In Proc. of the IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), Seoul, South Korea, August 2012.
Revised version.

CSS: Conditional State-based Scheduling for
Networked Control Systems

Xi Chen*, Akramul Azimf, Xue Liu*, Sebastian Fischmeister
* School of Computer Science, McGill University,
Email: xi.chen7@mail.mcgill,ca, xueliu@cs.mcgill.ca
 Department of Electrical and Computer Engineering, University of Waterloo
Email: {aazim,sfischme}@uwaterloo.ca

Abstract—Modern industrial networked control systems
(NCSs) tend to be complicated and have dynamic workload
by holding a variety of applications via a shared network.
The static network scheduling algorithms fit most NCSs due
to their deterministic characteristics and timing guarantees, but
they cannot handle dynamic workloads for lack of making on-
the-fly decisions. The conditional state-based scheduling adds
the dynamism in the static scheduling algorithms by automata
or more explicitly state chart like formalisms with conditional
transitions. In this paper, we propose CSS scheme that applies
the conditional state-based scheduling to dynamically schedule
different applications in the industrial NCSs. CSS aims at the
time-triggered network in the NCSs and uses time division
multiple access (TDMA) method to let the applications access
the network. To enhance the scalability of the NCSs, we design
CSS as a decentralized scheme where each application in NCSs
has a local scheduler to make its schedule decisions. Appropriate
algorithms are applied to ensure the scheduling decisions made
by the local schedulers are consistent and the desired system
performance can be achieved. Simulation results demonstrate
the effectiveness of the proposed scheme compared to the static
TDMA used in real-time networks.

Index Terms—NCSs, conditional state-based scheduling, dy-
namic TDMA, decentralized scheduling.

I. INTRODUCTION

Recent years have seen the increasing demand of the
networked control systems (NCSs) in industry such as auto-
motive, factory automation, avionics, and robotics that require
high reliability and efficiency. By introducing the network
as a shared communication medium among the transmission
components like sensors, controllers and actuators in the
control applications, the system performance of the NCSs can
be influenced by network-induced transmission delay. How to
design the network scheduling to properly allocate the network
bandwidth among the control applications in NCSs is impor-
tant. Traditional network scheduling like the rate monotonic
scheduling [1] or round robin are static, and they work in the
NCSs with predefined workload and can provide safety as well
as timing guarantees. However, modern industrial NCSs tend
to be complicated with abundant applications co-existing in
the network, which may result in the dynamic workload. One
typical case is the automobile market that launches a variety
of new car models with increasing functionalities to cater the
user demands. Besides the critical control applications in the
car like the active steering and drive control that should be
executed periodically, the other non-critical applications such
as window open/close or DVD player in the network may
activate aperiodically, causing workload variations. Under the

dynamic workload, scheduling all the applications statically
may use the network resource inefficiently and degrade the
system performance.

To handle the dynamic workload in NCSs, scheduling algo-
rithms making on-the-fly decisions are the topics-of-interest.
Several dynamic scheduling algorithms [2]-[5] were proposed
towards the priority-based field bus like Control Area Network
(CAN). However, there are not many research efforts on the
dynamic network scheduling design for NCSs that use time-
trigged network as the shared communication medium. The
time-triggered networks like TTCAN [6], FlexRay [7], [8] and
real-time Ethernet [9] emerge in industry recently and has the
potential to replace the priority-based field bus in future due to
its deterministic characteristics and timing guarantees. Some
of the time-triggered networks support dynamic scheduling
partially. For example, FlexRay and TTCAN reserve a dy-
namic segment with limited time slots in every communication
cycle to schedule the aperiodic applications. Some of the time-
triggered networks support dynamic scheduling completely.
For example, the real-time Ethernet can make flexible schedule
decisions in each time slot. Comparing both types of time-
triggered networks, the latter provides better flexibility and
scalability. We focus on the NCSs with a time-triggered
network that can support dynamic scheduling completely to
design the network scheduling algorithm.

The conditional state-based scheduling scheme [9]-[11] rep-
resents recent development to improve the network scheduling
in real-time systems. The conditional state-based schedules are
realized by automata [12] or more explicitly state chart like
formalisms with conditional transitions [10], [11]. Network
code language permits developers to express such conditional
state-based communication schedules, and the specification,
analysis, and verification are examined. Therefore, the condi-
tional state-based scheduling inherits the deterministic prop-
erty of the static scheduling but has more flexibility than the
static scheduling to handle the varying workload by adding
dynamisms.

In this paper, we propose CSS, which is a conditional
state-based scheduling scheme exclusively for industrial NCSs.
Given an NCS with multiple applications and a time-triggered
network as the shared communication medium, the goal of
CSS is to achieve a good overall system performance of
the NCS while providing the worst-case guarantees, even
under the existence of the dynamic workload or message
transmission failure. To enhance the scalability of the NCSs,
CSS leverages a distributed consensus to schedule all the

Control Network
Control Application 1

—b{ Controller 1 H Plant 1 ’7

—»’ Controller n ’—»’ Plant n }7
e

Non-Control Applications

A

Time

Workload

Fig. 1: Networked Control System

applications. Each application in NCSs has the local scheduler
to make its schedule decision. The schedule decisions are
made according to the specific condition, which is designed to
ensure the stability and improve the performance of the critical
applications. Moreover, the schedule decisions let the non-
critical applications access the network in a best-effort way.
We design the message communication principle in NCSs so
that the schedule decisions made by the local schedulers are
consistent. We simulate a three-servo target-tracking system
as a case study, and the results demonstrate the effectiveness
of the proposed schedule compared with the static scheduling.

The organization of the paper is as follows: Section II
provides the system model of NCSs with time-triggered
network. Section III gives details of CSS scheme design.
Section IV theoretically analyze the stability of NCSs under
CSS scheme. Section V evaluates the performance of the
proposed scheme. Section VI introduces the related work.
Section VII summarizes the paper.

II. OVERVIEW OF NCSsS WITH TIME-TRIGGERED
NETWORK

In our NCS as shown in Fig. 1, all the applications are
connected via a time-triggered network. The applications
in NCSs consist control and non-control applications. We
assume all the control applications like the steering and
break control in the car are periodic and critical, and all
the non-control applications like the maintenance, diagnostic
and entertainment applications are aperiodic and non-critical.
Each control application in our NCS has a linear plant, a
controller designed in the continuous time domain, and we
assume the actuator is directly integrated in the plant. The
sensor of each plant samples the plant’s states and sends them
in one message to the controller via the shared network. The

controller then computes the control input corresponding to the
sensor’s sample and sends it directly to the plant for execution
without using the shared network. Since the control application
dynamics are considered continuous, the access interval of
the control application to the network is much larger than
the sampling period of the plant’s sensor and the processing
time of the controller. Therefore, we assume the sensor can
transmit the latest plant’s data to the controller as long as it
accesses the network, and the controller can react immediately
when receiving the messages from the network. To ensure
the stability of the control application, the maximum access
interval of the control application to the network should be
bounded.

The time-triggered network in the NCS is configured with a
global clock. All the transmission components in the network
have synchronized clocks. We use transmission components
to denote all the components in NCSs that sends or receives
messages via the network like the sensor and controller in
each control application. The network uses TDMA to schedule
messages from the transmission components. At each time
slot, only the transmission components from one application
can access the network and transmit messages. We assume the
message transmission time is short and can be bounded by one
time slot s.

A. Applications in NCS

Consider an NCS with n control applications and m non-
control applications. Each application has a unique index 1,

i =1,...,n+m. We assign indexes from 1 to n to control
applications, and each control application is denoted by C;,
i =1,...,n. We assign the indexes from n+1 to n-+m to the

m non-control applications, and each non-control application
is denoted by F;, i =n+1,...,n + m. All the applications
compete for using the network.

Each control application C;, ¢ = 1, ..., n can be formulated
as a state-space function:

) = ey g

The system state is x;(t) € R”. The control input is u;(t) €
R<. The state matrix A;, the input matrix B;, the feedback
matrix K; have corresponding dimensions and are given at
the design time. The closed-loop state matrix of C; is A; =
A; — B;K;.

The quality of control (QoC) of each control application C}
depends on two parameters: the control error and the stability.
We define the control error e;(t) as e;(t) = z;(t) — z;(tp),
where ¢, is the time point when C; uses the network at the pth
time, and p = 1,2,.... When t € [tp, t,41], €;(¢) is expressed
as

From Eq.(2), we derive

eilt) = Auai(t,)(t —t,) + /t Aesi(s)ds. ()

p

The control error has an exponential relation with the time
delay for the control application to access the network. We

lle: ()]l

define the scaled control error as — s
llzi(tp)l

for C; to access the network is

and the time delay

li=t—tyt €[ty tyr1]. (4)
From Eq.(2,3) and according to [13], we get
les®I _ Al yase—s,)
< (el »)—1). (®)]
s (Ep)l — [Aqll

llei (D]l

From Eq.(3,4,5) we have the scaled control error

llzs (tp)
0 when [; = 0, and ”‘Le_"ét))”” increases with [; exponentially
when [; > 0. Since the scaled control error reflects the control

performance, we define the performance metric function J;(I;)

as
(1) {MZO’ 6
i\li) = |Ai A 1L 7. ()
AT ;> 0.

Besides the performance metric of C, the stability is closely
related to the time delay [;. To ensure the stability of Cj, I;
can never exceed its upper bound h;. We should ensure

li < hi, 7

where h; can be computed from [13], [14]. We rewrite
Theorem 2.15 in [13] for computing upper bound on the access
interval as follows:

Theorem IL.1. Define h,,q. as the maximum access interval
set at the NCS design stage for control application C; and
hmaz Satisfies

v)
||Az|| 2Amax (P;) ||Bsz|| HA’LH

where P; and Q; are symmetric positive definite matrices such
that

hmax < +1), ®

€))

and Mpin(Q;) is the minimum eigenvalue of @Q; while
Amaz (P;) is the maximum eigenvalue of P;.
Define the polynomial

p(x) =)\max(Pi)(R? + 2Ri)l‘4 — 2/\max(Pi)(Ri2 + 2Ri)m3

NP2 Amin(Qi)1,.2 | Amin(Qi)
F[Amax (P) B 2[[4] Jo* + 2|

AP+ PA; = —Q;,

(10)

e HA.L‘Hhmax,
= IBiKill(e U Let 2* be the real root of

where R; = AT
p(x) greater than 1 (if exists).
The system is exponentially stable if

min {hmax, HTI'H In x*} , if o exits |
i

hmax, Otherwise

hi = 1D

where h; is the upper bound of the delay ;.

Since C}’s controller is designed ignoring the network and
can ensure the stability of C; in the continuous time domain,
there always exist P; and); that satisfy Eq.(9). Therefore, the
existence of h; can be ensured. Proof of Theorem II.1 refers
to [13].

There are non-control applications in the network. Each
non-control application E;, i = n+1,...,n+m aperiodically
activates and does not have an explicit deadline.

B. Bandwidth Utilization of The Applications in NCSs

Each application in NCSs uses a portion of network band-
width during the runtime. We use wu; to denote bandwidth

utilization of each application with index ¢, ¢ =1,...,n+m,
which is the percentage of the network bandwidth taken by
this application. Each control application C;, i = 1,...,n

should be given at least one time slot in a time span h; to stay
stable, hence the lower bound for the bandwidth utilization of
Ci is w; = 57, where |v] is to get the maximum integer

less than or equal to v. We estimate the worst-case bandwidth
utilization of each non-control application E; at design time,
denoted as u;, ¢ = n + 1,...,n + m. If E; sporadically
activates with a minimum inter-activate period d;, we estimate
u; = % If E; activates randomly and the probability E;

activates in each time slot follows a distribution like Poisson
distribution or Pareto distribution, we can use the mean value
of the distribution plus its variance as ;.

In NCSs, we assume the non-control applications are less
safety-critical than the control applications. For example, the
window open/close is less important than the steering control
in a car. At the design time, we should make sure the total
bandwidth utilization of the non-control applications in the
worst case does not exceed a threshold that jeopardizes the
stability of the control applications,

n+m n

dw<1-) u,
i=n i=1

We can use the admission control at the design time to
prevent the non-control applications from joining the network
if the bandwidth utilization constraint in Eq.(12) is violated.
However, even when the bandwidth utilization constraint in
Eq.(12) can be satisfied, it is not sufficient to provide stability
guarantees of the control applications. To ensure the stability
of the control applications, the network scheduling algorithm
should be properly designed.

(12)

III. NETWORK SCHEDULING DESIGN

We use the conditional state-based scheduling scheme as the
underpinning mechanism to construct CSS scheme which is
dedicated for scheduling control and non-control applications
in NCSs. Each application has the local scheduler to deicide
whether all the transmission components in this application
can use the network or not at each time slot. We develop
the algorithms to ensure the schedule decisions made by the
local schedulers are consistent. The goal of the proposed
network scheduling scheme is to provide a good overall
system performance while guarantee the stability of the control
applications.

A. System Configuration

We design CSS for NCSs that uses time-triggered network.
We assume the communication medium provides a reliable
atomic broadcast service; therefore, either all transmission
components receive a message or none of them do when
message fails to be transmitted. Moreover, we assume that
the network supports the priority-based arbitration. For the
network that does not support the arbitration mechanism, we

Component in E‘_ Controller in C,

(Local Scheduler)

INetwork-Code
Machine

(Local Scheduler) Ve)@ N

/
o |
Sequence
Network-Code 720" =2

Machine

Sensor

[P
msg;

msg,” ack

Y
Shared Communication Medium

Fig. 2: Framework of CSS Scheme

add an independent processor in the network to act as the
network arbitrator.

CSS leverages a distributed consensus to schedule all the
applications in NCSs. Each application in NCSs has its local
scheduler to implement the conditional state-based scheduling.
To avoid additional hardware cost, we usually use an existing
transmission component in an application to act as the local
scheduler. For example, we choose the controller in each C;
as the local scheduler of C;. The local scheduler in each
application decides whether all the transmission components in
the application can use the network or not at each time slot. An
existing transmission component is extended to a local sched-
uler by assigning data storage (i.e. RAM of the processor) for
storing scheduling-relevant data and by installing Network-
Code Machine (NCM), a programme responsible for making
scheduling decision. In each time slot, the local scheduler
invokes NCM to update the variables in the data storage and
check whether these variables satisfy a specific condition or
not. The local scheduler will inform all the other transmission
components in the application to use the network only if the
specific condition is satisfied.

B. Framework of CSS

CSS allows the developer to define a static schedule for
the control applications that ensures the stability of all the
control applications without the existence of the non-control
applications. Since the non-control applications exist and
aperiodically activate in NCSs, CSS allows the developer to
define the specific condition that can be leveraged by the
local schedulers to make on-the-fly changes to the predefined
schedule. The specific condition is designed to improve the
overall control performance of the control applications and at
the same time to schedule the non-control applications in a
best-effort way. The framework of CSS is shown in Fig. 2.

1) Scheduling the Control Applications: We adopt the static
TDMA with cyclic sequence as the predefined schedule for all
the control applications in NCSs, where all the control appli-
cations take turns to use the network and each C;,i =1,...,n
has its predecessor C’; and successor C';;. A communication
cycle is the time span during which all the control applications
are scheduled according to the cyclic sequence once. The
predefined schedule assigns only one time slot for each C; to

access the network in each communication cycle. Therefore,
the access interval for each control application C; to use the
network is n time slots, and we set the time slot length s as
a value to ensure the stability of all the control applications
under the predefined schedule,

min A,

ie{1,...,
< Ellent

n

13)

The static schedule guarantees fairness to schedule the control
applications but is brittle to handle the dynamic workload
caused by the non-control applications. As an improvement,
CSS scheme can make conditional transitions on the prede-
fined schedule. In each communication cycle, CSS scheme
flexibly adds some time slots to schedule the control appli-
cations with large control error or the activated non-control
applications. Such added time slots are denoted as the extra
time slots. For example, if more than one time slots assigned
to a control application C; in a communication cycle, the time
slots other than the first one are extra time slots. Moreover,
we extend the concept of "extra time slots" to include the
slots assigned to the non-control applications for message
transmission and the slots with message transmission failure.
At each time slot during the runtime, we want to improve
the system performance by choosing a control application to
use the network. The system performance () is the overall
performance cost of the control applications,

o- S -5 s

=1

The smaller () indicates the better performance. We use
Q;(k) to denote the system performance at the kth time slot
k=12,..., w) by choosing C; to schedule. To
improve the system performance under the cyclic structure,
CSS needs to schedule the one that can result in the smaller
Q. (k) from two adjacent control applications. Suppose we are
currently at the kth time slot, and C, is the “current control
application”, which is the control application currently using
the network or most recently accessed the network (if the
current time slot, namely the kth time slot, is assigned to a
non-control application). The local schedulers in C, and C/
(the successor of C,, z/ = (z mod n) + 1) should decide
which control application of them can use the network in the
(k 4 1)th time slot based on the following constraint

Q:(k+1) = Qu(k+1) <0.

If the constraint in Eq.(15) is not satisfied, C,, will be
scheduled. Otherwise, we want to schedule C,. However,
scheduling C', will introduce an extra time slot in the current
communication cycle. Under the cyclic structure, the access
interval of a control application C; to the network is at least n
time slots. Any extra time slot inserted during the time delay
of C; will prolong the access interval (n time slots) by 1 time
slot, which may jeopardize the stability of C;. We denote the
number of the extra time slots in the time delay of C; as b;,
where b; = 0 when C; accesses the network with successful
message transmission, and b; = b; + 1 when an extra time slot
is introduced during the access delay of C;. When we prefer

(14)

5)

to schedule C, at the (k + 1)th time slot, we need to check
the following constraint

m+b" +)s<hii=1,....n (16)

to ensure the stability of all the control applications. Eq.(16) is
derived by replacing [; with access interval (n + bl() 4 1)s of
C; in Eq.(7). Only when the constraints in Eq.(15) and Eq.(16)
are both satisfied can we schedule C, at the (k 4 1)th time
slot.

The schedule decisions are made by the local schedulers
according to the performance constraint defined in Eq.(15)
and the stability constraint defined in Eq.(16). The perfor-
mance constraint in Eq.(15) involves the computation to the
performance cost of all the control applications, which can be
simplified. We use variable I to store the index of the “current
control application”and use 15’“) as the time delay /; (defined
in Eq.(4)) at the kth time slot. Under the cyclic sequence, we
use o as the index of the communication cycle where the kth
time slot lies in, and we have

(I—i+bo")s,i <1,
(I+bM)si>T&o0=1,
(n—i+I+b§k))s,i>I&o> 1.

1 = (17)

Consider the situation when k is not in the first cycle (o > 1)
and I equals to z at the kth time slot. If C, is chosen to
be scheduled at the (k 4 1)th time slot, I will remain to be z

0,7 =
and bgkﬂ) will become bgkﬂ) = bgkl) +Zl,i Ly If C, is
chosen to be scheduled at the (k+1)th time slot, I will become
0,i=2"
z" and bEkH) will become bglﬁ_l) = (kl,) . , . From
b, " +1,i# 2
Eq.(17), the constraint in Eq.(15) is equivalent to
QZ%T+h) Qv (k+1) |
_ A A l(nrp®))s Aill A +s
- [HA e 1A 1IC)s 4 ‘ > o el Al (™ +)]
] A
Azl AP +1)s A7) s
el erano® s s WA a4y
- zﬁ{z z'}
= [l era-msothe _ Qo <0
. (18)

The constraint in Eq.(18) can be further simplified as
Qy

n(-=) < (JA 0 +1) = A]| (n4+557))s,0 > 1, (19)
where a,r = Hﬁ ” and a, = ‘l“f” can be derived at the

design time. Consider the situation when k is in the first cycle
(o = 1), by using a similar deduction as given above, the
constraint in Eq.(15) can be simplified as

[¢2%

=) < (1A 6 +1) -

z

A (z+1+0%))s,0=1,
(20)

In(

where a, = Hﬁ 2l and a, = |":Z” By simplifying the
performance constraint from Eq.(15) to Eq.(19) and Eq.(20),

we can see that no matter C, or C,. is scheduled in the
(k+1)th time slot, the time delay lng) fori ¢ {z, 2} will be
the same, resulting in the same performance cost J;((k+1)s)
from Eq.(6). As a consequence, to compare Q. (k + 1) with

Q. (k+1), we only need to consider the performance costs of
C, and C,. The local schedulers of C, and C,/ takes O(n)
computing complexity to check the following condition D,

l7L(

D A 0% +1) = A 2+ 14+ 60), 0 =1,
l !/
D "(TwnAzn(z +1) = |4z | (n+ %)), 0> 1,
(n+b" +1)s <hifori=1,....n
(21)

If condition D is satisfied, the local schedulers in both control
applications C, and C,. can consistently decide C, should
use the network in the (k + 1)th time slot. Otherwise, they
can consistently decide that C',, should use the network. At
each time slot, only the local schedulers from the “current
control application” C'; and its successor C; need to check
the condition D to make the schedule decisions, while the
schedulers of the other control applications do not need.

2) Scheduling the Non-control Applications: The non-
control applications in the network can aperiodically activate.
Comparing with the control applications, the non-control
applications are less safety-critical and do not have hard
deadlines. We use admission control in Eq.(12) (as introduced
in subsection II-B) to accept the non-control applications
at the design time, but the admission control is not suffi-
cient to guarantee the stability of the control applications.
Therefore, we design a best-effort scheduling to the non-
control applications during the runtime to provide stability
guarantees. In the best-effort scheduling, an extra time slot
can be assigned to an activated non-control application only if
introducing this extra time slot does not jeopardize the stability
of any control application. When a non-control application E;,
i =n+1,...,n+m wants to use the network in the (k+1)th
time slot, the local scheduler of F; needs to check the stability
constraint in Eq.(16). This is because scheduling F; will turn
the (k+1)th time slot to be an extra time slot, which increases
b; by 1 for all the control applications and may cause them
unstable. If the stability constraint in Eq.(16) satisfies, E; can
be scheduled in the (k + 1)th time slot. Otherwise, E; will
continue to check the stability constraint in Eq.(16) in the
following time slots until it can find a valid one to access the
network.

3) Priority-based Arbitration: In NCSs, the control appli-
cations do not know when a non-control application activates.
Whenever a non-control application F; activates and decides
to use the network in a time slot, it will conflict with a control
application C, or C. To solve this problem, we use priority-
based arbitration in the network. For the network that does
not support arbitration mechanism like real-time Ethernet, we
install an independent processor in the network to act as an
network arbitrator. When the local scheduler in an application
decides to use the network, it will send a message to the
arbitrator. the arbitrator in the network will forward the one
with the highest priority to its destination node and discard
the messages from the other local schedulers.

All the control applications have the same priority, which is
lower than the priorities of the non-control applications. For
the non-control applications, the one with more importance to
the system will be given a higher priority. We assign the higher
priorities to the non-control applications than the control appli-
cations for two reasons. One is that the non-control application

TABLE I: Variables in Local Scheduler

Content
a (AL, - AR T € R™

Specification

store ||A;|l, i =1,...,n,
time-invariant.

store ||A1 ||,z =1,...,n,
time-invariant.

store b;, i = 1,...,n,
time-variant.

store h;, i = 1,...,n,
time-invariant.

store index of "current-
control application", time-
invariant.

store priority of the appli-
cation, time-invariant.
acc boolean acc =true the applica-
tion can access the net-
work, otherwise cannot,
time-variant.

store index of the applica-
tion, time-invariant.

store index of Cj’s suc-
cessor (control application
only), time-invariant.
store index of C;’s prede-
cessor (control application
only), time-invariant.
store b; in the previous
time slot (control applica-
tion only), time-variant.

a [A4 4" e r

b [b1,...,b,]T €R"

h h=1[h1,...,hn]T €ER™

1 IeR

T r; € R

3 IeR

7 7 €ER

13 T €ER

p(P) b®) ¢ R

does not jeopardize the stability of the control applications
when it decides to use the network by checking Eq.(16). The
other reason is that the non-control application has no chance
to use the network if higher priorities are given to the control
applications, since there is always one application C qualified
to use the network by checking Condition D in Eq.(21) at each
time slot.

C. Message Communication Principles in CSS

We design the message communication principles in CSS
to ensure the consistency of the local schedule decisions, even
under the transmission failures of messages.

1) Data Structure: We assign the processor memory in each
local scheduler to store the variables related to the network
scheduling scheme. The specification of the variables is shown
in Table I. We use v and r¢ to indicate the priority ; of the
non-control application and control application, respectively.
We use the lower number to denote higher priority, therefore
we have 77 < r&. Note that r” # r¥ for i # j, and r{ =
r{ = ... =rf. All the time-invariant variables as shown in
Table I are configured at the design time, and the time-variant
variables should be updated online. The variables {l,b,/} in
each local scheduler are initialized as { 0,0,1} at the first time
slot with [€ R™ and b € R™.

2) Message Transmission Sequence: Each application in
NCSs has two transmission components, namely the source
component (SC) and the destination component (DC). In
the control application C;, SC is the sensor and DC is the
controller. In the non-control application E;, SC and DC are
defined by the engineers at the design time according to the
functionality of each transmission component. Each applica-
tion chooses one of its transmission components to act as the

local scheduler. The local scheduler is responsible to notify
both SC and DC in the application to use the network. After
receiving the notification from the local scheduler, SC and
DC in the application begin to send/receive the messages that
contain the data in need. When DC in the application receives
a message with data in need from SC, we assume one message
transmission finishes and DC broadcasts an acknowledgement
message over the network to inform all the applications in
NCS about the successful message transmission. There are
three types of messages in the network:

« Notification Message msgftf : The notification message
is to notify the transmission components of the ith
application in NCSs to use the network at the current
time slot. It only contains the application index ¢ and
priority 7;.

o Normal Message msg™™: The normal message is to
transmit useful data like the plant’s state between the
components of the ¢th application, which contains ap-
plication index 1, the priority r; and the data in need.

o ACK Message msg?°*: The ACK message is to indicate
all the other applications in the network that the message
transmission in the ith application at the current time slot
is successful. It only contains the application index ¢ and
priority 7;.

The message transmission sequence in each application is
summarized by Algorithm 1. We use the abbreviation AP; to
denote the application with index ¢, and use NA to denote the
network arbitrator. The message transmission sequence can
finish in one time slot when AP; uses the network.

Algorithm 1 Message Transmission Sequence in AP;

if AP; (C; or E;) can use the network then
Local scheduler of AP; sends msg?tf to NA.
if msg’ has the smallest r; in NA then
NA forwards msg," t/ to SC in AP;.
NA deletes all msg;”tf (j # i in the queue).
end if
if SC in AP; receives msg,""/ then
SC in AP; sends msgfml to DC in AP;.
end if
if DC in AP; receives msg!™ then
DC in AP; broadcast msg@°* over the network.
end if
end if

3) Working Principle of Local Scheduler: The local sched-
uler in each control or non-control application needs to update
the variables listed in Table I and check the specific conditions
to make schedule decisions. At first, the local scheduler sends
the notification message if the application can use the network.
The message transmission sequence as shown in Algorithm 1
is executed in the network. Upon receiving the ACK message
broadcasted in the network, local scheduler updates the time-
variant variables in Table I. After that, the local scheduler
checks the condition based on the newly updated variables to
decide whether the application can use the network or not in
the next time slot. We use Algorithm 2 to demonstrate how
the local scheduler in AP; works. In the algorithm, we use

AP;.LS to denote the local scheduler of AP;.

IV. STABILITY ANALYSIS OF NCS UNDER CSS NETWORK
SCHEDULING SCHEME

In this section, we provide theoretical proof that CSS can
ensure the stability of all control applications C; (¢ = 1,...,n)
in NCS.

Theorem IV.1. Given the NCS with n control applications
C;, i = 1,...,n and m non-control applications E;, i =
n+1,...,n+m, the upper bound of the network-accessing
delay for each control application C; as h;, all the control
applications are stable under CSS network scheduling scheme
when message transmission failure does not occur.

Proof: In CSS, the time slot length s in the time-triggered
network is chosen according to Eq.(13), hence we have

ns < min h;, (22)

ie{l,...,n}

Moreover, we give extra time slot to C; or E; only if the
constraint in Eq.(16) satisfies. If messages can always be trans-
mitted successfully in the network, every control application
C; can access the network at least once in any period with
length h; during the runtime. Since h; is chosen according
to Eq.(11), the stability of C; can be ensured according
to the proof of Theorem 2.15 in [13]. Therefore, CSS can
ensure the stability of the control applications in NCS without
considering the message transmission failure.]

If the message transmissions always succeed, from The-
orem IV.l we can see that CSS scheme can ensure the
stability of all the control applications even when workload
varies due to the existence of the non-control applications.
However, when message transmission fails randomly, CSS
scheme, as all of the network scheduling algorithms, cannot
ensure the stability of C; since the message transmission
failure is unpredictable and can happen frequently (i.e. the
extreme case is when all the message transmissions fail). When
message transmission failure happens in the network, CSS
scheme is a best-effort scheme that provides extra time slots
to those control applications with large error due to packet
dropout.

Lemma IV.2. Suppose in an NCS with n control applications

C;, i = 1,...,n and m non-control applications E;, i =

n+1,...,n 4+ m, the upper bound of the network-accessing

delay for C; is h;, and the maximum error e; of C; in any

interval with length h; can be strictly bounded by (3; € [0, c0).

Then, .CSShscheme can guarantee that for any time t > tg +
min i

L) s with ty as the beginning of the runtime and s

as the time slot length we have

n

>l <3 8

i=1

(23)

where [3; is set according to Eq.(26).

Proof: From Theorem IV.1 and Theorem II.1, CSS can
ensure the exponential stability of C;. Suppose the equilibrium

Algorithm 2 Working Principle of Local Scheduler in AP;

CurrentSlot = k
if acc = true then
AP; transmits message (Algorithm 1)

end if
if AP;.LS successfully receives msg?* then
if j > n then
{J is index of E;}
b=b+1[1,...,1]
else

{7 is index of C}}
if : = j&I = j then
{CurrentSiot is extra slot given to C;}
AP;.LS updates local variables:
bP) =b;, b =0, by = by + 1 for q # i.
else if i = j & I # j then
{CurrentSlot given to C; is not extra slot}
AP;.LS updates local variables:
I=1i,bP =b;, b =0.
else if i # j & I = j then
{CurrentSlot is extra slot given to C;}
AP;.LS updates local variables:
bj =0 and b, = b, + 1 for g # j.
else if i # j & I # j then
{CurrentSlot given to Cj is not extra slot}
AP;.LS updates local variables:
bj =0and I = j.
end if
end if
else
b=b+11,...,1].
end if
if AP, is control application then
if i =1 or’i = I then
AP;.LS checks condition D in Eq.(21)
if (Condition D satisfies and 7 = I)ll(Condition D does
not satisfy and ’é = I) then

acc = true
else
acc = false
end if
end if

else
if AP; activates now then
AP; checks stability constraint in Eq.(16)
if Eq.(16) satisfies then

acc = true
else
acc = false
end if
end if
end if

of x;(t) is 0, according to the definition of exponential
stability, there exist constant a, b such that

s (8)]| < allzi(to)|| e, Vt,to > 0. (24)

For any period [t,t + h;], according to Eq.(5) and Eq.(24),
the error of C; can be bounded by

lles(t)|| < (el — 1) [l (2)]|
LA)
A ellAdlhe — 1) ||z (to) |
We set the bound for e; during the time interval h; as ;,
A (B
Bi=a “ A,” (M = 1) (o) (26)
min h;

For any interval that contains time slots, the

length of the interval does not exceed {min h;, hence e; for
ie{l,....n
i =1,...,n during the interval does not exceed ;. Therefore,

min
ie{l,...,

for any ¢t > to—&—{
Eq.(23).
From Lemma IV.2 we can see CSS scheme can provide

bounded error of all C;. Note that Lemma IV.2 works when
there is no message transmission failure happens.

hi
i J s, we have the inequality in

V. PERFORMANCE EVALUATION

In this section, a three servo target tracking system is
designed to evaluate the performance of the CSS scheme.

A. Simulation Setup

In the network controlled system, there are three servos
designed to track a given trajectory r(t). The trajectory r(t) is
a square wave with amplitude 1m and changing period 1sec,

wo={ b 1<l

tell,2

In each servo control application, the servo’s states are trans-
mitted by the sensor to the controller through the network. The
servo control application has the state space function in Eq.(1),
and the (4;, B;, K;) as well as the closed-loop poles are given
in Table II. Note that the delay bound h; is not computed
from Eq.(11) but given according to the real performance
of each control application, since Eq.(11) tends to provide a
conservative delay bound that is sufficient for the stability but
is usually much smaller than the bound in the real case. Since
we want to test the target-tracking performance of the servo
control application, we use y;(t) = [1 0]z;(t) as the output of
each servo. We define the overall target-tracking error of the
three servos as f(¢), f(t) = Zle lyi(t) — r(t)|. The metric
for system performance is the average value of f(¢) during the
whole run time, denoted as average integration error (AIE),

27)

AIE = flt)de
The smaller the AIE, the better the scheduling scheme.
We use the dynamic TDMA plugin in TrueTime simula-
tor [15] to construct CSS to schedule applications in NCSs.
The network bandwidth is configured as 250 Kbps. The packet

1 Total Runtime
/ (28)

Total Runtime J,,

TABLE II: Configuration of the Three Servo Motors

B K; poles h;

0 1 0)
1 [0 1] 1000 [0.80 0.035] —18 £ 21.823 24

[1.67 0.045 | —34 + 36.661 16

5 0 1 0
0 —0.5 1500

[3.51 0.069 | —42 4 49.084% 20

3 0 1 0
h 0 —2 1200

size is 135 bits per packet, and the time slot s is set as 4msec.
Besides the three servo target-tracking control applications,
there is one non-control application in the NCS, which sends
real-time traffic aperiodically to the network. Moreover, the
NCS may suffer message transmission failure.

B. Performance of CSS under Dynamic Workload

We simulate the performance of CSS under dynamic work-
load. In our simulation, the probability that the non-control
application activates in each time slot, denoted by p, follows
a uniform distribution with mean E(p) € [0, 1]. Therefore,
changing E(p) will change the bandwidth utilization of the
non-control application during the runtime, hence change the
total bandwidth utilization of the three servo target-tracking
control applications. From Table II, we can compute the lower
bound of the bandwidth utlhzatlon for the three servo target-

~ 62%

according to Eq.(12). No scheduhng pohcy can work if the
non-control application takes more than 38% bandwidth. To
test the performance of the three control applications under
different bandwidth utilization, we run four times of simulation
and configure E(p) in the four runs as 0.1, 0.2, 0.3 and 0.38
respectively, resulting in the portion of bandwidth available
to the control applications as 90%, 80%, 70% and 62%
correspondingly. The output of the three servos and the target-
tracking error during the runtime in the four runs are shown
in Fig. 3. Table IIT gives the AIE of the NCS in the four
runs. With the decrease of the bandwidth utilization of the
control applications, the AIE of the NCS increases. The three
servos tracks the given trajectory 7(¢) with high accuracy
and low overshoot in the first three runs (the bandwidth
utilization is configured as 90% or 80% or 70%). However,
when the bandwidth utilization falls to 62%, the target tracking
performance of servo2 and servo3 are not ideal, and AIE
becomes larger than the values in the first three runs, but
CSS can still make the three control applications to be stable.
The experiment results shows the effectiveness of CSS for
scheduling applications in NCS under dynamic workload.

tracking control applications: Z u, = 55 t+15+ 30

C. Comparison between CSS and Static Cyclic Scheduling
under Message Transmission Failure

NCSs with time-triggered network may suffer message
transmission failure. We evaluate the performance of CSS
scheme and the static cyclic scheduling algorithm when the
message transmission failure happens in the network. The
static cyclic scheduling uses static TDMA with cyclic se-
quence to schedule the control applications, and each control
application is assigned only one time slot in a communication
cycle. Since the static cyclic scheduling can not handle the
dynamic workload from the non-control application, we deac-
tivate the non-control application to compare the performance

- SErvo 1
—servol
servo 3

T

=
in

=)
¢

R S

v

Output of Servos (m)
Qutput of Servos (m)
=
n

0.5 1 15 2
Time (sec)

0.5 1 1.5 2
Time (sec)

W
[

]
>

—

\

0.5 1 1.5 2
Time (sec)

(a) 90%

L

Overall Tracking Error (m)
Overall Tracking Error (m)

<
=

<
=

0.5 1 15 2
Time (sec)

(b) 80%

- SEIVo 1
—se1vo 2
servo 3

QOutput of Servos (m)

5 = h
in

Output of Servos {m)

J]%&u. P

0.3 1 15 2
Time (sec)

0.5 1 15 2
Time (sec)

5%

)

—

| L-ﬁ.
0 -
0 0.5 1 15 2
Time (m)

(d) 62%

=]

Overall Tracking Error (m)
Overall Tracking Error (m)

(=]

0.5 1 15 2
Time (sec)

(c) 70%

Fig. 3: The Output of Servos and The Overall Target-Tracking Error of CSS under Different Bandwidth Utilization

TABLE III: Average Integration Error (AIE) of CSS under
Different Bandwidth Utilization of the Control Applications

Bandwidth Utilization 90% 80% 70% 62%

AIE (m) 0.0898 0.0931 0.0969 0.2115

of CSS and the static cyclic scheduling. In our simulation,
the probability that the message transmission failure happens
in each time slot, denoted by ¢, follows a uniform distribu-
tion with mean E(q) € [0,1]. First, we configure E(q) as
15% and test the performance of CSS and the static cyclic
scheduling as shown in Fig.4(a). While CSS can provide a
small overall target-tracking error of the three servos, the static
cyclic scheduling cannot. The output of servo 2 deviates from
the target trajectory at around t¢=1sec when r(t) suddenly
changes from 1m to Om. To compare the performance of CSS
and the static cyclic scheduling under an intensive packet
dropout situation, we configure E(gq) as 30%. As shown in
Fig. 4(b), CSS can still provide the desired output, but the
static cyclic scheduling causes large target-tracking error of
servo2 and servo3 during the runtime. This is because servo2
and servo3 are more sensitive to the access delay and message
transmission failure, instead of scheduling them according to
the fixed sequence, CSS can flexibly add extra time slots
in each cycle to them. AIE of the CSS and static cyclic
scheduling under different message transmission probability
is given in Fig. 5. CSS provides a better system performance
with smaller control errors than the static cyclic scheduling
when message failure happens in the network.

VI. RELATED WORK

There is a large body of literature on scheduling of real-
time traffic within control networks. To be specific, Branicky et
al. [1] applied the rate monotonic scheduling (RMS) algorithm
to schedule a set of control applications in NCS. Ren et

CSS Scheme CSS Scheme

2 2
- servol | . mmeme servo 1
~ L5 5- —_
B — servo 2 E 15 servo 2
z 1 F'u&-r-w-,-,.r\ servo 3 PR C— servo 3
e r -
A 05); 3 705 L'
N 1 | S .k
E- 0 Lﬂ SR RS— g 0 &' PSP
= =
O .05 Y05
-1 -1
0 0.5 1 15 2 0 0% 1 15 2
Time (sec) Time (sec)
Static Cyclic Scheduling Static Cyclic Scheduling
2 2
------ servo 1 . ===eservo 1
5 15 — ervo 2 E ! —serve 2
g Lot mm = mm servo 3 EIRY | e servo 3
v 1 E by
805, a
€ 4 X) N1 —
z 0 e i i
= =
205 | 3 |
-1 -1
0 0.5 1 L5 2 0 0.5 1 15 2
Time (sec) Time (sec)
(a) 15% (b) 30%

Fig. 4: Performance of CSS and Static Cyclic Scheduling
under Different Message Transmission Failure Probability

B (CSS Scheme 20106
B Static Cyclic Scheduling

1.1635

Average Integration Error (m)

0.1061 0.1072

15% 30%
Message Transmission Failure Probability

Fig. 5: Average Integration Error (AIE) under Different Mes-
sage Transmission Failure Probability

al. [16] provided a QoS management scheme for parallel
NCSs. Hong [17] proposed a scheduling algorithm to adjust
the data sampling time so that the performance requirement of
each control loop is satisfied while the utilization of network
resource is significantly increased. Later, an extension of this
algorithm for the bandwidth allocation applicable to the CAN
protocol was provided in [18], which can satisfy the perfor-
mance requirements of real-time application systems and fully
utilize the bandwidth of CAN. Rehbinder and Sanfridson [19]
provided an optimal off-line scheduling method by leveraging
the control theory. However, these algorithms are static without
considering the workload variation.

Many researchers proposed dynamic methods for co-design
of network scheduling and control applications. For example,
Walsh and Ye [3] presented a dynamic arbitration technique to
grant network access to the control loop with the highest error
using maximum-error-first with try-once-discard (MEF-TOD).
Yepez et al. [4] provided a large error first (LEF) scheduling
algorithm based on the continuous feedback from the QoC
of the control applications. Similar to [4], Xia et al. [5]
proposed a scheduling algorithm based on the importance of
each control application. However, these dynamic scheduling
algorithms in [3]-[5] need a centralized scheduler to make the
schedule decision and focus on the priority-based network like
CAN.

Dynamic TDMA like the conditional static scheduling [6],
[20] was proposed to schedule the dynamic workload in
embedded systems with time-triggered network. How to apply
the dynamic TDMA to schedule the applications in NCSs and
provide stability guarantees is not addressed. In this paper,
we apply the conditional state-based scheduling to schedule
applications NCSs and propose CSS scheme. CSS target at
the time-triggered network and use a distributed agreement to
schedule multiple applications in NCS.

VII. CONCLUSION

To handle workload variation in NCS, we provide a novel
scheduling scheme, CSS, to dynamically allocate the network
resource among all the control and non-control applications.
CSS aims at the time-triggered network, and it is a condi-
tional state-based scheduling scheme that can make on-the-
fly changes to the pre-defined scheduling sequence. CSS uses
the distributed consensus to make the schedule decisions,
where each application in NCSs has the local scheduler to
decide whether the transmission components in the application
can use the network or not in each time slot. The schedule
decisions should be made to improve the overall performance
of an NCS and at the same time ensure the stability of
all the control applications in the network. Algorithm and
message communication principles are designed to ensure the
consistency of the local schedule decisions. A servo target
tracking system is simulated to evaluate the proposed schedul-
ing scheme. Simulation results demonstrate the advantages and
applicability of CSS in networked control systems.

ACKNOWLEDEMENTS.

This work was supported in part by NSERC DG 341823-
07, NSERC DG 357121-2008, FQRNT grant 2010-NC-
131844, ORF-RE03-045, ORF-RE(04-036, ORF-RE04-039,

APCPJ 386797-09, CFI Leaders Opportunity Fund 23090,
CFI 20314 and CMC, ISOP IS09-06-037, and the industrial
partners associated with these projects.

REFERENCES

[1] M. Branicky, S. Phillips, and W. Zhang, “Scheduling and Feedback Co-
Design for Networked Control Systems,” in Proceedings of the 41st
IEEE Conference on Decision and Control, vol. 2, pp. 1211-1217, 2002.

[2] P. Marti, A. Camacho, M. Velasco, and M. El Mongi Ben Gaid,
“Runtime Allocation of Optional Control Jobs to a Set of CAN-
Based Networked Control Systems,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 4, pp. 503-520, 2010.

[3] G. Walsh and H. Ye, “Scheduling of Networked control Systems,” [EEE
Control Systems Magazine, vol. 21, no. 1, pp. 57-65, 2001.

[4] J. Yépez, P. Marti, and J. Fuertes, “Control Loop Scheduling Paradigm
in Distributed Control Systems,” in Proceedings of the 29th Annual
Conference of the IEEE Industrial Electronics Society (IECON), vol. 2,
pp. 1441-1446, 2003.

[5] F. Xia, X. Dai, Z. Wang, and Y. Sun, “Feedback Based Network Schedul-
ing of Networked Control Systems,” in Proceedings of International
Conference on Control and Automation(ICCA), pp. 1231-1236,2005.

[6] K. Schmidt and E. Schmidt, “Systematic Message Schedule Construction
for Time-Triggered CAN,” IEEE Transactions on Vehicular Technology,
vol. 56, no. 6, pp. 3431-3441, nov. 2007.

[7]1 A. Ghosal, H. Zeng, M. Di Natale, and Y. Ben-Haim, “Computing Ro-
bustness of FlexRay Schedules to Uncertainties in Design Parameters,”
in Design, Automation Test in Europe Conference Exhibition (DATE’10),
march 2010, pp. 550-555.

[8] H. Zeng, M. Di Natale, A. Ghosal, and A. Sangiovanni-Vincentelli,
“Schedule Optimization of Time-Triggered Systems Communicating
Over the FlexRay Static Segment,” IEEE Transactions on Industrial
Informatics, vol. 7, no. 1, pp. 1-17,2011.

[9] S. Fischmeister, R. Trausmuth, and I. Lee, “Hardware Acceleration

for Conditional State-Based Communication Scheduling on Real-Time

Ethernet,” IEEE Transactions on Industrial Informatics,, vol. 5, no. 3,

pp. 325-337, 2009.

P. Pop, P. Eles, and Z. Peng, “Performance Estimation for Embedded

Systems with Data and Control Dependencies,” in Proceedings of the

Eighth International Workshop on Hardware/Software Codesign,, 2000,

pp. 62-66.

S. Fischmeister, O. Sokolsky, and I. Lee, “A Verifiable Language for Pro-

gramming Real-Time Communication Schedules,” IEEE Transactions on

Computers,, vol. 56, no. 11, pp. 1505-1519, 2007.

R. Alur and G. Weiss, “Regular Specifications of Resource Requirements

for Embedded Control Software,” in IEEE Real-Time and Embedded

Technology and Applications Symposium, 2008, pp. 159-168.

W. Zhang, “Stability Analysis of Networked Control Systems,” Ph.D.

dissertation, Electrical Engineering and Computer Science, Case Western

Reserve University. http://dora.cwru.edu/msb/pubs/wxzPHD.pdf, May

2001.

W. Zhang, M. Branicky, and S. Phillips, “Stability of Networked Control

Systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 84-99,

2001.

D. Henriksson, A. Cervin, and K. Arzén, “TrueTime: Simulation of

Control Loops under Shared Computer Resources,” in Proceedings of

the 15th IFAC World Congress on Automatic Control. Barcelona, Spain,

2002.

X. Ren, S. Li, Z. Wang, M. Yuan, and Y. Sun, “A QoS Management

Scheme for Paralleled Networked Control Systems with CAN Bus,”

in Proceedings of the 29th Annual Conference of the IEEE Industrial

Electronics Society (IECON), vol. 1, pp. 842-847, 2004.

S. Hong, “Scheduling Algorithm of Data Sampling Times in the In-

tegrated Communication and Control Systems,” IEEE Transactions on

Control Systems Technology, vol. 3, no. 2, pp. 225-230, 1995.

S. Hong and W. Kim, “Bandwidth Allocation Scheme in CAN Protocol,”

IEEE Proceedings Control Theory and Applications, vol. 147, no. 1, pp.

37-44, 2000.

H. Rehbinder and M. Sanfridson, “Integration of Off-Line Scheduling

and Optimal Control,” in Proceedings of the 12th Euromicro Conference

on Real-Time Systems, vol. 1, pp. 137-143, 2000.

U. Keskin, “Time-Triggered Controller Area Network (TTCAN) Com-

munication Scheduling: A Systematic Approach,” Ph.D. dissertation,

Middle East Technical University, 2008.

[10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

