Runtime Monitoring of Time-sensitive Systems
[Tutorial Supplement]

Borzoo Bonakdarpour and Sebastian Fischmeister

University of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada, N2L 3G1
Email:borzoo@cs.uwaterloo.ca and sfischme@uwaterloo.ca

Abstract. This tutorial focuses on issues involved in runtime monitor-
ing of time-sensitive systems, where violation of timing constraints are
undesired. Our goal is to describe the challenges in instrumenting, mea-
suring, and monitoring such systems and present our solutions developed
in the past few years to deal with these challenges. The tutorial consists
of two parts. First, we present challenge problems and corresponding so-
lutions on instrumenting real-time systems so that timing constraints of
the system are respected. The second part of the tutorial will focus on
time-triggered runtime monitoring, where a monitor is invoked at equal
time intervals, allowing designers to schedule regular and monitoring
tasks hand-in-hand.

1 Overview of Tutorial

In computing systems, correctness refers to the assertion that a system sat-
isfies its specification. Verification is a technique for checking such an asser-
tion and runtime verification refers to a lightweight technique where a monitor
checks at run time whether the execution of a system under inspection sat-
isfies or violates a given correctness property. Deploying runtime verification
involves instrumenting the program under inspection, so that upon occurrence
of events (e.g., value changes of a variable) that may change the truthfulness of
a property, the monitor will be called to re-evaluate the property. We call this
method event-triggered runtime verification, because each change prompts a re-
evaluation. Event-triggered runtime verification suffers from two drawbacks: (1)
unpredictable overhead, and (2) possible bursts of events at run time.

The above defects are undesired in the context of real-time embedded sys-
tems, where predictability and timing constraints play a central role. This tuto-
rial focuses on describing our solutions to two challenge problems:

— Time-aware instrumentation. Instrumentation is a technique to extract
information or trigger events in programs under inspection. Instrumentation
is a vital step for enabling system monitoring; i.e. the system is augmented
with instructions that invokes a monitor when certain events occur. Instru-
mentation of software programs while preserving logical correctness is an

established field. However, current approaches are inadequate for real-time
embedded applications. The key idea behind the time-aware instrumentation
of a system is to transform the execution-time distribution of the system so
as to maximize the coverage of the trace while always staying within the
time budget.

— Time-triggered monitoring. In time-triggered runtime verification, a
monitor runs in parallel with the program and samples the program state
periodically to evaluate a set of system properties. The main challenge in
time-triggered runtime verification is to guarantee accurate program state
reconstruction at sampling time. Providing such guarantee results in solving
an an optimization problem where the objective is to find the minimum
number of critical events that need to be buffered for a given sampling period.
Consequently, the time-triggered monitor can successfully reconstruct the
state of the program between two successive samples.

This tutorial will discuss in detail our techniques developed in the past few
years while exploring time-aware instrumentation and time-triggered monitoring.
In Section 2, we introduce the problem of timing in real-time embedded systems.
Section 3 is dedicated to our techniques on time-aware instrumentation. Time-
triggered runtime monitoring is discussed in Section 4. Finally, we present a set
of future research directions in Section 5.

2 Real-time Embedded Software Primer

Embedded software is the essence of our modern computerized standard of liv-
ing. It is omnipresent and controls everything from everyday consumer products
such as microwaves and digital cameras to large systems for factory automa-
tion, aircraft, and automotive applications. Software enables devices that make
life more pleasant (i.e., adaptive cruise control in cars), more acceptable (i.e.,
implanted insulin infusion pumps), or even possible (i.e., implanted pacemakers
and defibrillators). Many companies define innovation in their products through
adding new features implemented in software, thus future systems will contain
more complex and larger portions of software. For example, the next generation
automobile is a highly distributed system expected to run several million lines
of code [3].

A special class of embedded software is real-time embedded software. A real-
time application is time sensitive and this generally means that delivering a cor-
rect value at the wrong point in time—especially too late—can still cause service
failures. Thus a real-time system must work correctly in the logic and timing
domain. Examples of such system span almost all domains of embedded soft-
ware including consumer devices (e.g., video decoders), avionics platforms (e.g.,
flight control in autopilots), automotive (e.g., distance measurement in adaptive
cruise control), medical devices (e.g., pacemakers), finance (e.g., high-frequency
trading), communications (e.g., software-defined radio), and space (e.g., thrust
control).

Table 1 shows the relationship between timing, logic, and correctness of a
real-time application for two basic classes. Naturally, more classes have been de-
fined over time. These additional classes refine and extend some of the properties
such as firm real-time constraints [13] and imprecise computation [14]. Soft real-
time applications have soft timing constraints. This means that if the application
sometimes misses deadlines, the application will still function. A typical example
of such an application is video decoding; dropping a frame sometimes will remain
unnoticed by the viewer, however, frequent drops in frames will degrade the ex-
perience. The threshold for an acceptable number of missed deadlines depends
on the application. Hard real-time applications have hard timing constraints.
Missing a single deadline can result in an error in the system. Typical appli-
cations for this domain are safety-critical systems like a shutdown routine in a
nuclear power station, flight surface control while piloting airplanes, and pacing
control in a heart pacemaker. Obviously, such hard real-time systems require
meticulous control of system resources and execution to guarantee proper sys-
tem functioning and ultimately system safety. Hence, such control is also the
main focus of research on real-time systems.

Soft RT Hard RT
On time | Too late || On Time | Too late
‘Wrong value Error Error Error Error
Right value Ok Maybe ok Ok Error

Table 1. Real-time system classification.

Reduction in complexity through limiting the programming languages is one
approach to provide better control of resources, execution, and timing. With this
goal in mind, several standards on developing safety-critical and real-time em-
bedded systems have emerged over the years. They find use in different domains.
For example MISRA C [12] provides coding guidelines and reduces the com-
plexity of C code by forbidding, for instance, recursion, unbounded loops, and
dynamic memory allocation. The automotive and other industries use MISRA
C. Ravenscar [5] and SPARK [2] address similar issues for the Ada programming
language. The RTCA/DO 178B [16] specifies guidelines for developing safety-
critical software systems for the avionics domain. The standard touches major
topics of the software development cycle and specifies required documentation for
different activities. Other domains, like the nuclear domain, have similar stan-
dards. Such standards are relevant as they define classes of systems to which
solutions can be tailored to. For example, while static analysis is impractical in
the general case, the limited use of pointers in MISRA C compliant code permits
subjecting such programs to static analysis.

Another popular approach to handling resources, execution, and timing is to
follow a time-triggered approach. In these approaches, time is split into small

slices. The system scheduler assigns resource users mutually exclusive access to
the resource based on these slices. For example, the time-triggered approach for
task scheduling is round robin scheduling. The scheduler assigns one slice of pro-
cessor time to one process at a time. In communication, Time Division Multiple
Access (TDMA) implements a time-triggered approach to limit concurrent access
to the shared communication medium. In safety-critical applications, sometimes
the developer creates the time-triggered schedule by laying out the time line and
determining when which process gets to compute and communicate, so all opera-
tions meet their timing deadlines. One advantage of the time-triggered approach
is its determinism and thus predictable operation. Time-triggered approaches
make operational decisions solely based on a clock. Controlling the clock means
controlling all aspects in the system that get derived from that clock. This single
source for controlling operations is attractive, because it reduces operational de-
pendencies and thus reduces complexity. Naturally, event-triggered approaches
also offer benefits and picking one over the other is a complicated matter and a
lasting debate [10].

3 Time-aware Instrumentation

Instrumentation of software programs while preserving logical correctness is
an established field. Developers instrument programs for tasks including pro-
filing, testing, debugging, tracing, and monitoring the software systems (e.g.,
for runtime verification). Today several approaches to instrument software while
preserving logical correctness exist and in the tutorial, we will briefly discuss
the most relevant works including manual instrumentation, static instrumenta-
tion frameworks, dynamic instrumentation with binary rewriting, and hardware-
based approaches. However, current approaches are inadequate for real-time em-
bedded applications.

The key idea behind the time-aware instrumentation of a system is to trans-
form the execution-time distribution of the system so as to maximize the coverage
of the trace while always staying within the time budget. Our notion of coverage
implies that the instrumentation will provide useful data over longer periods of
tracing. A time-aware instrumentation injects code, potentially extending the
execution time on all paths, while ensuring that no path takes longer than the
specified time budget.

The time budget is the worst-case execution time of a function without vi-
olating a specification. In hard real-time systems, the time budget can be the
longest execution time without missing any deadline, and depending on the
longest execution time of the non-instrumented version, more or less time will
be available for the instrumentation. In systems without deadlines, the time
budget can be the current maximum execution time plus a specified non-zero
maximum overhead for tracing to the current maximum execution time.

Figure 1 shows the expected consequences of time-aware instrumentation in a
hard real-time application on the execution time profile (i.e., the probability den-
sity function on the execution time). The z-axis specifies the execution time of

the function, while the y-axis indicates the frequency of the particular execution
time. The original uninstrumented code has some arbitrary density function. We
have chosen the Gaussian distribution for this example for illustrative purposes;
Li et al. provide details from empirical observations of distribution functions [11].
The distribution for the instrumented version differs from the original one. It is
shifted towards the right, but still never passes the deadline. This shift occurs be-
cause time-aware instrumentation adds to paths, increasing their running times,
but ensures that execution times never exceed the deadline.

Note that our execution-time model concentrates on the overhead involved
in acquiring data. A related problem is to transport the collected data from the
embedded system to an external analysis unit. While that problem admits many
solutions, one common solution is to piggyback the buffer information onto serial
or network communication.

Original Instrumented
code code

Probability

Deadline

Fig. 1. Execution-time distribution for a code block before and after time-aware in-
strumentation showing the shift in the expected execution time.

The implementation challenge is to efficiently realize this right shift in the
execution time profile without exceeding the deadline. This requires answers to
several questions: where to instrument, what to instrument, and how to instru-
ment? We worked on both, a software- and a hardware-based solution.

3.1 Basic Overview [7,8]

We propose the following instrumentation stages:

— Source analysis: The source-code analyzer breaks the functions into basic
blocks and generates a call graph. The analyzer also presents a list of vari-
ables which are assigned in these basic blocks and the developer can choose
a subset of these variables to trace. For hard real-time applications, the an-
alyzer annotates the call graph using execution time information obtained
through static analysis or measurements [17].

Naive instrumentation: Using the control-flow graph, the execution times
of the basic blocks, and the input variables for the trace, we inject code into
the selected function at all instrumentation points.

— Enforce time budget: If the naive instrumentation exceeds the time bud-
get, we use an optimization technique to compute an instrumentation which
does respect the time budget while maximizing the coverage of the instru-
mentation.

— Minimize code size: If the instrumentation is reliable enough, then we

apply semantics-preserving, decreasing transformations to reduce the size of

the instrumented code.

Collect traces: The developer finally recompiles and executes the instru-

mented program.

Figure 2 shows the workflow that results from the steps. To instrument a
function, we start by picking the function of interest. We then use the assembly
analyzer to extract the control flow graph and break the function into execution
paths. In the first phase, we use a tool to instrument all variables of interest and
then check whether the execution time on the worst-case path has changed. If it
has changed, then we will use integer linear programming to lower the coverage of
the instrumentation so that it meets the timing requirements. If the coverage is
too low, then we can either give up, if we cannot extend the time budget available
for the function and the instrumentation; or extend the time budget, which
will allow for higher-coverage instrumentations. If the optimized instrumentation
meets the required coverage, or if the initial naive instrumentation does not
extend the worst-case path, then we will proceed and use the identified execution
paths to minimize the required code size. Afterwards, we can recompile the
program and collect the desired traces from the instrumentation.

3.2 Case Study: Flash File System

We investigated an implementation of a wear-levelling FAT-like filesystem for
flash devices [4]. The code was originally written by Hein de Kock for 8051
processors. We slightly modified the original implementation so that it would
compile with sdcc; in particular, we needed to modify the header files to get
the code to compile. The implementation consists of about 3000 non-blank, non-
comment lines of C code. We ran our tool on 30 functions from the fs.c file,
dropping some uninteresting functions with mostly straight-line control-flow. Of
the 30 functions, 4 functions had more than 100 basic blocks, and fclose had
200 basic blocks. For this case study, we also assume that the time budget is the
execution time of the longest running path in the function and no interrupts.

Measurements Figure 3 compares density functions for four procedures in the
filesystem implementation, both before and after instrumentation. The solid blue
line represents the density function of the original procedures, while the dashed
red line represents the density function for the instrumented versions. Each of

Select function
Collect
Analyze traces
source

Insufficient
coverage

Extend
time budget

No more slack

Cannot satisfy
constraints

Fig. 2. Workflow of applying time-aware instrumentation.

this figures clearly shows that the original idea underlying our method of time-
aware instrumentation, as outlined in Figure 1, works well.

The procedure fsetpos shown in Figure 3(b) exhibits the biggest difference be-
tween instrumented and non-instrumented versions. The reason is that although
this procedure contains many assignments spread across different paths, most
assignments do not lie on the worst-case path. The instrumentation engine can
therefore capture assignments along these non-critical paths, raising their execu-
tion time and putting them closer to the execution time of the worst-case path.
Since the engine can capture assignments on many paths, the density function
of the execution time for the instrumented version shows a large increase on the
right part of the figure, along with a steep decrease on the left part of the figure.

The procedure rename shown in Figure 3(d) demonstrates that sometimes
the developer might want to add time to the budget for instrumenting to enable
the instrumentation of the worst-case path. Figure 4 shows that even with a
small increase in the time budget, the coverage can increase significantly. Fig-
ure 3 shows the function fputs without any additional increase in the time bud-
get, Figure 4(a) shows the function with an extra budget of three assignments,
and Figure 4(c) shows the function with an extra budget of 15 assignments.
Figure 4(d) summarizes how instrumenting fputs improves as we add more time
to the time budget for the instrumentation.

Instrumentation of fclose (0=0, r=0.13554) Instrumentation of fsetpos (0=0, r=0.11653)

0.012
0.07 4

0.010- 0.06

0.008 0.05+

0.04

0.006 - Base

V‘ Base

Hinstr ! Instr

Probability
Probability

0.004 -

0.002+

0.000 -

| | v v |
300 350 400 235 240 245 250 255
Execution time Execution time

Instrumentation of fs_remove_file_chain (0=0, r=0.15728) Instrumentation of rename (0=0, r=0.086081)

0.014 0.007 -

0.006 -
0.005+
0.004 -

[/]Base

0.003+ [instr

Probability
Probability

0.002 -

0.001+

0.000 +

v ' ' v v
9 100 110 120 130 140 150 100 120 140 160 180
Execution time Execution time

Fig. 3. Examples in instrumenting functions in the filesystem implementation.

4 Time-triggered Runtime Monitoring

Most monitoring approaches in runtime verification are event-triggered, where
the occurrence of every new event (e.g., change of value of a variable) invokes the
monitor. This constant invocation of the monitor leads to unpredictable overhead
and bursts of new events at run time. These defects can cause serious issues at
run time especially in embedded safety/mission-critical systems. Time-triggered
monitoring aims at tackling these drawbacks. Specifically, a time-triggered moni-
tor runs in parallel with the program and samples the program state periodically
to evaluate a set of properties.

The second part of the tutorial will focus on two methods: time-triggered
path monitoring [6] and time-triggered runtime verification [1]. In both methods,
the monitor has to execute at the speed of shortest best-case execution time
of branching statements. This ensures that the monitor does not overlook any
property violations and can reconstruct the execution path at each sampling
point. However, executing the monitor at the speed of best-case execution time
results in high involvement of the monitor in execution of the system under
inspection.

In this section, we review two techniques for sampling-based execution mon-
itoring [6] and runtime verification [1] in Subsections 4.1 and 4.2, respectively.
Both methods employ the notion of control-flow graphs (CFG) in order to reason
about program execution and its timing characteristics.

Instrumentation of fputs (0=0, r=0.21667) Instrumentation of fputs (0=3, r=0.63258)

0.015+ 0.015

0.010 0.010

[7]ssse

[instr

[7]sse

[nstr

Probability
Probability

0.005+ 0.005 -

0.000 -

0.000 -

| | | |
20 30 40 50 60 20 30 40 50 60

Execution time Execution time

(a) Without increased time budget. (b) With a three assignments added to
the time budget.

Instrumentation of fputs (0=10, r=0.9697) Increase in Coverage of Logging fputs
10+ E-E-am--n
0015 e
N
o 087
£ .
> 0010 :] L
= { = "
3 Dome 5 00
[L] Instr g {
% 0,005 o g e
3 04 P
0.000 «
2 30 4o 50 60 70 2 4 6 8 10 12 14 16
Execution time Added time budget
(c) With a 15 assignments added to the (d) Increase in coverage.

time budget.

Fig. 4. Examples of increasing the coverage by increasing the time budget.

Definition 1. The control-flow graph of a program P is a weighted directed
simple graph CFGp = (V,v°, A, w), where:

— V:is a set of vertices, each representing a basic block of P. Fach basic block
consists of a sequence of instructions in P.

— 00: is the initial vertex with indegree 0, which represents the initial basic
block of P.

— A:is a set of arcs (u,v), where u,v € V. An arc (u,v) exists in A, if and
only if the execution of basic block u can immediately lead to the execution
of basic block v.

— w: 18 a function w: A = N, which defines a weight for each arc in A. The
weight of an arc is the best-case execution time (BCET) of the source basic
block. ad

For example, Figure 5(a) shows a simple C program with three basic blocks
labeled A, B, and C' and Figure 5(b)(i) shows the resulting control-flow graph.

4.1 Sampling-based Execution Monitoring [6]

In execution monitoring, the objective is to take periodic samples such that the
monitor can re-construct execution paths. To this end, the monitor has to execute

/Z s, B—A :
@ A j Reaching A
j AN C— A at SP =2

e] 00O @

B: X++;

goto A /% BiA/BiA

No—a Reaching A

: < /
clee | @ inc(m;) A \ with my =1

c: x == 10; 4 /B A = gp =4
to A;) At
! goto (111) @ (IV) C A \C,i v
(a) A simple C pro- (b) Example of a single instrumentation to extend SP.

gram.

Fig. 5. Sampling-based monitoring.

at the speed of shortest best-case execution time of branching statements. For
example, in Figure 5(b)(i) the monitor needs to execute at the speed of shortest
best-case execution time of A+ B or A+ C; otherwise, the re-construction of the
execution path will not be possible. Figure 5(b)(ii) shows the timing diagram for
the example. It demonstrates that, assuming all basic blocks take an execution
time of 1 time unit, after two time units, it will be impossible to decide whether
the program took the path A —+ B — A or A — C — A. Thereby the sampling
period for the program needs to be SP = 2.

To increase the sampling period and, hence, decrease the involvement of the
monitor, we introduce markers to the program. A marker is a simple variable
that can be manipulated in basic blocks to distinguish different paths and, hence,
resulting in a larger sampling period. In our example, we introduce marker m4
and instrument vertex C (see Figure 5(b)(iii)). Vertex C' manipulates the value
of marker my by incrementing it. Thus, the monitor can re-store the basic block
id (vertex A, B, or C), the current value of mj, and a time stamp. The tim-
ing diagram in Figure 5(b)(iv) shows that introducing the marker increases the
sampling period to SP = 4, because only after five time units will the program
have two or more paths with the same number of increments of m; and the same

basic block ids.

4.2 Sampling-based Runtime Verification [1]

Let P be a program and II be a logical property (e.g., in LTL), where P is
expected to satisfy II. Let Vi denote the set of variables that participate in
II. In our idea of sampling-based runtime verification, the monitor reads the
value of variables in Vi and evaluates II. The main challenge in this mechanism
is accurate re-construction of the state of P between two samples; i.e., if the
value of a variable in V changes more than once between two samples, the
monitor may fail to detect violations of II. For instance, in the program of

10

Figure 5(a), if we are to verify the property II = —5 < & < 5, then the monitor
requires a fresh value of variable x without overlooking any changes. Thus the
sampling period for the program needs to be SP = 2. Notice that although
there are similarities, execution monitoring and runtime verification focus on
different issues: the former concentrates on execution paths and the latter on
state variable changes.

To increase the sampling period, we introduce history variables to the pro-
gram. For example, in Figure 5(a), we introduce history variables x1 and x2 and
add instrumentation instructions x1 := x and x2 := x to basic blocks B and
C, respectively. Thus, if the execution of each instrumentation instruction takes
1 time unit, then we can increase the sampling period to SP = 5. This is due to
the fact that only after six time units the value of x1 or x2 will be over written.
Thus, sampling period SP = 5 allows the monitor to fully re-construct the state
of the program using history variables when it takes a sample.

The above example shows how one can take advantage of memory to in-
crease the sampling period of a time-triggered monitor and, hence, impose less
overheard on the system. However, there is a tradeoff between the amount of
auxiliary memory the system uses at run time and the sampling period. Ideally,
we want to maximize the sampling period and minimize the number of history
variables. In [1], we showed that this optimization problem is NP-complete.

There are two general approaches to tackle the exponential complexity: (1)
mapping our problem to an existing NP-complete problem for which powerful
solvers exist (e.g., the Boolean satisfiability problem and integer linear program-
ming), and (2) devising efficient heuristics. The first approach (explored in [1])
involves transforming our optimization problem to integer linear programming
(ILP). We now discuss the results of our experiments using this approach. Con-
sider the Blowfish benchmark from the MiBench [9] benchmark suite. This pro-
gram has 745 lines of code, which results in a CFG of 169 vertices and 213 arcs.
We take 20 variables for monitoring. We consider the following different settings
for our experiments:

— Event-based: gdb extracts the new value of variables of interest whenever
they get changed throughout the program execution.

— Time-triggered with no history: gdb is invoked every MSP time units
to extract the value of all the variables of interest.

— Sampling-based with history: This setting incorporates our ILP opti-
mization. Thus, whenever gdb is invoked, it extracts the value of variables
of interest as well as the history.

In the event-based setting (see Figure 6), since the monitor interrupts the
program execution irregularly, unequal bursts in the overhead can be seen. More-
over, the overhead caused by each data extraction is proportional to the data
type. Hence, the data extraction overhead varies considerably from one interrup-
tion to another. Thus, the monitor introduces probe-effects, which in turn may
create unpredictable and even incorrect behaviour. This anomaly is, in particu-
lar, unacceptable for real-time embedded and mission-critical systems.

11

On the contrary, since the time-triggered monitor interrupts the program
execution on a regular basis, the overhead introduced by data extraction is not
subject to any bursts and, hence, remains consistent and bounded (see Figure
6). Consequently, the monitored program exhibits a predictable behaviour. Ob-
viously, the time-triggered monitor may potentially increase the overhead, which
extends the overall execution time. Nonetheless, in many commonly considered
applications, designers prefer predictability at the cost of larger overhead.

Figure 6 show the results of our experiments for sampling period of 50 MSP.
As can be seen, increasing the sampling period results in larger overhead. This
is because the monitor needs to read a larger amount of data formed by the
history. However, the increase in overhead is considerably small (less than twice
the original overhead). Having said that, the other side of the coin is that by
increasing the sampling period, the program is subject to less monitoring inter-
rupts. This results in significant decrease in the overall execution time of the
programs. This is indeed advantageous for monitoring hard real-time programs.
Although adding history causes variability in data extraction overhead, the sys-
tem behavior is still highly predictable as compared to the event-based setting.
The above observations are valid for the case, where we increase the sampling
period by 100 * MSP as well (see Figures 7).

The tradeoff between execution time and the added memory consumption
when the sampling period is increased is shown in Figure 8. As can be seen, as
we increase the sampling period, the system requires negligible extra memory.
Also, one can clearly observe the proportion of increase in memory usage versus
the reduction in the execution time. In other words, by employing small amount
of auxiliary memory, one can achieve considerable speedups.

0.5 T T T.5] T
P e L VT
0.45 ﬁ# #wﬁ#ﬂ g ﬁ#i i Ji# i ﬁﬁﬁﬂ? e
04 | -
§ 0.35 —_ »
g 0.3 N]
& A
-GEJ 0.25 - —
[
>
3

0.05 | | | | | | | |

0 0.5 1 1.5 2 25 3 3.5 4 4.5
Execution Time (Sec)

sampling-based with no history o
event-based 4
sampling-based with 50x MSP +

Fig. 6. Experimental results for Blowfish (50 * MSP sampling period).

12

0.

0.

Overhead (MSec)

Fig. 7.

Although
problem and

0.

7 T T T T T T T T

B fo bt b e e 4 et 7]
[+ R T T FET T+ T e

5_ —

0 1 1 1 1 L 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5
Execution Time (Sec)
sampling-based with no history °
event-based 4
sampling-based with 100x MSP ~ +
Experimental results for Blowfish (100 x MSP sampling period).

the ILP-based approach always finds the optimal solution to our
one can use state-of-the-art ILP-solvers, it cannot deal with huge

programs due to the worst-case exponential complexity. For such cases alterna-
tive approaches that find near-optimal solutions are proposed in [15].

Execution Time (Sec)

4.3
4.2

4.1

3.9
3.8

3.7y

3.6

Sampling Type

Fig. 8. Memory usage vs. execution time Blowfish.

13

5 Open Problems

We believe our work on instrumentation and runtime verification of real-time
systems has paved the way for numerous future research directions. Interesting
open problems include the following;:

— Multicore monitors. Since in time-triggered runtime verification, the
monitor reads a sequence of events in a batch, it can dispatch the events to
parallel monitors working on different cores. In particular, our system setting
is such that the CPU runs the program under inspection and the GPU runs
monitoring parallel tasks. This setting encounters challenging problems, as
buffered events may be causally related, making evaluations of temporal
properties a difficult task.

— Monitoring distributed real-time systems. Implementing distributed
real-time systems has always been a challenge for obvious reasons such as
clock drifts. Deploying time-triggered monitors involves several research chal-
lenges such as developing techniques for precise state reconstruction in a
distributed fashion.

— Overhead minimization. As discussed in Section 4, although our ap-
proach results in a obtaining a predictable, its overall overhead is higher than
event-triggered approaches. We need breakthroughs to reduce the overhead
of time-triggered monitors. One approach is to develop efficient heuristics
that find nearly optimal solutions to the optimization problem proposed
in [1].

— Applicability to broader classes of systems. The current work makes
some assumptions that hold only in specific classes of systems (e.g., MISRA C
compliant programs). A challenging problem is to find ways how to eliminate
some of the assumptions that tie the approach to particular classes and thus
make the approach applicable for new domains. This also applies when stay-
ing within the domain of real-time systems, as for example mixed-criticality
systems offer interesting applications that need runtime monitoring.

6 Acknowledgement

The research leading to this tutorial was supported in part by NSERC DG
357121-2008, ORF RE03-045, ORE RE04-036, ORF-RE04-039, ISOP 1S09-06-
037, APCPJ 386797-09, and CFI 20314 with CMC.

References

1. B. Bonakdarpour, S. Navabpour, and S. Fischmeister. Sampling-based runtime
verification. In Formal Methods (FM), pages 88-102, 2011.

2. B. Carré and J. Garnsworthy. SPARK—an annotated Ada subset for safety-critical
programming. In Proceedings of the Conference on TRI-ADA, pages 392402, New
York, NY, USA, 1990. ACM.

14

w

10.

11.

12.
13.
14.

15.

16.

17.

R. N. Charette. This Car Runs on Code. IEEE Spectrum, 2009.

H. de Kock. small-ffs. http://http://code.google.com/p/small-£ffs, September
2009.

B. Dobbing and A. Burns. The Ravenscar Tasking Profile for High Integrity Real-
time Programs. In Proceedings of the 1998 annual ACM SIGAda international
conference on Ada (SIGAda), pages 1-6, New York, NY, USA, 1998. ACM.

S. Fischmeister and Y. Ba. Sampling-based Program Execution Monitoring. In
ACM International conference on Languages, compilers, and tools for embedded
systems (LCTES), pages 133-142, 2010.

S. Fischmeister and P. Lam. On Time-Aware Instrumentation of Programs. In Pro-
ceedings of the 15th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 305-314, San Fransisco, United States, Apr. 2009.

S. Fischmeister and P. Lam. Time-aware Instrumentation of Embedded Software.
IEEE Transactions on Industrial Informatics, 2010.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. MiBench: A free, commercially representative embedded benchmark suite.
In IEEE International Workshop on In Workload Characterization (WWC), pages
3-14, 2001.

H. Kopetz. Event-Triggered Versus Time-Triggered Real-Time Systems. In Pro-
ceedings of the International Workshop on Operating Systems of the 90s and Be-
yond, pages 87-101, London, UK, 1991. Springer-Verlag.

M. Li, T. V. Achteren, E. Brockmeyer, and F. Catthoor. Statistical Performance
Analysis and Estimation of Coarse Grain Parallel Multimedia Processing System.
In Proc. of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 277-288, Washington, DC, USA, 2006. IEEE Computer
Society.

G. McCall. Misra-C: 2004. MIRA Limited, Warwickshire, United Kingdom, 2004.
A. Mok. Firm Real-time Systems. ACM Comput. Surv., 28, December 1996.

S. Natarajan. Imprecise and Approximate Computation. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 1995.

S. Navabpour, C. W. W. Wu, B. Bonakdarpour, and S. Fischmeister. Efficient
techniques for near-optimal instrumentation in time-triggered runtime verification.
In Runtime Verification (RV), 2011. To appear.

Radio Technical Commission for Aeronautics (RTCA). Software Considerations in
Airborne Systems and Equipment Certification, Dec. 1992.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenstrém. The Worst-case Execution-time
Problem—Overview of Methods and Survey of Tools. Trans. on Embedded Com-
puting Sys., 7(3):1-53, 2008.

15

