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Motivation

• Hard real-time systems

• Background/foreground programs

• Real-time embedded systems are notoriously 
hard to debug

• 30-50% of development costs are testing and 
debugging
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Do you Believe in
LED-based Debugging?
Your planetary-scale debugging array:
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Tracing
• Record online, replay offline
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Problem Definition

• How can we automate capturing runtime 
behavior while minimizing timing interference?

• Where in the code should you capture information? 

• What to do when you can’t capture all?

• What size do you need for your trace buffer?
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Key Ideas in a Nutshell
But what if it doesn’t fit?
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Example
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Reliability of Single Assign 
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Reliability of A Path 
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Reliability of an Instrumentation
10

X

Z
log Z X Y

X,Z

WCET path

X
log X

X,Y
log X,Y

p1 1− p1

p2 1− p2

Sunday, April 19, 2009



Tracing Method
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Instrumentation Reliability

• Reliability at the insertion point

• Reliability of a path

• Reliability of an instrumentation

Instead of instrumenting every read/write, 
maximize captures within overhead budget

Maximize reliability of an instrumentation
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Maximal Reliability
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Minimize Insertion Points
Defer captures until next write

Hitting set problem
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Case Study: Objectives

• Test feasibility of our approach 

• Test our hypothesis of shifting execution time

• Play around and look for surprising things

• Attainable reliability with zero overhead

• Increase in overhead vs reliability
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Case Study: OLPC

• Open source keyboard controller
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Case Study

• Function handle_power()

• 42 basic blocks

• 20 different control flows

• mean execution time is 75 cycles

• worst-case execution time is 132 cycles

• Built source analysis tool in OCaml

• Use ILP library in Matlab
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Execution Time
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25% of the paths 
share basic blocks 
with the WCET path.

Sunday, April 19, 2009



Increasing the Time Budget
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Allowing 3% 
overhead brings 
>90% reliability. 
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Tool (gen. two)

gcc => assembly => analyze => 
instrument => compile => deploy
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Future Work

• Extend to multiprogramming environments

• Refine insertion algorithm wrt interaction 
between minimization and reliability

• Open source Eclipse plugin
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Conclusions

• Debugging is a real problem

• Tracing is a common, so far ad hoc, solution

• First steps towards automated trace generation 
for real-time programs

• What to do when you can’t capture all?

• Where should you capture information?

• What size do you need for your trace buffer?
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Optimization problem to maximize trace value.

Reduction for minimizing insertion points.

Equations for calculating the buffer size.
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