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Abstract. Time-triggered runtime verification aims at tackling two de-
fects associated with runtime overhead normally incurred in
event-triggered approaches: unboundedness and unpredictability. In the
time-triggered approach, a monitor runs in parallel with the program and
periodically samples the program state to evaluate a set of properties.
In our previous work, we showed that to increase the sampling period of
the monitor (and hence decrease involvement of the monitor), one can
employ auxiliary memory to build a history of state changes between
subsequent samples. We also showed that the problem of optimization
of the size of history and sampling period is NP-complete.
In this paper, we propose a set of heuristics that find near-optimal solu-
tions to the problem. Our experiments show that by employing negligible
extra memory at run time, we can solve the optimization problem signifi-
cantly faster, while maintaining a similar level of overhead as the optimal
solution. We conclude from our experiments that the NP-completeness of
the optimization problem is not an obstacle when applying time-triggered
runtime verification in practice.

Keywords: Runtime monitoring, instrumentation, optimization, verifica-
tion, time-triggered, predictability.

1 Introduction

Runtime verification [1, 2, 4, 7, 9, 13] refers to a technique where a system under
inspection is continually checked by a monitor at run time with respect to its



specification. Runtime verification complements exhaustive verification methods,
such as model checking and theorem proving, as well as incomplete solutions,
such as testing and debugging. This is because exhaustive verification often
requires developing a rigorous abstract model of the system and suffers from
the state-explosion problem. Testing and debugging, on the other hand, provide
us with under-approximated confidence about the correctness of a system, as
these methods only check for the presence of defects under specific conditions.

In the literature, deploying runtime verification involves instrumenting the
program under inspection, so that upon occurrence of events (e.g., change of
value of a variable) that may change the truthfulness of a property, the monitor
is called to re-evaluate the property. We call this method event-triggered runtime
verification, because each change prompts a re-evaluation. Event-triggered run-
time verification suffers from two drawbacks: (1) unpredictable overhead, and (2)
possible bursts of events at run time. These defects can lead to undesirable tran-
sient overload situations in time-sensitive systems such as real-time embedded
safety-critical systems. To address these issues, in [3], we introduced the notion
of time-triggered runtime verification, where a monitor runs in parallel with the
program and samples the program state periodically to evaluate a set of system
properties.

The main challenge in time-triggered runtime verification is to guarantee ac-
curate program state reconstruction at sampling time. To this end, we introduced
an optimization problem where the objective is to find the minimum number of
critical events that need to be buffered for a given sampling period [3]. Con-
sequently, the time-triggered monitor can successfully reconstruct the state of
the program between two successive samples. We showed that this optimization
problem is NP-complete and proposed a transformation of this problem to an
integer linear program (ILP). This transformation enables us to employ powerful
ILP-solvers to identify the minimum buffer size and instrumentation instructions
for state reconstruction. It is possible to solve the corresponding ILP model for
some applications, but for larger applications, the exponential complexity poses
a serious stumbling block.

With this motivation, in this paper, we focus on developing polynomial-time
algorithms that find near-optimal solutions to the optimization problem. Our
algorithms are inspired by an observation made in [3]. Figure 1, taken from [3],
shows the decrease in execution time and increase in total memory usage of
a program (y-axis) when the sampling period (denoted MSP in Figure 1) is
increased by factors of 20, 50, 70, and 100 (x-axis). Increasing the sampling
period requires storing more events, and hence, requiring larger buffers. However,
Figure 1 shows that when we increase the sampling period even by a factor of
100, the increase in memory usage is only 4%. In other words, the impact of
increasing the sampling period on memory usage is negligible. Our experiments
on other programs exhibit the same behavior. This observation suggests that
nearly optimal solutions to the optimization problem are likely to be sufficiently
effective.
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Fig. 1. Memory usage vs. sampling period [3].

We propose three polynomial-time heuristics. All heuristics are
over-approximations and, hence, sound (they do not cause overlooking of events
to be monitored). The first heuristic is a greedy algorithm that aims at in-
strumenting variables that participate in many execution branches. The second
heuristic is based on a 2-approximation algorithm for solving the minimum ver-
tex cover problem. Intuitively, this heuristic instruments variables that are likely
to cover all cases where variable updates occur within time intervals less than
the sampling period. The third heuristic uses genetic algorithms, where the pop-
ulation generation aims at minimizing the number of variables that need to be
instrumented and buffered.

The results of our experiments show that our heuristics are significantly faster
than the ILP-based solution proposed in [3]. More importantly, the solutions re-
turned by all three algorithms lead to a negligible increase in instrumentation
overhead and total memory usage at run time as well as negligible increase in
the total execution time of the monitored program. We also observe that in gen-
eral, extra instrumentation instructions are evenly distributed between samples.
Moreover, our genetic algorithm generally produces instrumentation schemes
closest to the optimal solution as compared to the other heuristics. Based on
the results of our experiments, we conclude that the NP-completeness of the
optimization problem is not an obstacle when applying time-triggered runtime
verification in practice.

Organization. The rest of the paper is organized as follows. In Section 2, we
review the concept of time-triggered runtime verification. The first two heuristics
are presented in Section 3. Section 4 is dedicated to our genetic algorithm. We
analyze the results of experiments in Section 5. Finally, we make our concluding
remarks and discuss future work in Section 6.
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2 Preliminaries

Time-triggered runtime verification [3] consists of a monitor and an application
program under inspection. The monitor runs in parallel with the application pro-
gram and interrupts the program execution at regular time intervals to observe
the state of the program. The state of the program is determined by evaluat-
ing the value of a set of variables being monitored. The key advantage of this
technique is bounded and predictable overhead incurred during program execu-
tion. This overhead is inversely proportional to the sampling period at which
the monitor samples the program.

Formally, let P be a program and Π be a logical property (e.g., in Ltl), where
P is expected to satisfy Π. Let VΠ denote the set of variables that participate in
Π. In time-triggered runtime verification, a monitor reads the value of variables
in VΠ at certain time intervals and evaluates Π. The main challenge in this
mechanism is accurate reconstruction of states of P between two consecutive
samples; i.e., if the value of a variable in VΠ changes more than once between
two consecutive samples, then the monitor may fail to detect violations of Π.
Control flow analysis helps us to reconstruct the states of P . To reason about
the control-flow of programs at run time, we utilize the notion of control-flow
graphs (CFG).

Definition 1. The control-flow graph of a program P is a weighted directed
simple graph CFGP = 〈V, v0, A,w〉, where:

– V : is a set of vertices, each representing a basic block of P . Each basic block
consists of a sequence of instructions in P .

– v0: is the initial vertex with in-degree 0, which represents the initial basic
block of P .

– A: is a set of arcs (u, v), where u, v ∈ V . An arc (u, v) exists in A, if and
only if the execution of basic block u immediately leads to the execution of
basic block v.

– w: is a function w : A → N, which defines a weight for each arc in A. The
weight of an arc is the best-case execution time (BCET) of the source basic
block. ut

For example, consider the C program in Figure 2(a) (taken from [3]). If each
instruction takes one time unit to execute in the best case, then the resulting
control-flow graph is the one shown in Figure 2(b). Vertices of the graph in
Figure 2(b) are annotated by the corresponding line numbers of the C program
in Figure 2(a).

In order to accurately reconstruct program states between two samples, we
modify CFGP in three steps.

Step 1: Identifying Critical Vertices
We ensure that each critical instruction (i.e., an instruction that modifies a vari-
able in VΠ) is in a basic block that contains no other instructions. We refer to
such a basic block as a critical basic block or critical vertex. For example, in
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1: a = scanf(...);

2: if (a % 2 == 0) goto 9

3: else {
4: printf(a + "is odd");

5:* b = a/2;

6:* c = a/2 + 1;

7: goto 10;

8: }
9: printf(a + "is even");

10: end program

(a) A simple C program
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Fig. 2. A C program and its control-flow graph.

Figure 2(a), if variables b and c are of interest for verification of a property
at run time, then instructions 5 and 6 will be critical and we will obtain the
control-flow graph shown in Figure 3(a).

Step 2: Calculating the Minimum Sampling Period
Since uncritical vertices play no role in determining the sampling period, in the
second step, we collapse uncritical vertices as follows. Let CFG = 〈V, v0, A,w〉
be a control-flow graph. Transformation T (CFG , v), where v ∈ V \{v0} and the
out-degree of v is positive, obtains CFG ′ = 〈V ′, v0, A′, w′〉 via the following
ordered steps:

1. Let A′′ be the set A ∪ {(u1, u2) | (u1, v), (v, u2) ∈ A}. Observe that if an arc
(u1, u2) already exists in A, then A′′ will contain parallel arcs (such arcs can
be distinguished by a simple indexing or renaming scheme). We eliminate
the additional arcs in Step 3.

2. For each arc (u1, u2) ∈ A′′,

w′(u1, u2) =

{
w(u1, u2) if (u1, u2) ∈ A
w(u1, v) + w(v, u2) if (u1, u2) ∈ A′′\A

3. If there exist parallel arcs from vertex u1 to u2, we will only include the one
with minimum weight in A′′.

4. Finally, A′ = A′′\{(u1, v), (v, u2) | u1, u2 ∈ V } and V ′ = V \ {v}.
We clarify a special case of the above transformation, where u and v are two

uncritical vertices with arcs (u, v) and (v, u) between them. Deleting one of the
vertices, say u, results in a self-loop (v, v), which we can safely remove. This is
simply because a loop that contains no critical instructions does not affect the
sampling period.

We apply the above transformation on all uncritical vertices. We call the
result a critical control-flow graph. Such a graph includes (1) an uncritical initial
basic block, (2) possibly an uncritical vertex with out-degree 0 (if the program
is terminating), and (3) a set of critical vertices. Figure 3(b) shows the critical
control-flow graph of the graph in Figure 3(a).
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Fig. 3. Steps for obtaining optimized instrumentation and sampling period.

Definition 2. Let CFG = 〈V, v0, A,w〉 be a critical control-flow graph. The
minimum sampling period for CFG is MSPCFG = min{w(v1, v2) | (v1, v2) ∈
A ∧ v1 is a critical vertex}. ut

Intuitively, the minimum sampling period is the minimum timespan between
two successive changes to any two variables in VΠ. For example, the minimum
sampling period of the control-flow graph in Figure 3(b) is MSP = 1. By apply-
ing this sampling period, all property violations can be detected [3].

Step 3: Increasing the Sampling Period using Auxiliary Memory
To increase the sampling period (and, hence, the involvement of the monitor), we
use auxiliary memory to build a history of critical state changes between consec-
utive samples. More specifically, let (u, v) be an arc and v be a critical vertex in a
critical control-flow graph CFG , where critical instruction inst changes the value
of a variable a. We apply transformation T (CFG , v) and append an instruction
inst ′ : a′ ← a, where a′ is an auxiliary memory location, to the sequence of
instructions in vertex u. We call this process instrumenting transformation and
denote it by IT (CFG , v). Observe that deleting a critical vertex v results in
incorporating an additional memory location.

Unlike uncritical vertices, the issue of loops involving critical vertices needs
to be handled differently. Suppose u and v are two critical vertices with arcs
(u, v) and (v, u) between them and we intend to delete u. This results in a self-
loop (v, v), where w(v, v) = w(u, v) + w(v, u). Since we do not know how many
times the loop may iterate at run time, it is impossible to determine the upper
bound on the size of auxiliary memory needed to collapse vertex v. Hence, to
ensure correctness, we do not allow applying the transformation IT on critical
vertices that have self-loops.

Given a critical control-flow graph, our goal is to optimize two factors through
a set of IT transformations: (1) minimizing auxiliary memory, and (2) max-
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imizing sampling period. In [3], we showed that this optimization problem is
NP-complete.

3 Heuristics for Optimizing Instrumentation and
Auxiliary Memory

In order to tackle the exponential complexity of our optimization problem, in [3],
we proposed a mapping from our optimization problem to ILP. This mapping
enables us to utilize powerful ILP-solvers to solve our problem. However, the
exponential complexity of the problem can still be a stumbling block for large
programs.

An interesting observation from the experiments conducted in [3] is that in-
creasing the sampling period even by a factor 100 resulted in at most a 4%
increase in total memory usage for tested programs. This observation strongly
suggests that for a fixed sampling period, even nearly optimal solutions to the
problem (in terms of the size of auxiliary memory) are likely to be quite ac-
ceptable. With this intuition, in this section, we propose two polynomial-time
heuristics. Both heuristics take a control-flow graph G and a desired sampling
period SP as input and return a set U of vertices to be deleted as prescribed
by Step 3 (i.e., IT (CFG , v)) in Section 2. This set identifies the extra memory
locations and the corresponding instrumentation instructions.

3.1 Heuristic 1

Our first heuristic is a simple greedy algorithm (see Heuristic 1):

– First, it prunes the input control-flow graph G (Line 2). That is, it removes
all vertices where the weights of all its incoming and outgoing arcs are greater
than or equal to SP . Obviously, such vertices need not be deleted from the
graph, because they leave the minimal sampling period unaffected.

– Next, it explores G to find the vertex incident to the maximum number of
incoming and outgoing arcs whose weights are strictly less than SP (Line
4). Our intuition is that deleting such a vertex results in removing a high
number of arcs whose weights are less than the desired sampling period.

– Then, it collapses vertex v identified on Line 4. This operation (Line 5)
results in merging incoming arcs to v with outgoing arcs from v in the fashion
described in Step 3 in Section 2.

– Obviously, basic block v contains a critical instruction for which we add an
auxiliary memory location to build history of this instruction. Thus, we add
v to U (Line 6).

– We repeat Lines 3-7 until the minimum arc weight of G is greater than or
equal to SP (the while-loop condition in Line 3).

– If the graph cannot be collapsed further (i.e., all vertices are collapsed), then
the graph’s structure will not permit increasing the sampling period to SP
and the algorithm declares failure.
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Heuristic 1 Greedy

Input: A critical control-flow graph G =
〈V, v0, A, w〉 and desired sampling pe-
riod SP .

Output: A set U of vertices to be deleted
from G.

1: U := {};
2: G := PruneCFG(G, SP);

3: while (MW (G) < SP ∧ U 6= V ) do
4: v := GreedySearch(G);
5: G := CollapseVertex(G, v);
6: U := U ∪ {v};
7: end while

8: if (U = V ) then declare failure;
9: return U ;

Heuristic 2 Vertex Cover Based
Input: A critical control-flow graph G =

〈V, v0, A, w〉 and desired sampling pe-
riod SP .

Output: A set U of vertices to be deleted
from G.

1: U := {};
2: G := PruneCFG(G,SP);

3: while (MW (G) < SP ∧ U 6= V ) do
4: vc := Approximate-Vertex-

Cover(G);
5: for each vertex v ∈ vc do
6: G := CollapseNode(G, v);
7: U := U ∪ {v};
8: end for
9: end while

10: if (U = V ) then declare failure;
11: return U ;

3.2 Heuristic 2

Our second heuristic is an algorithm based on a solution to the minimum vertex
cover problem: Given a (directed or undirected) graph G = 〈V,E〉, our goal is
to find the minimum set U ⊆ V , such that each edge in E is incident to at least
one vertex in U . The minimum vertex cover problem is NP-complete, but there
exists several approximation algorithms that find nearly optimal solutions (e.g.,
the 2-approximation in [5]).

Our algorithm (see Heuristic 2) works as follows:

– First, it prunes G (Line 2). That is, it removes all vertices where the weights
of all its incoming and outgoing arcs are greater than or equal to SP . Obvi-
ously, such vertices can remain in the graph.

– Next, we compute an approximate vertex cover of graph G (Line 4), denoted
as vc. Our intuition is that since the graph is pruned and the vertex cover
vc covers all arcs of the graph, collapsing all vertices in vc may result in
removing all arcs whose weights are strictly less than SP . We note that the
approximation algorithm in [5] is a non-deterministic randomized algorithm
and may produce different covers for the same input graph. To improve our
solution, we run Line 4 multiple times and select the smallest vertex cover.
This is abstracted away from the pseudo-code.

– Then, similar to Heuristic 1, we collapse each vertex v ∈ vc (Lines 5-7). This
operation (Lines 5-7) results in merging incoming arcs to v with outgoing
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arcs from v in the fashion described in Step 3 in Section 2. Basic block v
contains a critical instruction for which we add an auxiliary memory location
to build history of this instruction. Thus, we add v to U (Line 7).

– We repeat Lines 3-8 until the minimum arc weights of G are greater than or
equal to SP (the while-loop condition in Line 3).

– If the graph cannot be collapsed further (i.e., all vertices are collapsed), then
the graph’s structure will not permit increasing the sampling period to SP
and the algorithm declares failure.

4 Optimization Using a Genetic Algorithm

As another practical approach to the heuristics described in Section 3, we em-
ploy a genetic algorithm (GA) to approximate the solution of our optimization
problem. In our genetic model, we define a desirable sampling period SP and
aim at collapsing a minimum number of vertices in a given critical control-flow
graph G, so that we achieve a sampling period of at least SP .

We map our optimization problem to the following genetic model and will
describe it in detail in the following subsections:

1. Chromosomes: Each chromosome represents the list of vertices in a critical
control-flow graph, G. Each vertex in a chromosome is flagged by either the
value true or false. The value true represents the condition where the vertex
has been chosen to be collapsed in G.

2. Fitness Function: The fitness function of a chromosome is the number of
collapsed vertices represented by the chromosome.

3. Reproduction: To create a new generation of chromosomes, we use both mu-
tation and crossover.

4. Termination: The genetic algorithm terminates when a chromosome with
the optimal number of collapsed vertices is found, or the upper limit on
creating new generations is reached.

4.1 The Chromosomes

Let G = 〈V, v0, A,w〉 be a critical control-flow graph. Each chromosome in the
genetic model has a static length of |V |. Each entry of the chromosome is a
tuple 〈vertex id,min-SP, value〉 that represents a vertex in G. Vertex id is the
vertex identifier, min-SP is the minimum weight of the incoming and outgoing
arcs of the vertex and value indicates whether the vertex is collapsed in G.
If value = true for a vertex v, then v is collapsed and we add an auxiliary
memory location to build a history of the instruction in v. The sampling period
of the control-flow graph resulting from the collapsed vertices identified by the
chromosome must always be at least SP . We refer to the sampling period of the
resulting control-flow graph as the chromosome’s sampling period.

Upon initialization, we create the initial generation. First, We choose the size
|G| (i.e., number of chromosomes) of the generations. Second, we randomly create
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|G| chromosomes for the initial generation. To create a chromosome, we randomly
collapse a set of vertices resulting in a control-flow graph with a sampling period
of at least SP . Our genetic algorithm executes the following steps to generate
such a chromosome:

– First, it finds the set of vertices, SV , in G where min-SP is less than SP for
each vertex in SV .

– Second, it randomly chooses a vertex v ∈ SV and collapses v from G and
produces a new control-flow graph G′ = T (G, v).

– Third, it calculates the sampling period of G′. If the sampling period is less
than SP , it returns back to the first step and chooses the next vertex to
collapse.

4.2 Selection/Fitness Function

Since we aim at increasing the sampling period to SP with the least number
of collapsed vertices, the chromosome is more fit when the number of collapsed
vertices in the chromosome is closer to the optimal number of collapsed vertices.
Hence, we define the fitness function as: F = Cchr, where Cchr is the number
of collapsed vertices in chromosome chr. Consequently, if F is smaller, then the
chromosome will be more fit.

4.3 Reproduction

We use both mutation and crossover to evolve the current generation into a new
generation. First, we use a one-point crossover to create new chromosomes for
the next generation. The choice of parents is random. In the crossover, we cut
the two parents into half and create two children by swapping halves between
the parents. We check both children to see if their sampling period is at least SP .
If so, the child will be added to the set of chromosomes of the next generation;
if not, the child will be passed on to the mutation step.

Second, the mutation process takes the children passed over by the crossover
process and processes each child by the following steps:

1. It finds the set of vertices, SV , where min-SP is less than SP for each vertex
in SV .

2. It randomly chooses a vertex v ∈ SV to collapse by using T (G, v).
3. It finds the set of collapsed vertices, PV , in the child chromosome for vertices

where min-SP is larger than SP .
4. It randomly chooses a vertex u ∈ PV to un-collapse, meaning that u is

restored to the control-flow graph represented by the child chromosome.
5. It will check if the minimum sampling period of the new child chromosome

is at least SP . If the sampling period is less than SP , it will return to the
first step and repeat the steps again, until the sampling period of the child
chromosome is at least SP or when it exhausts the limit we set for the
number of times a chromosome can be mutated.
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6. If a new child chromosome with a sampling period of at least SP is reached
at step five, it is added to the next generation.

Sometimes the crossover and mutation processes fails to create |G| chromo-
somes to populate the next generation, since fewer than |G| children satisfy the
sampling period restriction for chromosomes. In this case, our genetic algorithm
chooses the most fit chromosomes from the current generation and adds them
to the next generation to create a population of |G| chromosomes. In the case
that duplicates chromosomes appear in this process, it discards the duplicate
and randomly creates new chromosomes as described in Section 4.1.

4.4 Termination

Two conditions can terminate the process of creating a new generation: (1) when
we find a chromosome with a sampling period of at least SP and has collapsed
the same number of vertices as the optimal solution; (2) when we reach an
upper bound on the number of generations. In the second case, we choose from
all generations the chromosome with the lowest fitness value F .

5 Experimental Results

In this section, we present the results of our experiments. Our tool chain consists
of the following: We generate the control-flow graph of a given C program using
the tool CIL [12]. Next, we generate the critical control-flow graph and either
transform it into an ILP model using the method in [3] and solve the model
using lp solve [11] or we feed the critical control-flow graph into our heuristics.
In either case, we obtain the set of instructions and variables in the program
that need to be instrumented using auxiliary memory. We use the breakpoint
mechanism of gdb [6] to implement time-triggered monitors. Finally, a Python
script controls gdb. Our case studies are from the MiBench [8] benchmark suite.
We fix a sampling period of 40 ×MSP , where MSP is the minimum sampling
period of the program (see Definition 2). All experiments in this section are
conducted on a personal computer with a 2.26 GHz Intel Core 2 Duo processor
and 6 GB of main memory.

5.1 Performance of Heuristics

Table 1 compares the performance of the ILP-based solution [3] with the heuris-
tics presented in Section 3 and the genetic algorithm proposed in Section 4 for
different programs from MiBench. The first column shows the size of the critical
control-flow graph of programs in terms of the number of vertices. With each
approach, we record the time spent to solve the optimization problem (in sec-
onds) and the suboptimal factor (SOF). SOF is defined as sol

opt , where sol and
opt are the number of vertices requiring instrumentation returned by a heuristic
and the ILP-based solution (i.e., the optimal solution), respectively.
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CFG ILP Heuristic 1 (Greedy) Heuristic 2 (VC) Genetic Algorithm
Size(|V |) time (s) SOF time (s) SOF time (s) SOF time (s) SOF

Blowfish 177 5316 − 0.0363 7.8 0.8875 8 383 2.5

CRC 13 0.35 − 0.0002 3.5 0.0852 3 0.254 1.5

Dijkstra 48 1808 − 0.0064 1.2 0.1400 1.2 116 1.7

FFT 47 269 − 0.0042 1.7 0.1737 1.8 74 1.1

Patricia 49 2084 − 0.0054 1.4 0.1369 1.6 140 1.5

Rijndael 70 3096 − 0.0060 1.6 0.2557 2.1 370 1.9

SHA 40 124 − 0.0039 2.2 0.1545 2.2 46 1.3

Susan 20 259 ∞ − 3 181 N/A 26 211 N/A 923 N/A

Table 1. Performance of different optimization techniques.

Clearly from Table 1, all three heuristic algorithms perform substantially
faster than solving the exact ILP problem. On average, Heuristic 1, Heuristic 2,
and the genetic algorithm yield in speedups of 200 000, 7 000, and 9, respectively,
where the speedup is defined as the ratio between the execution time required
to solve the ILP problem and the time required to generate an approximate
solution using one of the heuristics. The execution times of Heuristic 2 are based
on running Approximate-Vertex-Cover 500 times to cope with the randomized
vertex cover algorithm (see Line 4 in Heuristic 2). Table 1 shows that for large
programs, such as Susan, solving for the optimal solution becomes infeasible
because of the problem’s intractability. However, we see that all three heuristics
are able to generate some approximate solution that can be used to instrument
the program for time-triggered runtime verification.

In general, the genetic algorithm produces results that are closer to the opti-
mal solution than Heuristics 1 and 2. The spread of the SOFs for the conducted
experiments is small for the genetic algorithm. For the conducted experiments,
the worst SOF for the genetic algorithm is 2.5 (i.e., for Blowfish), which indicates
that this solution will collapse 2.5 times more vertices in the critical control-flow
graph than the optimal solution. With the exception of Blowfish, Heuristics 1 and
2 also perform well, where the SOF ranges from 1.2 to 3.5. We cannot conclude
that the performance of Heuristics 1 and 2 suffers as the size of the problem
increases because for Susan, Heuristics 1 and 2 indicate that SP may be satis-
fied by collapsing 104 and 180 vertices, respectively, while the genetic algorithm
produces a solution where 222 vertices must be collapsed. The SOFs for Dijkstra
also indicate an anomaly in the overall trend. Therefore, the performance of the
heuristics likely depends on the structure of the critical control-flow graph. For
Susan, the number of vertices being collapsed is approximately 0.5% to 1% of
|V |, which indicates that the instrumentation overhead should be small.

5.2 Analysis of Instrumentation Overhead

We also collected the execution times and memory usage of the instrumented
benchmark programs during experimentation. Figure 4 shows the execution
times and memory usage of four of the eight benchmark programs (for reasons of
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Fig. 4. The impact of different instrumentation schemes on memory usage and total
execution time.

space) we used for our experiments. Each plot in Figure 4 contains the execution
times and memory usage for the unmonitored program, the program monitored
with a sampling period of MSP , and the program monitored at 40×MSP with
the inserted instrumentation points indicated by the optimal and heuristic so-
lutions. The benchmark program results not shown in Figure 4 exhibit similar
trends as Figure 4(c).

Based on Figure 4, we observe that instrumented benchmark programs with
no history always run slower than the programs instrumented with SP = 40 ×
MSP . This is expected because the external monitor requires more processing
resources when it samples at higher frequencies.

We also observe that the variation of the execution times of programs in-
strumented based on the optimal and heuristic solutions (i.e., ILP, Heuristics 1
and 2, GA) are negligible. Therefore, using suboptimal instrumentation schemes
do not greatly affect the execution time of the program as compared to the
execution time of optimally instrumented program.

From Figure 4, we observe that utilizing the instrumentation schemes re-
turned by solving the ILP or running the heuristics result in an increase in the
memory usage during program execution. This is expected because to increase
the sampling period of the monitor, some program state history must be retained
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to ensure that the program can be properly verified at run time. With the ex-
ception of Blowfish, the memory usage increase is negligible for the benchmark
programs.

Using the instrumentation schemes generated by the heuristics, the increase
in memory usage is negligible during program execution with respect to the
optimally instrumented program, except for Blowfish. The variation of memory
usage for all benchmark programs except for Blowfish generally spans from 0 MB
to 0.1 MB. Even though the memory usage of Blowfish instrumented with the
schemes produced by Heuristic 2 and the genetic algorithm is relatively larger
than the optimal scheme, an increase of 15 MB of virtual memory is still negli-
gible to the amount of memory that is generally available on the machine used
to verify a program. Of the three heuristics, we cannot conclude which heuristic
generally produces the best instrumentation scheme, as each heuristic behaves
differently for different types of control-flow graphs.

Figure 5 shows the percentage increase in the number of instrumentation in-
structions executed and the percentage increase in the maximum size of history
between two consecutive samples with respect to the optimally instrumented
benchmark programs. Note that logarithmic scales are used in the charts in Fig-
ure 5. Observe that Susan is not shown in the figure, because solving for the
optimal solution is infeasible. Blowfish performed the poorest with respect to
the two measures when the instrumentation schemes generated by Heuristics 1
and 2 were used. In most cases, the percentage increase in the number of instru-
mentation instructions that are executed and the maximize size of history are
below 50% if we remove the two largest percentages from each set. If we ignore
a few more outliers, then most of the percentage increases for both measures
will be below 20%. We also observe that the percentage increase in the number
of instrumentation instructions executed is proportional to the increase in the
maximum size of the history between two consecutive samples. This implies that
the extra instrumentation instructions (as compared to the optimal solution) are
evenly distributed among sampling points.

Recall that the collapsed vertices during the transformation IT (see Section
2) determine the instrumentation instructions added to the program under in-
spection. These instructions in turn store changes in critical variables to the
history. Although one may argue that auxiliary memory usage at run time must
be in direct relationship with the number of collapsed vertices (i.e., instrumen-
tation instructions), this is not necessarily true. This is because the number
of added instrumentation instructions differs in different execution paths. For
example, one execution path may include no instrumentation instruction and
another path may include all such instructions. In this case, the first path will
build no history and the second will consume the maximum possible auxiliary
memory. This observation also holds in our analysis on other types of overheads
as well as the total execution time. This is why in Table 1, the genetic algorithm
does the best job of optimizing the Blowfish benchmark for the fewest critical
instructions, but in Figure 4(a), the benchmark uses substantially more memory
than the greedy heuristic. This is also why in Figure 5, the amount of auxil-

14



 1

 10

 100

Heuristic 1 Heuristic 2 Genetic Algorithm

In
c
re

a
s
e
 i
n
 I
n
s
tr

u
m

e
n
ta

ti
o
n
 E

x
e
c
u
ti
o
n
 [
%

]

Optimization Algorithm

Blowfish
CRC

Dijkstra
FFT

Patricia
Rijndael

SHA

(a) Increase in the number of execution of
instrumentation instructions.

 1

 10

 100

Heuristic 1 Heuristic 2 Genetic Algorithm

In
c
re

a
s
e
 i
n
 M

a
x
im

u
m

 L
e
n
g
th

 o
f 
H

is
to

ry
 [
%

]

Optimization Algorithm

Blowfish
CRC

Dijkstra
FFT

Patricia
Rijndael

SHA
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Fig. 5. The impact of sub-optimal solutions on execution of instructions to build history
and its maximum size.

iary memory used by a monitored program is not proportional to the number of
instrumented critical instructions.

We conclude from our experiments that the NP-completeness of the opti-
mization problem is not an obstacle when applying time-triggered runtime
verification in practice.

6 Conclusion

In this paper, we proposed three efficient algorithms to address the NP-complete
problem of optimizing the instrumentation of programs in the context of time-
triggered runtime verification [3]. This instrumentation is needed for constructing
history to record events between two consecutive samples at run time. Our al-
gorithms are inspired by different techniques, such as greedy heuristics, finding
the minimum vertex cover, and biological evolution. We rigorously benchmarked
eight different programs using our algorithms. The results show that the solutions
returned by all three algorithms lead to negligible increase in instrumentation
overhead and total memory usage at run time as well as the total execution time
of monitored program. Moreover, we found our genetic algorithm more efficient
and robust than the other two. In summary, we conclude from our experiments
that the NP-completeness of the optimization problem is not an obstacle when
applying time-triggered runtime verification in practice.

In the future, we plan to develop more sophisticated heuristics that specifi-
cally aim at distributing instrumentation instructions between sampling points
evenly. We are also working on other polynomial-time techniques, such as ILP
relaxation, for solving the instrumentation optimization problem. Other research
directions include developing adaptive methods for overhead control (e.g., by in-
corporating the method in [10]), where the monitor adapts its sampling period
based upon the structure of the input program.
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