
On Time-aware
Instrumentation of

Programs
Sebastian Fischmeister and Patrick Lam

sfischme@uwaterloo.ca, p.lam@ece.uwaterloo.ca

Department of Electrical and Computer Engineering
University of Waterloo

1

Sunday, April 19, 2009

mailto:sfischme@uwaterloo.ca
mailto:sfischme@uwaterloo.ca
mailto:p.lam@ece.uwaterloo.ca
mailto:p.lam@ece.uwaterloo.ca

Motivation

• Hard real-time systems

• Background/foreground programs

• Real-time embedded systems are notoriously
hard to debug

• 30-50% of development costs are testing and
debugging

2

Sunday, April 19, 2009

Do you Believe in
LED-based Debugging?
Your planetary-scale debugging array:

3

Sunday, April 19, 2009

Tracing
• Record online, replay offline

4

Sunday, April 19, 2009

Problem Definition

• How can we automate capturing runtime
behavior while minimizing timing interference?

• Where in the code should you capture information?

• What to do when you can’t capture all?

• What size do you need for your trace buffer?

5

Sunday, April 19, 2009

Key Ideas in a Nutshell
But what if it doesn’t fit?

original
instrumented

t

probability

dl

Tradeoff: partial trace & trace reliability

6

instrumented

Sunday, April 19, 2009

Example
7

X

X

X

WCET path

X
log X

X
log X

Ignore this one,
create partial trace

X
log X

Sunday, April 19, 2009

Reliability of Single Assign
8

X

WCET path

log X

Probability of capturing
one assignment.

p 1− p

Sunday, April 19, 2009

Reliability of A Path
9

X,Y
log X

Completeness of the trace
for a particular pathX,Y

log X, Y

...

p1

p2

p3

Sunday, April 19, 2009

Reliability of an Instrumentation
10

X

Z
log Z X Y

X,Z

WCET path

X
log X

X,Y
log X,Y

p1 1− p1

p2 1− p2

Sunday, April 19, 2009

Tracing Method

Extended

selection

Source
analysis

Naive
instrumentation

Tweak
reliability

Minimize
code size

Collect
traces

Cannot satisfy
constraints

Try to extend
time budget

Timing
ok

Timing violation

Suff. reliability

Insuff. reliability

No more slack

Function

11

Sunday, April 19, 2009

Instrumentation Reliability

• Reliability at the insertion point

• Reliability of a path

• Reliability of an instrumentation

Instead of instrumenting every read/write,
maximize captures within overhead budget

Maximize reliability of an instrumentation

12

Sunday, April 19, 2009

Maximal Reliability
13

Sunday, April 19, 2009

Minimize Insertion Points
Defer captures until next write

Hitting set problem

14

Sunday, April 19, 2009

Case Study: Objectives

• Test feasibility of our approach

• Test our hypothesis of shifting execution time

• Play around and look for surprising things

• Attainable reliability with zero overhead

• Increase in overhead vs reliability

15

Sunday, April 19, 2009

Case Study: OLPC

• Open source keyboard controller

16

Sunday, April 19, 2009

Case Study

• Function handle_power()

• 42 basic blocks

• 20 different control flows

• mean execution time is 75 cycles

• worst-case execution time is 132 cycles

• Built source analysis tool in OCaml

• Use ILP library in Matlab

17

Sunday, April 19, 2009

Execution Time

0 20 40 60 80 100 120 140 160 1800

0.005

0.01

0.015

0.02

0.025
Density Function of the Expected Execution Time

Execution time

Pr
ob

ab
ilit

y

Original program
Instrumented program

18

25% of the paths
share basic blocks
with the WCET path.

Sunday, April 19, 2009

Increasing the Time Budget

0 2 4 6 8 10 12 14 16

0.4

0.5

0.6

0.7

0.8

0.9

1
Increase in Reliability of Logging With Extended Deadline

Re
lia

bi
lity

 o
f l

og
gi

ng

Additional cycles

19

Allowing 3%
overhead brings
>90% reliability.

Sunday, April 19, 2009

Tool (gen. two)

gcc => assembly => analyze =>
instrument => compile => deploy

20

Sunday, April 19, 2009

Future Work

• Extend to multiprogramming environments

• Refine insertion algorithm wrt interaction
between minimization and reliability

• Open source Eclipse plugin

21

Sunday, April 19, 2009

Conclusions

• Debugging is a real problem

• Tracing is a common, so far ad hoc, solution

• First steps towards automated trace generation
for real-time programs

• What to do when you can’t capture all?

• Where should you capture information?

• What size do you need for your trace buffer?

22

Optimization problem to maximize trace value.

Reduction for minimizing insertion points.

Equations for calculating the buffer size.

Sunday, April 19, 2009

Acknowledgments

• Frieder Ferlemann from the OLPC keyboard
controller project

• Aswinkumar Rajendiran & Ruchi Varshney for the
second generation software tool

• Funding agencies (NSERC, ORF) for providing the
resources to make this research happen and
picking up the cheques

Thanks to:

23

Sunday, April 19, 2009

