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Abstract. Runtime verification is a formal technique used to check
whether a program under inspection satisfies its specification by using
a runtime monitor. Existing monitoring approaches use one of two ways
for evaluating a set of logical properties: (1) event-triggered, where the
program invokes the monitor when the state of the program changes,
and (2) time-triggered, where the monitor periodically preempts the pro-
gram and reads its state. Realizing the former is straightforward, but the
runtime behaviour of event-triggered monitors are difficult to predict.
Time-triggered monitoring (designed for real-time embedded systems),
on the other hand, provides predictable monitoring behavior and over-
head bounds at run time. Our previous work shows that time-triggered
monitoring can potentially reduce the runtime overhead provided that
the monitor samples the program state at a low frequency.
In this paper, we propose a hybrid method that leverages the benefits of
both event- and time-triggered methods to reduce the overall monitor-
ing overhead. We formulate an optimization problem, whose solution is a
set of instrumentation instructions that switches between event-triggered
and time-triggered modes of monitoring at run time; the solution may
indicate the use of exactly one mode or a combination of the two modes.
We fully implemented this method to produce instrumentation schemes
for C programs that run on an ARM Cortex-M3 processor, and experi-
mental results validate the effectiveness of this approach.

1 Introduction

Runtime verification [5, 19, 26] is a technique, where a monitor checks at run
time whether or not the execution of a system under inspection satisfies a given
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Fig. 1. Comparing different methods of monitoring.

correctness property. The main challenge in augmenting a system with runtime
verification is to contain its runtime overhead. Most monitoring approaches in
the literature are event-triggered (ET), where the occurrence of a new (critical)
event (e.g., change of value of a variable) triggers the monitor to verify a set
of logical properties. For example, in the timing diagrams in Figure 1(a), the
dots 1 through n along the timeline represent the critical events that occur for
an execution trace of the program under scrutiny at run time. The calls to the
monitor are added as instrumentation instructions in the program. As shown
in the figure, there is a burst of events in this execution trace from event i to
event j. The frequent monitor invocations that occur from i to j leads to a
burst of monitoring, which causes high execution overhead and unpredictability
of program behavior.

In [2,3], we introduced a time-triggered (TT) method that makes the runtime
overhead controllable and predictable, and makes monitoring tasks schedulable.
In this method, a monitor samples the state of the program in periodic time in-
tervals. The period, known as the sampling period (SP) is such that the monitor
misses no critical events. Time-triggered monitoring is especially desirable for
designing real-time embedded systems, where time predictability plays a cen-
tral role. Figure 1(b) shows the interactions that occur between the program
and a TT monitor. To decrease the sampling frequency and thus decrease the
overhead, we introduced a technique, where the program stores critical events
in a history buffer and the monitor reads this buffer to evaluate properties with
respect to all state changes stored in the history [2, 3]. From the figure, it is
evident that the monitoring activity between events i and j is significantly less
than what an event-triggered monitor would require. However, for the sampling
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period adopted in this example, there are some ‘redundant’ samples that the
monitor takes; a ‘redundant’ sample is an invocation of the monitor, where there
are no events to process in the buffer. The dashed ovals in Figure 1(b) mark
the redundant samples in this example. Although our goal in [2, 3] was tack-
ling the unpredictability of runtime overhead, we observed that time-triggered
runtime verification (TTRV) may also reduce the cumulative runtime overhead
effectively.

From Figures 1(a) and 1(b), it is evident that both event- and time-triggered
monitoring techniques have some advantages and disadvantages with respect to
the monitor’s execution overhead. Event-triggered monitoring tends to be ad-
vantageous in situations, where critical events occur sparsely since the monitor
is active only when the program encounters a critical event; time-triggered mon-
itoring tends to be better when many critical events to process within a short
time frame.

With this motivation, in this paper, we propose a novel technique based on
static analysis that exploits the benefits of both ETRV and TTRV to reduce the
runtime overhead, which we call hybrid runtime verification (HyRV). Our goal
is to supply a program under scrutiny with a monitor that supports both ET
and TT modes of operation. The program switches from one mode to another
at run time depending upon the current execution path. HyRV automatically
obtains the locations to switch modes in the program by solving an optimization
problem; this method accounts for all monitoring and switching costs in terms
of execution time overhead. The main challenge in formulating the optimization
problem is threefold:

1. determining the precise timing behaviour of the program under inspection,
2. identifying the overhead of all required activities for implementing an ET

or TT monitor (e.g., cost of monitoring mode switching, sampling, monitor
invocation),

3. identifying the execution subpaths that are likely to be suitable for ET and
TT monitoring modes.

The solution to the problem is an instrumentation scheme for a program
that may switch monitoring modes at runtime. For instance, in Figure 1(c),
the reduction in monitoring activity will likely reduce the overall monitoring
execution overhead. Obviously, using hybrid monitoring will incur overhead costs
in performing mode switches. In this example, a mode switch occurs right before
i and right after j to switch from ET to TT and TT to ET monitoring modes,
respectively.

We implemented this technique in a toolchain that leverages static analysis
techniques and integer linear programming (ILP) to solve the optimization prob-
lem. The input to our toolchain is a C program and a set of variables to monitor.
The toolchain outputs the program source code augmented with the instrumen-
tation scheme that may toggle the monitoring mode at runtime to reduce the
monitoring overhead. Currently, our toolchain does not include static analysis of
library calls. The results of our experiments on a benchmark suite for real-time
embedded programs strongly validate the effectiveness of our technique.
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Organization The rest of the paper is organized as follows. Section 2 describes
the concepts of ETRV and TTRV. Section 3 introduces the HyRV optimization
problem. We analyze the results of our experiments in Section 4. Section 5 dis-
cusses the related work. Finally, in Section 6, we make concluding remarks and
discuss future work.

2 Background

Let P be a program under inspection and Π be a logical property (e.g., in LTL),
where P is expected to satisfy Π. Let VΠ denote the set of variables that par-
ticipate in Π. In event-triggered runtime verification (ETRV), the instrumented
version of P invokes the monitor to evaluate Π whenever the value of some
variable in VΠ changes.

In time-triggered runtime verification (TTRV) [2, 3], a monitor samples the
value of variables in VΠ periodically and evaluates Π. Accurate reconstruction of
states of P between two consecutive samples is the main challenge in using this
mechanism; e.g., if the value of a variable in VΠ changes more than once between
two samples, then the monitor may fail to detect violations of Π. TTRV usually
leverages control-flow analysis to reconstruct the states of P .

To ensure that the behaviour of a time-triggered monitor is correct, the
monitor must sample at a ‘safe’ rate determined by statically analyzing P ’s
control-flow graph:

Definition 1. The control-flow graph (CFG) of a program P is a weighted di-
rected simple graph CFGP = 〈V, v0, A,w, vf 〉, where:

– V : is a set of vertices, each representing a basic block of P . Each basic block
consists of a sequence of instructions in P .

– v0: is the initial vertex with in-degree 0, which represents the initial basic
block of P .

– A: is a set of arcs (u, v), where u, v ∈ V . An arc (u, v) exists in A, if and
only if the execution of basic block u immediately leads to the execution of
basic block v.

– w: is a function w : A → N, which defines a weight for each arc in A. The
weight of an arc is the best-case execution time (BCET) of the source basic
block.

– vf : is a dummy vertex which acts as final vertex. It has incoming arcs from
all actual final vertices. This helps in simplifying analysis by allowing us to
easily consider weight of final vertices.

For example, consider the C program in Figure 2 [2]. Figure 3(a) shows the
resulting CFG assuming that the BCET of each line of code is one time unit.
Vertices of the graph in Figure 3 list the corresponding line numbers of the C
program in Figure 2.

To identify the sampling period that a monitor can accurately reconstruct
program states between two samples, we modify CFGP as follows:

4



1 scan f ( ”%d” , &a ) ;
2 i f ( a % 2 == 0 ) {
3 p r i n t f ( ”%d i s even” , a ) ;
4 } e l s e {
5 b = a / 2;
6 c = a / 2 + 1;
7 p r i n t f ( ”%d i s odd” , a ) ;
8 }
9 d = b + c;

10 end program

Fig. 2. A simple C program.

Step 1: Identify Critical Vertices
We ensure that each critical instruction (i.e., an instruction that modifies a vari-
able in VΠ) is in a basic block that contains no other critical instructions. We
refer to such a basic block as a critical basic block or critical vertex. For example,
in Figure 2, if variables b, c, and d are in VΠ, then lines 5, 6, and 9 are critical
instructions. Since instructions in lines 5 and 6 are critical and they both reside
in basic block c, we split c into c1 and c2 as shown in Figure 3(b); the highlighted
vertices in the figure denote the critical basic blocks.

Step 2: Calculate the Longest Sampling Period
As mentioned earlier, the main challenge in using TTRV is accurate program
state reconstruction. To preserve all critical program state changes, the monitor
must sample at a rate that can capture all possible critical state changes of P
at run time. The corresponding sampling period is called the longest sampling
period (LSP). Definition 2 formally defines LSP.

Definition 2. Let CFG = 〈V, v0, A,w〉 be a control-flow graph; Vc ⊆ V be the
set of vertices that correspond to critical basic blocks of CFG; and Πc be the set
of paths 〈vh → vh+1 → · · · → vk−1 → vk〉 in CFG such that vh, vk ∈ Vc and
vh+1, . . . , vk−1 ∈ V \Vc. The longest sampling period (LSP) for CFG is

LSPCFG = min
π∈Πc


∑

(vi,vj)∈A
vi,vj∈π

w(vi, vj)


Intuitively, the LSP is the minimum timespan between two successive changes

of any two variables in VΠ. This means that the minimum distance between all
pairs of critical vertices in CFG is the LSP. For example, the LSP of the CFG
shown in Figure 3(c) is LSP = 1, as indicated in the figure. All property viola-
tions can be detected if the monitor samples with a period of LSP [2].

Step 3: Increase the Sampling Period using Auxiliary Memory
To increase the longest sampling period (and, hence, decrease the involvement of
the monitor), we use auxiliary memory to buffer critical state changes between
two consecutive samples. Precisely, let v be a critical vertex in a control-flow
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Fig. 3. Steps for obtaining optimized instrumentation and sampling period.

graph, CFG , where critical instruction inst in v changes the value of a variable
a ∈ VΠ. We insert an instruction inst ′ : a′ ← a immediately following inst , where
a′ is an auxiliary memory location, to the sequence of instructions corresponding
to vertex v. After instrumenting (i.e., adding inst ′) v, v is no longer a critical
basic block (i.e., v ∈ V \Vc) because the added instruction guarantees that
the monitor will observe this change when it processes the history stored in
auxiliary memory. For example, instrumenting vertex c2 in Figure 3(c) by adding
an instruction of the form ‘ch = c’ directly after line 6 of the program results
in the CFG shown in Figure 3(d). Instrumenting the critical instruction in c2
effectively increases the LSP to 3 because of the buffered event. The maximum
violation detection latency (i.e., the time elapsed between the occurrence of a
property violation and the detection of the violation) of Π, the availability of
auxiliary memory and other system constraints limit the number of times we
can apply step 3 to increase the LSP.

3 Hybrid Event-triggered and Time-triggered Runtime
Verification

In this paper, our goal is to select the monitoring scheme that minimizes the ex-
pected total overhead incurred from executing the monitor. In order to formally
introduce the problem statement, we need to define the underlining monitoring
overhead cost model.

3.1 Overhead Runtime Costs

Broadly, we classify the overhead costs incurred from monitoring into three cat-
egories:
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– Cevent : the cost incurred to handle each critical event (i.e., in TT mode, this
includes the costs of writing and retrieving the history, and the property
evaluation; in ET mode, this includes calling the monitor and the property
evaluation),

– Cswitch : the cost incurred from switching between ET and TT modes and
vice versa, and

– Csample : the cost incurred from sampling in TT mode.

To derive expressions for the monitoring overhead, the cost of monitoring is
broken down into five elementary cost values, which capture the costs incurred
from performing specific interactions between the program and the monitor:

– cET : cost of invoking monitor to check a single critical event in ET mode
– chist: cost of saving a critical event into the history buffer in TT mode
– cTT : cost of processing the history buffer at a sample in TT mode
– cE→T : cost of a switch from ET mode to TT mode
– cT→E : cost of a switch from TT mode to ET mode

Note that these costs are derived in terms of best-case execution time of the
corresponding instructions. In particular, we calculate these costs in the same
fashion we obtain the arc weights of a control-flow graph (see Definition 1).

3.2 Problem Definition

Let G = 〈V, v0, A,w, vf 〉 be the control-flow graph of program P and Vc ⊆ V
be the set of critical vertices after computing the longest sampling period LSP
through application of 3 steps given in Section 2. We are also given five el-
ementary costs cET , chist, cTT , cE→T , and cT→E as defined in Subsection 3.1.
Assuming all execution paths in G are equally likely, our goal is to find a HyRV
monitoring scheme M , such that Mo(G) (monitoring overhead of M) is mini-
mum. A HyRV monitoring scheme is

M : V → {0, 1} (1)

Where 0 denotes that vertex should be monitored using ET monitor whereas
1 indicates TT monitor should be used to monitor the vertex. Note that to
uniquely determine the location of a switch, we take domain of V rather than
just Vc. For a given path π = v0 → v1 → · · · → vf of G, the overhead of a
monitoring scheme is defined as:

Mo(π) =
∑
v∈Vc

[cET · (1−M(v)) + chist ·M(v)]

+
∑

(v1,v2)∈A

[cE→T · (1−M(v1)) ·M(v2) + cT→E ·M(v1) · (1−M(v2))]

+
∑

δ=〈vi→...→vj〉,
δ∈∆π

[
cTT ·

(
d
∑k=j
k=i w(vk)

LSP
e

)]
(2)
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Where ∆π is set of longest subpaths of π whose vertices are monitored using TT
scheme. Three sums in equation 2 correspond to Cevent, Cswitch, and Csample
costs respectively. Let Π denotes set of all execution paths of CFG G, the over-
head of a monitoring scheme M for program P with CFG G is:

Mo(G) =
∑
π∈Π

Mo(π) (3)

3.3 Complexity Analysis

We believe that finding the monitoring scheme 1, which minimizes the over-
head cost (Equation 3) for a given CFG, requires knowledge of execution paths
of the CFG. This is because depending upon what had happened on a path it
may not be beneficial to switch to the optimal monitoring scheme for the rest
of the path. Such an interference is not only present in an execution path but
also among interacting paths. To illustrate this further consider Figure 4. In an
optimal solution, the distribution of critical events on the path c d affects the
decision about the monitoring mode (i.e., TT or ET) for vertices on the path
 a and vice-versa. It may not be correct to choose optimal strategy for the
paths a and c d separately if it causes switching on edge (a, c), and the cost
of this switching overruns the benefit gained by choosing local optimal solutions
for the two paths. This causes intra-path interference among vertices. Note that
monitoring mode decision about vertices on the path b is influenced by choice
of monitoring mode for virtices on the path c d which in turn gets affected by
events on the path  a. This results into inter-path interference among inter-
secting paths. The presence of intra- and inter-path interference among vertices
indicates that local optimization cannot guarantee overall optimal solution for
a given CFG, and all execution paths should be analyzed. However, the pres-
ence of unbounded loops makes analysis of all execution paths impossible. Also,
even in the absence of unbounded loops, a general CFG can have exponentially
many execution paths. This makes the problem of finding the optimal solution
intractable.

In order to tackle the high computational complexity of the problem and to
make this technique practical, we introduce a heuristic that aims to return a
monitoring scheme whose monitoring overhead is equal to or better (i.e. lower)
than exclusively in ET or TT schemes. We formulate an integer linear program
(ILP) as a heuristic for this problem. In order to make this heuristic reflect
the realities of the program without computing all execution paths, we assume
that function F : (u, v) → N, (u, v) ∈ A, u, v ∈ V is provided along with CFG
of a program P . F(u, v) defines the expected number of times P will execute
the basic block corresponding to v immediately after executing the basic block
corresponding to u. Figure 5 illustrates a CFG , where the critical vertices are
highlighted. The set of numerical values within parentheses defines the function,
F(u, v). We note that this function can be evaluated using standard techniques
such as program profiling and symbolic execution. The suboptimality stems from
the division of the program into subpaths to estimate the monitoring cost and
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the use of function F which may not represent correct system’s behaviour. Com-
puting function F with high accuracy is desirable because even a small reduction
in overhead will have large benefit in the long run of a monitor.

For the rest of this paper, let CFG = 〈V, v0, A,w, vf ,F〉 be a control-flow
graph corresponding to a program P . Each vertex corresponds to a critical basic
block containing one critical instruction. The definitions of V , v0, A, w, and vf

correspond to the Definition 1 (see Figure 3(b) for an example).

3.4 The Optimization Problem as an Integer Linear Program

The ILP problem is of the form:Minimize c.z

Subject to A.z ≥ b

where A (a rational m × n matrix), c (a rational n-vector) and b (a rational
m-vector) are given, and z is an n-vector of integers to be determined. In other
words, we try to find the minimum of a linear function over a feasible set defined
by a finite number of linear constraints. It can be shown that a problem with
linear equalities and inequalities can always be put in the above form, implying
that this formulation is more general than it might look.

Objective Function The objective function for our ILP model is:

minimize (Cevent + Cswitch + Csample) (4)

We now describe how we map the optimization objective (Equation 4) by in-
troducing ILP variables and computing each of three costs in terms of these
variables and given elementary costs for a CFG.
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ILP Variables We associate two binary variables xv and yv for each v ∈ V
in CFG . If xv = 1, then the monitor will operate in ET mode whenever the
corresponding basic block executes, and if yv = 1, the monitor will operate in
TT mode whenever the program is executing the basic block. The following
constraint expresses the mutual exclusivity of monitoring modes for v ∈ V :

xv + yv = 1 (5)

Constraint of Handling Critical Events Equation 6 expresses the cost in-
curred at each critical event in P :

Cevent =
∑
v∈Vc

∑
(u,v)∈A
u∈V

[F(u, v) · (cET · xv + chist · yv)] (6)

where Vc ⊆ V is the set of nodes that correspond to the critical basic blocks
in CFG . The number of times that P will transit from the set of nodes u to
v, where (u, v) ∈ A, determines the expected number of times that the basic
block corresponding to v will execute. Equations 5 and 6 guarantee that the cost
incurred for the critical event in v is exclusively cET or cTT if the monitor is
operating in ET or TT mode at that point in the program, respectively.

Constraints of Switching Monitoring Mode The following equation ex-
presses the cost of switching between ET and TT modes:

Cswitch =
∑

(v1,v2)∈A
v1,v2∈V

[F(v1, v2) · (cE→T · xv1 · yv2 + cT→E · yv1 · xv2)] (7)

There exists a mode switch between basic blocks v1 and v2 when xv1 = yv2 = 1
or yv1 = xv2 = 1. The former case implies that the monitor switches from ET
mode to TT mode and the latter case implies that the monitor switches from
TT mode to ET mode. Equation 7 is non-linear; to linearize this expression,
we introduce the binary variables pv1,v2 , qv1,v2 , rv1,v2 , and sv1,v2 and rewrite
Equation 7 as:

Cswitch =
∑

(v1,v2)∈A
v1,v2∈V

[F(v1, v2) · (cE→T · pv1,v2 + cT→E · qv1,v2)] (8)

subject to:

xv1 + yv2 + 2rv1,v2 ≥ 2 (9)

pv1,v2 + rv1,v2 = 1 (10)

xv1 + yv2 − 2(1− rv1,v2) < 2 (11)

yv1 + xv2 + 2sv1,v2 ≥ 2 (12)

qv1,v2 + sv1,v2 = 1 (13)

yv1 + xv2 − 2(1− sv1,v2) < 2 (14)
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Fig. 5. CFG used for illustrating ILP model.

Equations 9 through 11 ensure that if xv1 = yv2 = 1, then pv1,v2 = 1, i.e.,
we incur the cost of switching from ET to TT mode. Similarly, the constraints
reflected in Equations 12 through 14 ensure that if there exists a switch from
TT to ET mode, then qv1,v2 = 1 and we incur the cost cT→E .

Constraints of Sampling Cost in TT Mode Finally, Equation 15 captures
the cost incurred from the sampling the monitor does in TT mode:

Csample =
∑

π∈Π′(CFG)

(cTT · Fπ ·Nsampπ ) (15)

where Π ′(CFG) denotes the set of all subpaths π = v1 → v2 → · · · → vk in
CFG that satisfy the following four conditions:

1. k ≥ 2
2. indegree(vi) = outdegree(vi) = 1, 2 ≤ i ≤ k − 1
3. indegree(v1) 6= 1 ∨ outdegree(v1) 6= 1
4. indegree(vk) 6= 1 ∨ outdegree(vk) 6= 1
5. for each (vi, vj) ∈ A, (vi, vj) appears in exactly one π ∈ Π ′(CFG)

For example, if we consider the CFG shown in Figure 5, Π ′(CFG) = {〈a →
b → c → d〉, 〈d → e → f〉, 〈f → d〉, 〈d → g → h → f〉, 〈f → i → j〉}. Moreover,
in Equation 15, Fπ is the expected number of times that π will execute at run
time. Fπ = F(vi, vj), where (vi, vj) is any arc on path π. Nsampπ is the number
of samples that the monitor takes when P executes π once:

Nsampπ =
∑

γ=〈vi→...→vj〉,
γ∈Γπ

[(
W (γ) + chist ·

∑j
m=i yvm

SP

)
·

(
xvi−1 · xvj+1 ·

j∏
l=i

yvl

)]
(16)

where W (γ) returns the sum of weights of all arcs on the path γ ∈ Γπ; vi−1 and
vj+1 denote the immediate predecessor and successor of vi, vj ∈ V , respectively;
and SP is the allowed sampling period of the monitor when it is operating in TT

11



mode. Γπ is the enumerated set of paths in π ∈ Π ′(CFG) of length 2 or greater.
Using Π ′(CFG) for the CFG shown in Figure 5, if we consider the subpath
π = 〈d → g → h → f〉, then Γπ = {〈d → g → h → f〉, 〈d → g → h〉, 〈g → h →
f〉, 〈d→ g〉, 〈g → h〉, 〈h→ f〉}. Note that |Γπ| = Θ

(
|π|2

)
. If vi−1 does not exist

in π, xvi−1
= 1. Similarly, xvj+1

= 1 if vj+1 does not exist in π. Considering the
example where π = 〈d → g → h → f〉, if γ ∈ Γπ starts with d or ends with
f , then we would ignore the terms xvi−1

and xvi+1
by substituting them with

the value of 1, respectively. Nsampπ is linearized by the linearization technique
employed for Cswitch .

4 Implementation and Experimental Results

We empirically tested and verified our hybrid monitoring approach for a sub-
set of programs from the SNU Real-time benchmark suite [1] on an embedded
development platform with real-time guarantees. In Subsection 4.1, we describe
the experimental setup and the toolchain. Then, in Subsection 4.2, we present
and analyze the results of our experiments.

4.1 Experimental Setup

Figure 6 depicts the constructed toolchain used to generate instrumentation
schemes from the model described in Section 3. The toolchain generates the
program’s CFG with estimated execution times of basic blocks by statically an-
alyzing the program’s source code with clang and llvm [18]. We use the tool
CodeSurfer [9] to determine the location of the critical events the monitor should
track at run time. The model generator takes this information along with the
estimated monitoring costs to produce the corresponding model for the program.
The toolchain then uses Yices [23], an SMT solver, to identify a solution (i.e.,
an instrumentation scheme) to the optimization problem described in Section 3.
A script then takes the instrumentation scheme and instruments the program
source with the necessary instructions required to monitor the program accord-
ingly.

The monitor and programs were compiled and executed on the Keil μVision
simulator that emulates the behavior of the MCB1700 development platform,
which sports an ARM Cortex-M3 processor. We emphasize that the observed
execution time across multiple runs of the experiment remains constant because
the hardware platform provides accurate timing behavior of instructions, and
in each experiment, the only tasks running were the program under inspection
and the monitor. Therefore, it is safe to present the results without reporting
statistical measures.

We used SNU-RT [1] benchmark suite for the performance analysis. We se-
lected six programs from the suite with different sizes: bs, fibcall, insertsort,
fir, crc, and matmult. The largest program has 250 lines of code, and the small-
est has 20. We picked two sets of variables for monitoring for each program: (1)
a set containing frequently changing variables and (2) a set containing rarely
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Fig. 6. HyRV instrumentation toolchain for C applications.

Configuration chist cET cTT cE→T cT→E

1 50 100 100 100 100
2 50 100 100 150 150
3 50 150 150 100 100
4 50 150 150 150 150
5 50 250 250 100 100
6 50 250 250 150 150

Table 1. Monitor cost configurations [clock cycles].

changing variables. Instructions that potentially change the value of these vari-
ables form the set of critical instructions monitored in the experiments. For each
program, the monitoring overheads were measured using the cost configurations
(listed in Table 1) and associated instrumentation schemes. The cost configura-
tions depend on the implementation of the monitor (e.g., running on the same
processor, distributed). We use the configurations in Table 1 to demonstrate that
the instrumentation schemes may change as a result of the relative differences
in the elementary monitoring costs.

4.2 Experimental Results

We classify the results of our experiments based on the generated instrumenta-
tion scheme and runtime overhead:

1. The first class consists of cases, where our ILP model suggests a hybrid
monitor and the monitor indeed significantly outperforms an ET or TT
monitor in practice (see Figure 7).

2. The second class consists of cases where the ILP model suggests either an
ET or TT monitor and the suggested solution indeed outperforms other
monitoring modes (see Figure 8).

3. The third class consists of cases where the solution to the ILP model ei-
ther exhibits slight improvement over other monitoring modes or it slightly
underperforms in practice (see Figure 9).
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Fig. 7. Monitoring overhead of crc for three monitoring modes under all cost config-
urations.

In the rest of this section, we will discuss the experimental results and focus
on one program from each class. We note that the three other programs not
specifically discussed in this section exhibit similar results.

Hybrid Monitor with Significant Improvement The program representing
this class (i.e., crc with CFG of the size 65 vertices and 82 arcs) has two char-
acteristics: it has (1) two tight loops, each containing one critical instruction,
and (2) a relatively large initialization function that contains only non-critical
instructions. Intuitively, if the program is monitored by an ET monitor, then
the tight loops in the program will cause monitor invocations for each iteration.
This is an instance where a burst of events creates a large overhead over a short
period of time (similar to the timeline in Figure 1). In such cases, an ET monitor
suffers.

On the contrary, the large initialization function does not contain critical
events; hence, a TT monitor would suffer from redundant sampling overhead.
We hypothesize that the combination of these two characteristics can exploit
the benefits of employing a hybrid monitor. The graph in Figure 7 validates
our hypothesis. As can be seen, in all cost configurations, the hybrid monitor
incurs significantly less overhead than both the ET monitor and TT monitor op-
erating with the same sampling period. Another interesting observation is that
increasing the cost of ET and TT monitor invocations does not greatly increase
the overhead of the hybrid monitor. This is because the hybrid monitor only
samples when the program reaches its tight loop, which reduces the cost of mon-
itoring frequently occurring critical events by buffering them into memory before
sampling. In addition, the monitoring scheme reduces the number of redundant
samples by letting the monitor run in ET mode when critical events are infre-
quent. In such cases, the behavior of a hybrid monitor is quite robust when the
cost of monitor invocation increases.

Time-triggered Monitor with Significant Improvement The common
characteristic of the member programs of this class (i.e., bs, fibcall, insertsort,
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Fig. 8. Monitoring overhead of insertsort for three monitoring modes under all cost
configurations.
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Fig. 9. Monitoring overhead of fir for three monitoring modes under all cost config-
urations.

and matmult) is that the programs have dense and evenly distributed critical
instructions in their respective CFG. This makes the use of TT mode a suitable
choice to monitor this class of programs. Figure 8 shows the overhead of monitor-
ing insertsort with three monitoring modes (ET-only, TT-only, and hybrid)
for all cost configurations. The rest of the programs in this class also exhibit
similar monitoring overhead patterns. From Figure 8, one can observe that the
corresponding ILP model correctly detects the even distribution of events and
the solution suggests monitoring exclusively in TT mode as its solution for all
cost configurations. Another observation in these experiments is that the num-
ber of redundant samples for these programs is either zero or close to zero. The
low number of redundant samples again validates the choice of monitoring these
programs using the time-triggered method.

Hybrid Monitor with Mixed Behavior The program representing this class
(i.e. fir with CFG of the size 24 vertices and 27 arcs) does not clearly belong
to the previous two classes. The number of redundant samples for this program
reduces by a factor of six as the sampling period increases from 10 × LSP to
20 × LSP . This brings the overheads of ET and TT modes to a comparable
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level and makes the ILP model outcome highly sensitive to the elementary mon-
itoring costs. Figure 9 shows the monitoring overhead of fir under the three
modes of monitoring for different cost configurations. One can observe that when
the sampling period is 10× LSP , the model correctly chooses ET mode for the
monitoring schemes. However, if we set the sampling period to 20 × LSP , then
the ILP model provides a hybrid solution for all three cost configurations. The
proposed hybrid solutions have slightly higher overheads in comparison to ET
mode, but perform as good as TT mode except for two cases in practice. The
reason for this discrepancy lies in the fact that our approach is a heuristic algo-
rithm and, hence, finds suboptimal solutions in some cases. Note, however, that
this discrepancy does not dramatically affect the usefulness of our approach.

5 Related Work

In classic runtime verification [21], a system is composed with an external ob-
server, called the monitor. This monitor is normally an automaton synthesized
from a set of properties under which the system is scrutinized. From the logical
and language point of view, runtime verification has mostly been studied in the
context of Linear Temporal Logic (LTL) properties [8, 10–12,25] and, in partic-
ular, safety properties [14, 22]. Other languages and frameworks have also been
developed for facilitating specification of temporal properties [15,16,27]. [6] con-
sidered runtime verification of ω-languages. In [7], the authors address runtime
verification of safety-progress [4, 20] properties.

The main focus in the literature of runtime verification is on event-triggered
monitors [17], where every change in the state of the system triggers the mon-
itor for analysis. Alternatively, in time-triggered monitoring [2, 3], the monitor
samples the state of the program under inspection at regular time intervals. The
time-triggered approach involves solving an optimization problem that aims at
minimizing the size of auxiliary memory required so that the monitor can cor-
rectly reconstruct the sequence of program state changes. Several heuristics were
introduced to tackle

Finally, in [13], the authors propose a method to control the overhead of soft-
ware monitoring using control theory for discrete event systems. In this work,
overhead control is achieved by temporarily disabling involvement of monitor,
thus avoiding the overhead to pass a user-defined threshold. Another relevant
work to this line of research is [24], where the authors propose sampling using
state estimation. In particular, they use hidden Markov models to estimate fu-
ture reachable states for deciding whether or not the monitor must sample the
program under inspection. However, the methods in [13] and [24] do not guaran-
tee correct state reconstruction because the monitor is unaware of all program
state changes that may occur between samples.
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6 Conclusion

In this paper, we concentrated on combining two techniques in the literature of
runtime verification to reduce the overhead: (1) the traditional event-triggered
(ET) approach, and (2) the time-triggered (TT) method for real-time systems.
We showed that one can effectively exploit the advantages of both approaches
to reduce the overhead of runtime monitoring. To this end, we formulated an
optimization problem that takes into account the cost of different monitoring
interactions (i.e., monitor invocation in ET, sampling and building history in TT,
and mode switching). In particular, the objective of the problem is to minimize
the cumulative overhead in all execution paths using the aforementioned costs.
Since solving the general problem can be computationally unsolvable (e.g., due
to the existence of unbounded loops) or intractable, we proposed a heuristic that
finds suboptimal but effective solutions to the problem by transforming it into an
instance of the integer linear programming problem. Our experimental results on
the SNU-RT benchmark suite showed that our technique effectively reduces the
overhead as compared to selecting the ET or TT method in an ad-hoc manner.

There exist several interesting future research directions. We plan to em-
ploy symbolic execution techniques to implement a more accurate and realistic
prediction function used for conditional and loop statements (see Section 3). An-
other open problem is to design other heuristics with lower time complexity that
eliminate subpath generation. Examples include techniques that exploit static
analysis such as graph density and dynamic analysis such as feedback control.
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