularly, we check that every mes-
sage identifier introduced by a create instruction is even-
tually sent on some channel and then destroyed so that the
identifier can be reused. For each message identifier used
in the program, we introduce an auxiliary ACSR process
that receives the events corresponding to create, send, and
destroy instructions and blocks if the events do not come in
the expected order. The induced deadlock is detected during
state-space exploration.

Distributed checks. This last group checks whether a
collection of nodes can be composed together. The main
check in this category is the schedulability analysis, which
ensures that the message transmissions by different nodes
do not conflict with each other. The transmission’s dead-
line is defined by the parameter relT ime and the worst-case
transmission time is provided separately from the network-
code program.

As discussed in Section 5.1, schedulability violations are
detected as resource conflicts in the ACSR model, which in-
duces a deadlock. Two other important checks ensure that
an attempt to receive corresponds to a prior send and that
sent messages are received by some node. The first of these
was also mentioned in the discussion of translation: a re-
ceive instruction will block if there are no messages to read.
To detect the second one, we introduce an auxiliary pro-
cess that interacts with the message delivery sub-processes.
Each delivery process sends an event to the auxiliary pro-
cess after a synchronization on a receive event happens. If
the auxiliary process does not receive any such events, it
blocks when the validity interval of the message expires.
We also require that the use of channels is exclusive. That
is, no node can send a message on the channel until the
previous message has expired or has been received by all
nodes. For this purpose, we introduce one auxiliary ACSR
process per channel, which accepts send events only when
there are no outstanding messages on that channel.

0 send(1,_,2)
1 send(1,_,3)
2 halt()

3 future(2,6)
4 future(4,6)
5 halt()
6 receive(1,_)
7 halt()

Run0 Run1

Sched

Sched

Transmit Delivered

Transmit Delivered

Delay 2
6

Delay 1
6

Delay4
6 Delay 3

6 Delay2
6 Delay 1

6 Run6

0 0 1 2 2 3 4

Message is
received

Message
expires

Node 0: Node 1:

Run2

Run0 Run1 Run2

Run
6

Run
7

X

X

X

X

X

Figure 4. VERSA model execution.

C data
structure

RTLinux LNet

Transmission scheduler

Shared variable space

Network-code machine

Async.

Ethernet

RT application

Guards

NC program

Object lib.

Figure 5. Network code runtime system.

6. Network-Code Runtime System

We implemented a middle-ware for network code on top
of the real-time system RTLinuxPro 2.2. RTLinuxPro (see
www.fsmlabs.com) is a hard real-time, POSIX-compatible
operating system. Figure 5 shows the general structure.

The real-time application accesses values via get() and
set() functions. They can also send messages with un-
bound timing constraints via the network-code machine’s
asynchronous messaging interface.

The shared variable space (SVS) manages data (require-
ment R2). Each variable stored in the SVS is a tuple con-
sisting of: (1) the point in time the value became valid, (2)
its numerical value, and (3) an optional default value. One
variable stores several data entries with different values and
validity times. For example, the SVS can contain the value
tuples {v1 = 〈5, 1, 0〉, v2 = 〈7, 2, 0〉} for variable x where,
initially x’s value is 0, at time 5 it becomes v1, and it be-
comes v2 at time 7.

The network-code machine (NCM) interprets network
code and by that handles messages (requirement R3)
and asynchronous communication (requirement R4). The

NCM’s actions are driven by the network-code program (an
array of instructions representing the source). While ex-
ecuting the instructions, the NCM reads data values from
the shared variable space and writes data updates to it. It
also receives messages from a transmission scheduler and
passes scheduled messages to it. To evaluate if instruc-
tions, the NCM accesses an external library containing the
guard functions.

The transmission scheduler processes incoming mes-
sages and dispatches outgoing ones. The NCM can sched-
ule multiple messages simultaneously. The transmission
scheduler passes one message after the other to the network
driver. The network driver notifies the transmission sched-
uler whenever an incoming message has arrived.

To transmit and receive messages on the Ethernet
medium, we use the LNet driver provided by FSMLabs.
This driver tries to minimize communication input/output
jitter. For example, it disables the packet framing mecha-
nism on the network card and uses a zero-copy technique
(i.e., it never copies the contents of the data packet through-
out the stack implementation).

The whole system is about 3.000 lines of code. The
application-specific guard functions and network-code pro-
gram add extra lines.

6.1. Performance Measurements

The runtime system introduces overhead to the running
system. To quantify this, we measured the instructions’ ex-
ecution times and compared it to non-TDMA systems and
a table-driven TDMA. For sake of brevity, here we show
only the results and conclusions. In [10], we provide the
full data. The tests were performed on a 100Mbit network
of Intel Pentium 4 with 1.5 GHz, 512 MB RAM, RTLinux-
Pro 2.2, and a 3c905C-TX/TX-M [Tornado] (rev 78) with
exclusive interrupt access.

Category Time [ns]
99% 99.999%

L0: destroy(0) 180 5,850
create(0, 0) 2,065 7,794

send(1, 0) 733 19,090
future(I1+I2, L0) 471 5,577

halt() 180 5,850
LNet driver 32,640 72,428

Comm. latency 449,000 449,000
ISR n2 5,605 6,945

Intermediate 1 (=I1) 490,874 498,618
receive (1,0) 1,951 22,247

future(I1+I2) 416 1,928
halt() 162 14,814

Intermediate 2 (=I2) 2,529 38,989
Total cycle (=I1+I2) 493,403 537,607

Table 1. Code and application WCET.

Node N1:
L0 : d e s t r o y (0)

c r e a t e (0 , 0)
send (1 , 0 , I1+I2)
f u t u r e (I1+I2 , L0)
h a l t ()

Listing 4. Sender.

Node R:
L0 : f u t u r e (I1 , L1)

h a l t ()
L1 : r e c e i v e (1 , 0)

f u t u r e (I1+I2 , L0)
h a l t ()

Listing 5. Receiver.

We ran a test application and took about one million
timing measurements per instruction. The data and his-
tograms are available in [10]. We will now use the results
to calculate the maximum throughput of our runtime sys-
tem without clock synchronization. Listings 4 and 5 show
a simple sender and receiver. Table 1 shows the WCET of
the code. The intermediate 1 shows how long it takes un-
til the packet is delivered at the receiver (node n2). The
intermediate 2 shows, how long it takes for the receiver
to process the packet. The total cycle time is 482,990ns
with a guarantee of 99% and 539,167ns with a guarantee of
99.999%. Thus, the maximum throughput of 1500b pack-
ets per second without clock synchronization is 2,069 pack-
ets or 2.96MB/s with 99% guarantee and 1,853 packets or
2.65MB/s with 99.999% guarantee, which is about 4.22
times slower than the medium’s theoretic maximum itself
and 3.52 times slower than our empirical average through-
put on the same hardware.

The calculation above shows, that the interpretation of
network code takes about 1.2 percent of the total time for the
99% guarantee scenario. A table-driven approach will fur-
ther decrease this amount, but not significantly, because the
1.2 percent includes everything above the network driver,
what the table-driven approach also has to do such as cre-
ate, process, and free messages, and pass values to higher

layers.

7. Discussion

Network code allows the developer to code tree-like
communication schedules. In the following, we discuss the
network code’s properties.

7.1. The Message’s Life Cycle

The message life cycle on the sender side consists of the
explicit instructions create, send, and destroy. The in-
struction create allows the developer to explicitly control,
at what time the message will be created, i.e., at what time
the values will be copied into the message. The instruction
send merely splits the message into packets and schedules
it for transmission. The instruction destroy frees a created
message, so the message identifier can be reused.

Alternative life cycles have drawbacks. Combining the
instructions send and destroy limits the capabilities of the
network code, because then the decisions, whether or not
the message will be sent has to be known at the time, at
which the instruction create is executed. Since this is
sometimes impossible, we require an explicit instruction
destroy. For example, at time 5ms into the period, the mes-
sage needs to be created (i.e., the values copied). However,
the decision, whether the message will be sent at all happens
at time 500ms into the period. If the decision is to discard
the message and the instruction destroy does not exist, the
message will stay in memory, since it cannot be sent and
there is no instruction to delete it. Another approach is to
use garbage collection at the hyper period. However, the
network code is hyper-period agnostic, so it would require
a special instruction to mark it. The chosen life cycle with
the instructions create, send, and destroy is a cleaner and
simpler way of implementing this behavior.

7.2. The Packet’s Life Cycle

The packet’s life cycle is different from the message’s
one. The packets’ life cycle is defined solely by the instruc-
tion send. The last parameter relT ime specifies the time
period, for which the message is alive. After this period, the
packet is removed from the packet queue.

Alternative approaches for the life cycle are: an extra in-
struction, garbage collection at the hyper period, overload-
ing the instruction destroy, and an overwriting policy. Us-
ing an extra instruction, similar to destroy, for packets is
unnecessary, because, in contrast to messages, packets are
not reused. Garbage collection at the hyper period is im-
possible, since the network code is hyper-period agnostic.
Overloading the instruction destroy and using destroy to

remove messages from the input queue is not possible, be-
cause it is difficult to calculate validity in advance at the
receiver’s side. Conditional branches at the sender’s side
can lead to different validity times. The overwriting policy
is also not advisable as alternative approach, because it lim-
its the network code’s power. With this policy, sequential
packets with the same sequence count overwrite each other.
But, then it is impossible to distinguish, whether a packet is
from this round or from the last one. This makes instruc-
tions such as ftasync, ftasyncsend, and ftasyncreceive
impossible.

7.3. Raw TDMA Network

Conventional TDMA is agnostic of the data sent in the
slots. It is just concerned with restricting access to a single
node for a certain time period. Network code also supports
this type of raw access to the network. The mode unsched
lets anyone access the network. By that a task has raw ac-
cess to the communication medium. In the standard setup,
we allow multiple nodes to be in this mode simultaneously
to reuse some otherwise unused slots or to specify a slot
used for flexible communication (see Figures 3). However,
to provide collision-free raw access, at most one node must
be in this state simultaneously.

The following program shows, how to code raw access
to TDMA slots without clock synchronization. Node 1 and
node 2 split up the bandwidth evenly. Then Node 2 is al-
lowed to use the medium for 50 time units. Afterwards,
Node 1 has exclusive access. After each TDMA access, we
programmed a safety delay of five time units.

L0 : wait (55)
mode (usched)
wait (50)
mode (sched)
wait (5)
goto (L0)

Listing 6. Node n1

L0 : mode (usched)
wait (50)
mode (sched)
wait (60)
goto (L0)

Listing 7. Node n2

7.4. Related Work

A number of network protocols and their media access
control have been published in the literature; each one with
different assumptions and for different environments. How-
ever, the coding schemes for schedules have been ignored
so far. Thus, most related work uses either a table-based
structure to describe the schedule or implements a policy
for online scheduling (see [18, 12, 11, 24, 23]).

Regarding the interpreter, the Giotto system [15] pro-
vides a similar approach. It uses an interpreter and a compa-
rable instruction set to control timing of tasks’ execution on

the local node. Network code has more explicit error han-
dling. Giotto can use the instruction future(guard, jmp)
with using guard as error occurrence check; however, so far
none of the implementations of Giotto or related projects
use the guard for other than timing aspects. It is also un-
clear, how it actually resolves errors, since the instruction
future() adds another concurrent runtime trace. Existing
traces are still present and may interfere with the error re-
covery.

In [9, 17], the authors have presented a prior version of
network code. In contrast to this version, the previous ver-
sion included a full-fledged tool chain with a high-level task
specification, from which a high-level compiler generates
network code (see [17]). The current version extends this
work as (1) its semantics are now formally specified and
the program’s behavior can be verified using VERSA, (2)
the instruction set is more precise, requires less parame-
ters, and consists of solely atomic, unambiguous actions,
(3) it includes error handling, and (4) splitting the original
instruction for sending into the instructions create() and
send(), provides the developer more precise control over
which values he wants to use in the message.

Several other tools, such as [22, 2] can be used to for-
mally model network code programs and verify schedules.
A tempting direction of future work is to try the C inter-
preter of [22] or the code generation capability of [2] to gen-
erate NCM interpreters. We chose VERSA, however, be-
cause the process spawning capability of VERSA allowed
us to capture, in a plain way, messages that are pending
transitions, along with their deadlines. Since the number
of pending messages depends on the state of the schedule,
using other means to represent messages leads to a more
cumbersome translation.

8. Conclusion

Network code is an executable abstraction for specifying
a behavioral model for medium-access control algorithms
for real-time communication, specifically TDMA. It is more
expressive than table-driven communication schedules [9],
and allows implementing tree schedules, i.e., static sched-
ules with on-the-fly decisions during the communication cy-
cle.

In this work, we showed that network code provides a
verifiable abstraction for communication schedules. The
abstraction is apt for verification, because of its limited ex-
pressiveness (e.g., no loops, no pointers). However, it is
powerful enough to express arbitrary time-triggered com-
munication schedules with on-the-fly decisions. We showed
how we use VERSA to verify safety properties such as
collision-free communication, schedulability, and guaran-
teed message reception.

We also showed that we could provide a viable imple-

mentation for the network-code abstraction. In our imple-
mentation, the runtime system adds about 1.2 percent over-
head to the application with a guarantee of 99%. If this is
acceptable for the real-time application, then network-code
provides more flexibility and power than table-driven ap-
proaches.

For future work, we plan to extend the language to sup-
port multiple parallel media for fault tolerance reasons, ver-
ify the runtime system using CBMC [8], and investigate
how we can simulate other protocol’s media access control
with network code.

9. Acknowledgments

We like to thank the reviewers and especially our shep-
herd Marco Caccamo for their time and efforts invested in
scrutinizing our work and providing detailed comments and
suggestions to improve the presentation of the paper. We
also like to thank Gregor König, who assisted in coding the
initial version of network-code machine.

References

[1] Uppaal examples. WWW. http://www.it.uu.se/
research/group/darts/uppaal/examples.
shtml.

[2] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and
W. Yi. Times: a tool for schedulability analysis and code
generation of real-time systems. In P. Niebert and K. G.
Larsen, editors, Proc. of FORMATS’03, number 2791 in
Lecture Notes in Computer Science, pages 60–72. Springer–
Verlag, 2004.

[3] T. Ball and S. Rajamani. The SLAM toolkit. In Proc. of 13th
Conference on Computer Aided Verification (CAV), number
2102 in LNCS. Springer, 2001.

[4] BERNECKER + RAINER Industrie-Elektronik Ges.m.b.H.
Ethernet Powerlink: Data Transport Services, 5 edition,
Sept. 2002. White-Paper.

[5] J. Berwanger, M. Peller, and R. Griessbach. Byteflight –
a new high-performance data bus system for safety-related
applications. Technical Report EE-211, BMW AG, 2000.

[6] D. Clarke, I. Lee, and H.-L. Xie. VERSA: A tool for
the specification and analysis of resource-bound real-time
systems. Journal of Computer and Software Engineering,
3(2):185–215, April 1995.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
Number 0262032708. The MIT Press, 2000.

[8] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. In K. Jensen and A. Podelski, editors,
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2004), volume 2988 of Lecture Notes in
Computer Science, pages 168–176. Springer, 2004.

[9] S. Fischmeister. Multi-dimensional schedules for media-
access control in time-triggered communication. In Proc.
of the IEEE Symposium on Computers and Communications
(ISCC’05). IEEE Press, 2005.

[10] S. Fischmeister, O. Sokolsky, and I. Lee. Network-code ma-
chine: Programmable safe real-time communication sched-
ules (supplementary materials). Technical Report MS-CIS-
06-01, University of Pennsylvania, 2005.

[11] FlexRay Consortium. FlexRay Communications System —
Protocol Specification, June 2004. Version 2.0.

[12] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel,
and M. Walther. Time Triggered Communications on CAN
(Time Triggered CAN - TTCAN). In Proceedings 7th Inter-
national CAN Conference, Amsterdam, Netherlands, 2000.

[13] F. Hanssen and P. Jansen. Real-time communication proto-
cols: an overview. Technical report, Centre for Telematics
and Information Technology, 2003.

[14] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with blast. In Proc. of the 10th SPIN Workshop
on Model Checking Software (SPIN), volume 2648 of LNCS,
pages 235–239. Springer, 2003.

[15] T. A. Henzinger and C. M. Kirsch. The Embedded Machine:
predictable, portable real-time code. In Proc. ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), pages 315–326, 2002.

[16] G. Holzmann. The model checker SPIN. IEEE Transactions
on Software Engineering (TSE), 23(5):279–295, 1997.

[17] G. König. Using Interpreters for Scheduling Network Com-
munication in Distributed Real-Time Systems. Master’s
thesis, Salzburg University, Jakob-Haringer-Str. 2, 5020
Salzburg, Austria, Mar. 2005.

[18] H. Kopetz. Real-time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Pub-
lishers, 1997.

[19] J. Krakora, L. Waszniowski, P. Pisa, and Z. Hanzalek. Timed
automata approach to real time distributed system verifica-
tion. In Proc. of IEEE International Workshop on Factory
Communication Systems (WFCS), pages 407 – 410, Sept.
2004.

[20] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1-
2):134–152, 1997.

[21] I. Lee, P. Brémond-Grégoire, and R. Gerber. A process alge-
braic approach to the specification and analysis of resource-
bound real-time systems. Proceedings of the IEEE, pages
158–171, Jan 1994.

[22] P. C. Ölveczky and J. Meseguer. Specification and analy-
sis of real-time systems using real-time maude. In In Proc.
Fundamental Aspects of Software Engineering (FASE’04),
number 2984 in LNCS. Springer, 2004.

[23] P. Pedreiras, L. Almeida, and P. Gai. The FTT-Ethernet pro-
tocol: merging flexibility, timeliness and efficiency. In Proc.
of the 14th Euromicro Conference on Real-Time Systems,
pages 134 –142. IEEE Press, June 2002.

[24] C. Venkatramani and T. Chiueh. Design, implementation,
and evaluation of a software-based real-time ethernet proto-
col. In Proceedings of the conference on Applications, tech-
nologies, architectures, and protocols for computer commu-
nication, pages 27–37. ACM Press, 1995.

[25] T. Watteyne and I. Auge-Blum. Proposition of a hard real-
time mac protocol for wireless sensor networks. In Proc.
of the IEEE International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 533 – 532, 2005.

