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Abstract—Software instrumentation is a key technique in many
stages of the development process. It is particularly important for
debugging embedded systems. Instrumented programs produce
data traces which enable the developer to locate the origins
of misbehaviours in the system under test. However, producing
data traces incurs runtime overhead in the form of additional
computation resources for capturing and copying the data. The
instrumentation may therefore interfere with the system’s timing
and perturb its behavior.

In this work, we propose an instrumentation technique for
applications with temporal constraints, specifically targetting
background/foreground or cyclic executive systems. Our frame-
work permits reasoning about space and time and enables
the composition of software instrumentations. In particular, we
propose a definition for trace reliability, which enables us to
instrument real-time applications which aggressively push their
time budgets. Using the framework, we present a method with
low perturbation by optimizing the number of insertion points
and trace buffer size with respect to code size and time budgets.
Finally, we apply the theory to two concrete case studies: we
instrument the OpenEC firmware for the keyboard controller of
the One Laptop Per Child project, as well as an implementation
of a flash filesystem.

Index Terms—Instrumentation, tracing, debugging, real-time
systems.

I. INTRODUCTION

Instrumentation and tracing are key activities in debug-
ging microcontroller-based embedded systems. Instrumented
programs produce data traces, which developers can use to
diagnose misbehaviors in the system under test. For example,
if a trace shows incorrect control flow at a conditional branch,
then the branching condition or the input values influencing
that branch will be most likely causes for the bug.

However, instrumentation and tracing incur runtime over-
head. The consequences of the instrumentation overhead range
from negligible to devastating: while some systems tolerate
changes in code timing, heavily-loaded real-time applications
often do not tolerate such changes. Our approach aims at
instrumenting real-time programs by considering time budgets
and imposing minimal overhead.

Related work on instrumentation has not considered time
budgets. Current software instrumentation frameworks—built
for monitoring executions of programs for non-embedded
systems—typically insert code immediately after each occur-
rence of a traceable event. For instance, the AspectJ [1] and
Etch [2] instrumentation and monitoring frameworks enable
developers to monitor every write to a heap variable, but do
not have any provision for monitoring subject to constraints
on overhead. We compare more instrumentation frameworks
in Section XI.

This work concentrates on time-aware instrumentation of
Misra-C compliant functions in a background/foreground [3]

or cyclic executive system [4], [5]. Misra-C provides a stan-
dard for implementing safety-critical real-time systems; for
example, it requires bounded loops and limits recursion.

Technically, background/foreground systems or a cyclic
executive with interrupts are preemptive multi-tasking systems
with exactly two tasks. The background task always executes
and consists of a single endless loop, sometimes called a super
loop, which invokes a collection of functions in sequence. For
example, in a keyboard controller, these functions steps can
be (a) handle command, (b) update LEDs, (c) check power
savings mode, (d) process received messages, and (e) update
watchdog timer. The foreground task preempts the background
task whenever a serviceable interrupt line becomes asserted.
The background task never preempts the foreground task. For
example as part of the foreground part, an interrupt can handle
urgent actions such as emptying the receive buffer whenever
a new message has been received for the keyboard controller.
In this work we assume no nested interrupts and one interrupt
priority level, yet our results still hold for the target class of
systems: generalizing to nested interrupts and interrupt priority
levels requires refining calculating the execution time c and
consider blocking times due to nested, prioritized interrupts.

The key idea behind the time-aware instrumentation of a
system is to transform the execution-time distribution of the
system so as to maximize the reliability of the trace while
always staying within the time budget. Our notion of reliability
implies that the instrumentation will provide useful data over
longer periods of tracing. A time-aware instrumentation injects
code, potentially extending the execution time on all paths,
while ensuring that no path takes longer than the specified
time budget.

The time budget is the worst-case execution time of a
function without violating a specification. In hard real-time
systems, the time budget can be the longest execution time
without missing any deadline, and depending on the longest
execution time of the non-instrumented version, more or less
time will be available for the instrumentation. In systems with-
out deadlines, the time budget can be the current maximum
execution time plus a specified non-zero maximum overhead
for tracing to the current maximum execution time.

Figure 1 shows the expected consequences of time-aware
instrumentation in a hard real-time application on the proba-
bility density function of a loop iteration’s execution time. The
x-axis specifies the execution time of the loop iteration, while
the y-axis indicates the frequency of the particular execution
time. The original uninstrumented code has some arbitrary
density function. We have chosen the Gaussian distribution for
this example for illustrative purposes; Li et al. provide details
from empirical observations of distribution functions [6]. The
distribution for the instrumented version differs from the
original one. It is shifted towards the right, but still never



passes the deadline. This shift occurs because time-aware
instrumentation adds to paths, increasing their running times,
but ensures that execution times never exceed the deadline.

Note that our execution-time model concentrates on the
overhead involved in acquiring data. A related problem is
to transport the collected data from the embedded system to
an external analysis unit. While that problem admits many
solutions, one common solution is to piggyback the buffer
information onto serial or network communication.
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Fig. 1. Execution-time distribution for a code block before and after time-
aware instrumentation showing the shift in the expected execution time.

So, what do we need to perform time-aware instrumen-
tation? First, we need an underlying model which captures
relevant properties from the source code. Since we concentrate
on timed systems, this model should include the temporal
behaviour of the system as well as its system’s control flow.
It should also indicate which data needs to be logged. The
model then allows us to calculate the impact and effectiveness
of various instrumentations. For example, we can use the
model to calculate how the execution time will change on
each control-flow path. Our goal, however, is to use the model
to determine the optimal instrumentation for runtime traces.
Optimal means that, given a time budget, the system provides
the best instrumentation possible in terms of instrumentation
reliability.

The contributions of this paper include:
• a definition for instrumentation reliability;
• a definition of “time-aware instrumentation”, which in-

struments code, optimizing for code space and reliability,
while meeting specified time bounds;

• strategies for computing time-aware instrumentations
with and without temporal bounds;

• an implementation of a research framework that enables
experiments on the impact of time-aware instrumentation;
and

• experimental results exploring the impact of time-aware
instrumentation on the OpenEC keyboard controller code
and an embedded flash filesystem implementation.

II. METHODOLOGY

We propose the following instrumentation stages:
• Source analysis: The source-code analyzer breaks the

functions into basic blocks and generates a call graph.
The analyzer also presents a list of variables which are

assigned in these basic blocks and the developer can
choose a subset of these variables to trace. For hard real-
time applications, the analyzer annotates the call graph
using execution time information obtained through static
analysis or measurements [7].

• Naive instrumentation: Using the control-flow graph,
the execution times of the basic blocks, and the input
variables for the trace, we inject code into the selected
function at all instrumentation points.

• Enforce time budget: If the naive instrumentation ex-
ceeds the time budget, we use the technique in Sec-
tion VI-E to compute an instrumentation which does
respect the time budget while maximizing the reliability
of the instrumentation.

• Minimize code size: If the instrumentation is reliable
enough, then we apply semantics-preserving, decreasing
transformations (Section VII) to reduce the size of the
instrumented code.

• Collect traces: The developer finally recompiles and
executes the instrumented program.

Figure 2 shows the workflow that results from the steps.
To instrument a function, we start by picking the function
of interest. We then use the assembly analyzer to extract
the control flow graph and break the function into execution
paths. In the first phase, we use a tool to instrument all
variables of interest and then check whether the execution
time on the worst-case path has changed. If it has changed,
then we will use integer linear programming to lower the
reliability of the instrumentation so that it meets the timing
requirements. If the reliability is too low, then we can either
give up, if we cannot extend the time budget available for the
function and the instrumentation; or extend the time budget,
which will allow for higher-reliability instrumentations. If the
optimized instrumentation meets the required reliability, or if
the initial naive instrumentation does not extend the worst-case
path, then we will proceed and use the identified execution
paths to minimize the required code size. Afterwards, we can
recompile the program and collect the desired traces from the
instrumentation.

III. MOTIVATING EXAMPLE

We illustrate the contributions of this work by applying
them to the OpenEC source code. OpenEC [8] is an effort
to implement an open firmware for the embedded controller
of the XO platform (from the One Laptop per Child project).
OpenEC is currently development-stage code; as of October
2008, the source consists of 8090 lines of C code with inline
assembler.

The OpenEC code conforms to the background/foreground
structure. Listing 1 shows the main loop of the OpenEC
source. In this loop, the program sequentially calls the main
function blocks. At the end of the loop, the controller will
suspend itself for the amount of time remaining in its budget.
The typical loop frequency is 100Hz. Thus, the time budget for
the main loop is 10ms. The function sleep if allowed suspends
the keyboard controller until 10ms have elapsed since the start
of loop.
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Fig. 2. Workflow of applying time-aware instrumentation.

1 whi le ( 1 )
{

3 STATES_TIMESTAMP ( ) ;

5 busy = handle_command ( ) ;
busy |= handle_cursors ( ) ;

7 handle_leds ( ) ;
handle_power ( ) ;

9 handle_ds2756_requests ( ) ;
handle_ds2756_readout ( ) ;

11 busy |= handle_battery_charging_table ( ) ;

13 watchdog_all_up_and_well |= WATCHDOG_MAIN_LOOP_IS_FINE ;

15 print_states ( ) ;
monitor ( ) ;

17 handle_debug ( ) ;
sleep_if_allowed ( ) ;

19 }

Listing 1. Main loop of the OpenEC source.

The One-Wire bus and the debugging UART generate
incoming interrupts for the foreground tasks. We bound their
effect by considering the bit rates of the bus and UART.

A subtask of the background task handles the power button.
This subtask switches the main XO machine on and off as
appropriate (and also handles, for instance, various LEDs and
the wireless networking subsystem). Listing 2 presents part of
the code for handling the power button. We will demonstrate
the instrumentation process for this procedure.

1 void handle_power ( void ) {
i f (power_private .my_tick == ( unsigned char )tick )

3 re turn ;
power_private .my_tick = ( unsigned char )tick ;

5

sw i t ch (power_private .state ) {
7 case 0 :

i f ( POWER_BUTTON_PRESSED ) {
9 power_private .timer++;

i f ( power_private .timer == HZ / 1 0 ) {
11 LED_PWR_ON ( ) ;

power_private .state = 1 ; } }
13 e l s e power_private .timer = 0 ;

break ;

15 case 1 :
SWITCH_WLAN_ON ( ) ;

17 power_private .state = 2 ;
break ;

19 /∗ . . . ∗ /
STATES_UPDATE (power , power_private .state ) ;

Listing 2. Source excerpt: button handler.

Listing 3 presents case 1 of the switch statement in 8051
assembler. We propose the instrumentation of the assembler
code; it suffices to add instrumentation code after the instruc-
tion movx r0, a. To carry out time-aware instrumentation,
we compute the cost of the procedure and instrument it if
the budget allows. If the budget does not allow for complete
instrumentation, we instrument the subset of the writes to
memory which maximizes reliability and optimizes for code
size, and then report on the reliability of our instrumentation.

; p o w er . c : 2 1 9 : case 1 :
2 00112$ :

; p o w er . c : 2 2 0 : SWITCH WLAN ON ( ) ;
4 mov dptr , #_GPIOD00

movx a ,@dptr
6 mov r2 ,a

o r l a , # 0x02
8 movx @dptr ,a

; p o w er . c : 2 2 1 : p o w e r p r i v a t e . s t a t e = 2;
10 mov r0 , # (_power_private + 0x0002 )

mov a , # 0x02
12 movx @r0 ,a

; ∗∗ i n s t r u m e n t p o w e r p r i v a t e . s t a t e here ∗∗
14 ; p o w er . c : 2 2 2 : break ;

ljmp 00172$

Listing 3. Compiled power button code.

IV. MODEL DEFINITION

We abstract the source program as a directed graph G =
〈V,E〉, representing the program’s interprocedural control
flow, and use functions c : V → R and p : E → [0, 1] to
model the program’s behaviour. For background/foreground
implementations and cyclic executives, G contains a large
cycle (“super loop”), representing the forever-running task,
with subtasks on the spine of the large cycle.

An instrumentation of a software program inserts custom
code at specific insertion points into a program. An instrumen-
tation operation is the piece of code that realizes the desired
instrumentation function at the insertion point. A uniform
instrumentation inserts the same instrumentation operation
at each insertion point. A complete instrumentation inserts
code at every insertion point, while a partial instrumentation
only inserts code at some insertion points. Finally, an instru-
mentation is stateless if it decides whether to instrument an
insertion point deterministically and solely based on the code
immediately before that insertion point.

In our use case, we always instrument the program for
assignment tracing. That is, our instrumentation operation
copies a variable’s value into a buffer. The contents of the
buffer are then read after the program terminates or at the
bottom of the super loop.
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A. Static Analysis Approach

We have built a static analysis tool which accepts C pro-
grams and extracts relevant data, including the control-flow
graph, basic blocks, and a cost model. Figure 3 presents the
structure of our static analysis tool; we next summarize the
structure and discuss our key design decisions.

parse

compute
callgraph

compute
basic

blocks,
costs

compute
interprocedural

basic block CFG

enumerate
paths

Fig. 3. The source analysis step preceding the instrumentation step in the
workflow.

We analyze assembler code directly. Our case study was
written for an 8051-family microcontroller, which is simple to
model: it suffices to count the (constant) number of cycles each
instruction takes to execute. We decided that the benefits of
having an exact cost model and the ease of parsing assembler
outweighed the benefits of getting structured programs.

Our tool parses the assembler code emitted by SDCC [9],
the C compiler for the OpenEC project. Next, it computes the
call graph and basic blocks. Since our target class of embedded
programs is free of function pointers and dynamic dispatch,
we were able to use a straightforward callgraph construction
algorithm. Finally, it computes an interprocedural control-flow
graph for the program, based on the call graph and individual
control-flow graphs for each procedure. Our interprocedural
analysis is context-insensitive: it matches procedure p’s return
statement with all callers to p.

Our abstraction enables us to enumerate the set of paths
between two program points and to compute the cost of
each path. Recall that we assume a general loop in the
task which executes forever (therefore no timer or interrupt-
driven periodic task implementation); our approach allows
us to enumerate the paths between the beginning and the
end of the super loop, as well as between other arbitrary
program points. Our approach can also simulate the effect
of finite loop unrolling while enumerating paths, by allowing
a bounded number of visits to the loop decision points. In
general, microcontroller systems’ loops execute a fixed number
of times: loops are most often used to copy data between
(fixed-size) array buffers during input and output.

B. Abstraction Definition and Timing

Each vertex in G represents a basic block in the program.
We abstract a vertex v ∈ V by 〈A,L〉, with assignments A and
variables L logged at v. The function c : V → R specifies the
required computation time c, or cost, for vertex v. For example,
c(v0) = 12.2t means that the basic block at vertex v0 requires
12.2 time units for its execution. The cost of a path c(p) is the
execution time of a particular path which is the sum of costs of
all vertices in the path. Edges e := 〈vs, vd〉 specify transitions
from source vertex vs to destination vertex vd. The function
P : E → [0, 1] gives the probability P (e) that the execution
will use edge e to leave vertex vs. So, P (〈v0, v1〉) = 0.5

means that on average every other execution will continue at
vertex v1 after executing v0.

In general, it is the developer’s responsibility to estimate the
cost function c and the probability function P . We believe that
it is fairly straightforward to estimate both of these functions
for our target class of systems.

Our current analysis framework helps developers compute
c by calculating cycle counts for each basic block, based
on the microcontroller’s specifications. More generally, mi-
crocontroller vendors provide cycle accurate simulators which
allow the developer to measure the execution time of executed
code. Small microcontrollers use simple structures, so the
problems inherent in measuring the worst-case execution time
are manageable, unlike with pipelined architectures or systems
with caches which require sophisticated tools [7]. However,
how our instrumentation affects the worst case on more
sophisticated architectures remains an open problem. At the
moment, a developer would have to rerun the WCET tools
after instrumentation to ensure that cache replacement and
changes in the memory layout had not invalidated the previous
worst case estimates.

Developers can estimate P by collecting profiling data. Two
types of branches require estimates for P : branches due to
loops and branches due to conditionals. Because our target
class of programs must use only bounded loops, the loop
branch probabilities can easily be estimated as a function
of the maximum loop iteration count. We also expect that
the developer will have a test suite for the system; it is
straightforward to obtain estimates for P at other conditional
statements based on profiling data from the test suite, or from
standard usage modelling techniques.

V. ACCOMMODATING INTERRUPTS

Accounting for interrupts is critical: otherwise, our model of
the instrumented system may meet the deadline, since there
are no interrupts in the model, while the real system could
miss the deadline due to interrupts.

The foreground part of a background/foreground system
consists of interrupt service routines. The computation time
required by the foreground part can be modelled as overhead
over the normal execution time of the background part. We
assume that interrupts occur as sporadic events with a known
minimal inter-arrival time. We furthermore assume the inter-
rupt service routine to be bounded and to always eventually
terminate. We can then adjust the execution time of any
measurement c to accommodate interrupts using response time
analysis [10]. We assume the following recurrence relation for
calculating the response time:

R(x) solution to t(l+1) = x +
∑
irq

(dtl/f(irqi)ec(irqi)) (1)

with c(irqi) as the execution time of the interrupt and
f(irqi) as its minimal inter-arrival rate frequency.

We can iteratively solve the recurrence relation until
t(l+1) = tl and can use x as the starting value for t0. At
this point, we computed the maximum response time of the
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background part considering all interference from interrupts.
We use R(x) as the solution of this recurrence relation.

As an example of overhead adjustment, consider the
OpenEC’s UART interrupt, which we use to retrieve gen-
erated traces. The interrupt service routine executes, in the
worst case, 20 assembly instructions. Running at 32MHz and
with five cycles per instruction, the interrupt service routine
requires an execution time of about c = 3 125ns. The UART
interrupt arrives with a frequency of 11 520Hz resulting in
f = 0.000086805555556. Thus, for a basic block with an
execution time of x = 10ms, we start at l = 0 with

t0 = x + c ∗ d 0.01 /fe = 0.01036
t1 = x + c ∗ d 0.01036 /fe = 0.01037296
t2 = x + c ∗ d 0.01037296 /fe = 0.010373427
t3 = x + c ∗ d 0.010373427 /fe = 0.010373443
t4 = x + c ∗ d 0.010373443 /fe = 0.010373444
t5 = x + c ∗ d 0.010373444 /fe = 0.010373444

thus stopping at t5 = t4 = R(x) = 0.010373444s.

VI. INSTRUMENTATION AND RELIABILITY

Using our refined timing model, we can calculate time
budgets for systems with instrumentation. The instrumentation
overhead is the sum of the computation time of the instru-
mentation operations at the insertion points. The calculation
proceeds as follows: 1) extract the control flow paths with
variable assignments for the specified function; then, 2) check
whether the instrumentation stays within the time budget. If it
does not, 3) compute the maximum-reliability instrumentation
which respects the time budget and 4) optimize this instru-
mentation for code size.

In the first step, we create the set P of all paths p between
the start and the end control-flow graph vertices of the selected
function. A path is a sequence of vertices p = vi → vj →
· · · → vk with i ≤ j ≤ k on G.

Some instrumentation properties are impossible to monitor
while respecting the system’s given time budgets. The two
possible solutions are either to increase the time budget or to
resort to partial instrumentations:

• Extend the time budget: Some systems tolerate in-
creases in their time budgets. For example, soft real-
time systems [11] rely on best-effort methods to meet
deadlines; no direct harm results from the occasionally
missed deadline. Therefore, if some paths cause deadline
misses, then we can calculate the probability that system
follows deadline-missing paths, and the developer can
decide whether the system tolerates this instrumentation.

• Lower the instrumentation reliability: Alternatively,
the developer can reduce the instrumentation’s reliability
so that all execution paths obey the time budget. By reli-
ability, we mean the probability that the instrumentation
fails to serve the predefined purpose over a longer period
of tracing. In such cases, the best we can do is to create
partial instrumentations. For runtime tracing, the resulting
trace may miss some variable assignments. In terms of
instrumentation reliability, this means that, as we trace

the system for longer periods of time, chances increase
that we observe a path that lacks the instrumentation.

The concept of partial instrumentations raises the following
question: What is the maximal reliability of the instrumen-
tation for a given time budget? To explore this question,
we define the notion of instrumentation reliability for partial
instrumentations in the context of runtime tracing.

A. Reliability For An Insertion Point

The instrumentation reliability of an assignment x is the
probability that the value assigned at x gets logged before be-
ing lost. Algorithm 1 calculates the instrumentation reliability
for a runtime-tracing instrumentation insertion point v0 using
a standard depth-first search algorithm. The call hit(v0, x, 1)
calculates the reliability of assignment x at vertex v0, setting
pr to 1 for the initial recursive call. (pr tracks the probability
of hitting node v). For a vertex v, v.L denotes the set of
logged (monitored) assignments at v, while v.A denotes the
set of all assignments (and hence all insertion points) at v.
The algorithm traverses the control-flow graph until (a) it
detects that a vertex logs the value of x or (b) the variable
x gets reassigned. If the algorithm detects logging (case (a)),
the algorithm will add the probability of the program taking
that particular path to the computed reliability for v0. If x
is re-assigned before being logged (case (b)), the algorithm
adds zero to the computed reliability for v0. Otherwise, it
recursively adds reliabilities for edges e out of the currently-
visited vertex v by summing the outgoing reliabilities for
destinations e.vd, scaled by the probability pr of reaching v.

Algorithm 1 Calculate reliability of logging statement x at v.
procedure hit(v, x, pr)

if x ∈ v.L then return pr end if
if x ∈ v.A then return 0 end if
a⇐ 0
for all e such that e.vs = v do

a⇐ a + hit(e.vd, x, P (e) · pr)
end for
return a

end procedure

B. Reliability For A Path

The instrumentation reliability of a path p, denoted r(p),
generalizes the instrumentation reliability for a single assign-
ment by taking into account all assignments to a given set
of variables on the path p. In particular, r(p) is the ratio of
monitored-to-missed variables along path p. Unfortunately, the
intuitive approach that the reliability is simply |

S
vi.L|

|
S

vi.A| , using
multisets, is incorrect: a vertex v can be part of many paths,
so that its set v.L might contain entries that are only relevant
to other paths.

Algorithm 2 shows how we calculate the reliability for path
p in a single pass. Essentially, as the algorithm visits a path, it
stores, in l, the variables assigned but not stored in p and then
adjusts one counter for misses and one for hits. The function
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“succ(p, n)” returns the next element after n in path p, if
there exists such an element; otherwise, it returns “nil”. We
use variable n to iterate over the path’s vertices.

Algorithm 2 Calculate the reliability of logging for a path p.
n⇐ head(p)
l⇐ ∅
while n 6= nil do

for all x ∈ n.A do
if x ∈ l then miss ⇐ miss + 1 end if

end for
for all x ∈ n.L do

if x ∈ l then hit ⇐ hit + 1; l⇐ l \ x end if
end for
l← l ∪ n.A
n⇐ succ(p, n)

end while
miss ⇐ miss + |l|

C. Reliability For Instrumentations

The instrumentation reliability of a partial instrumentation,
r(P), is the sum of the weighted reliability of all possible
paths using the path probabilities as weights. The formula

P (p) =
∏
e∈p

P (e)

gives the probability of taking a specific path p ∈ P by mul-
tiplying the probabilities for each edge e ∈ p. (In multiplying
probabilities together, we assume that they are independent.
Many systems, including SPIN [12], assume independent
probabilities at different choice points, as we do here.)

The set P contains all possible paths p based on the control-
flow graph G starting at the source vertex v0. Since we
define the instrumentation reliability as the expected number
of logged assignments over the total number of assignments
for all paths, weighted by their expected value, we get the
following equation:

r(P) =
∑
pi∈P

r(pi)P (pi) (2)

D. Timing an Instrumentation

The execution time overhead of an instrumentation depends
on the software design of the capture and transfer mechanism.
Our method captures values in a pre-allocated buffer (see
Section VIII) and flushes the buffer at the end of the super
loop. This method can incur two types of execution overhead:
capturing the buffer and flushing the buffer. Note that the
execution overhead varies between architectures.

• Capturing the value: To capture the assignment value,
the instrumentation engine stores the value in a buffer.

• Flushing the buffer: Flushing the buffer depends on the
method for moving the data off chip. Two possible meth-
ods are the JTAG tracing system or a UART interface. In
both cases, the developer must compute the worst case
transmission time for transmitting the buffer size.

We denote the overhead of capturing a value by oc and of
flushing the buffer with of. To calculate how much a path pi

contributes to the overall overhead op, we calculate:

op = of +
∑
v∈pi

|v.L|oc, (3)

and the overhead of a whole instrumentation is,

oi =
∑
pi∈P

opi
P (pi).

These values constrain the reliability-maximizing optimization
problem. Note that both values at this point do not consider
interference as specified in Equation 1. Also of varies depend-
ing on the number of instrumentations along the path. On the
worst-case path it will even be zero, if no variable assignments
are logged. In the current work we use a single value of of

for simplicity reasons.

E. Maximal Reliability for Constrained Time Budgets

Using the notions of reliability and time budgets, we can
now address the problem of instrumenting applications which
aggressively push their constrained time budgets (e.g., hard
real-time applications with zero time budget). If the time
budget is insufficient for a complete instrumentation, then we
need to address the question: Which insertion points should we
intentionally omit to maximize the information gained about
the system without exceeding the time budget? Unfortunately,
this problem cannot be reduced to a knapsack problem, which
admits known approximation solutions, because multiple paths
may share vertices, so that pruning a vertex in one path might
affect the value (=path reliability r(p)) of another path.

We instead formulate the problem as a linear programming
problem. Equation (4) shows the function to be maximized.
Variables ni store the value of the insertion point (i.e. the
number of trace variables in basic block vi). If paths share
basic blocks (vertices), then the optimization function sums
the coefficients of the nis to get path costs that respect sharing.

Inequalities (5) and below represent the problem constraints:
total instrumentation on each path must be less than the time
budget tb after adding overhead from interrupts by calculating
R(x). The first two terms—of +

∑
vi∈pn

nioc—are a modified
version of Equation (3) with ni as |v.L|. Increasing the number
of insertion points (i.e., setting ni non-zero) can increase
the execution time on each path. Finally, constraints (6) give
boundary conditions and limit the number of variables per
basic block.
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max
∑
pi∈P

∑
vi∈pi

ni (4)

R
(
of +

∑
vi∈p0

nioc +
∑

vi∈p0

c(vi)
)
≤ tb (5)

...

R
(
of +

∑
vi∈pn

nioc +
∑

vi∈pn

c(vi)
)
≤ tb

0 ≤ n0 ≤ |v0.A| (6)
...

0 ≤ nn ≤ |vn.A|

VII. MINIMIZING INSERTION POINTS

Once we compute the maximal possible reliability for our
instrumentation property, we wish to create the instrumentation
which uses the minimal number of insertion points. We will
use the control-flow graph G, along with the costs c and
transition probabilities P , to compute such an instrumentation.
Note that naive instrumentations, as seen in [13], [2], [1], do
not use the minimal number of insertion points in general.

Unfortunately, finding the minimal number of insertion
points is NP-hard. We can show this by reducing the NP-
complete hitting set problem [14] to the instrumentation
problem. Recall that the hitting set problem takes a set V
of elements and a collection C of subsets of V ; the solution
is the smallest subset H ⊂ V for which H ∩ S 6= ∅ for
each S ∈ C. Our instrumentation problem takes a control-flow
graph with a set V of vertices. Some of the vertices x ∈ V
are assignments; each such assignment has a set S of vertices
where the assignment x may be logged. (This set of vertices
corresponds to the nodes reachable by reassignment-free paths
from x.) The instrumentation problem seeks a minimal subset
H of V for which H ∩ S 6= ∅ for each S. These descriptions
of the problems make the reduction fairly obvious; given a
hitting set instance, simply map the vertices of the hitting set
instance to vertices in the control-flow graph, and map the
subset S to an assignment in the instrumentation problem.

In a uniform, complete, stateless instrumentation of a non-
concurrent function, an instrumentation with minimal insertion
points also has a minimal increase in code size. Informally
one can see this, because instrumenting a program can only
increase the code size. Therefore, the program with the fewest
insertion points also has the smallest code size.

Towards the minimal instrumentation. Our goal is to
transform the naive instrumentation with maximal reliability
so as to preserve reliability and minimize the size of the
instrumentation. However, we also must ensure that the mini-
mization does not change the time budget of the unoptimized
instrumentation. We therefore propose the use of semantics-
preserving and decreasing transformations on an instrumenta-
tion to minimize code size.

A semantics-preserving transformation of an instrumenta-
tion is one that keeps the same set of observable effects

as the original instrumentation. An example of a semantics-
preserving transformation is one that delays recording a
variable, as long as the delay does not extend beyond any
statement which overwrites the value to be recorded.

A decreasing transformation must not increase the number
of insertion points executed in any trace of an instrumented
program. The non-increasing property ensures that, if the
original instrumentation did not exceed its time budget, then
the transformed instrumentation also does not exceed the same
time budget. An example of a decreasing transformation is
one that combines two insertion points after a branch into one
insertion point before the branch, as long as the branch is not
a loop condition.

VIII. MINIMAL TRACE BUFFER SIZE

Another problem in tracing embedded programs is deter-
mining adequate sizes for trace buffers: how much data does
the program need to store before the next flush at the end of the
loop? The developer usually makes an ad-hoc educated guess
or uses trial and error to determine whether the buffer size
is sufficiently large for the given instrumentation. Our model
enables developers to compute the precise size required for the
trace buffer, which ensures that the trace buffer will contain
all data computed during the execution.

To compute the minimal trace buffer size (which is the
maximal buffer size required at run time), we extend Algo-
rithm 2. Instead of calculating the hit and miss ratio, the
modified version of the algorithm sums the storage size of
the logged assignments. Specifically, instead of increasing hit
by one in Line 8, we increase it by the storage size of the
logged variable. If we call the modified algorithm s(p), then
the maximal buffer size is

bmax = max(s(pi)) for all pi ∈ P,

while the expected buffer size is

bexp =
∑
pi∈P

s(pi)p(pi).

Our prototype implementation also uses an in-buffer pointer
and an identifier field to reconstruct the buffered data.

IX. CASE STUDY I: OPENEC CASE

To demonstrate the effectiveness of our approach, we have
applied it to two case studies: a flash filesystem and the
OpenEC controller code. In this section we describe the
OpenEC case study. Specifically, we investigate the han-
dle power function of OpenEC. We want to trace all 20 active
variables (local and global) in the function. Note that our func-
tion works similarly for tracing individual variables or flags
for debugging purposes. The function handle power consists
of 42 basic blocks, with 20 different control-flow paths through
these blocks. The mean execution time is 75 cycles and the
worst-case execution time is 132 cycles. Monitoring a variable
costs one cycle.

In the experiment, we will investigate the following two
questions:
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• If we tolerate zero overhead, with what reliability can we
monitor variables in this function? Furthermore, what is
the minimal required buffer size?

• How does the monitoring reliability change when we
provide a time budget for monitoring?

To answer these questions, we implemented (a) the static
analysis tool outlined in Section IV-A in Scala and (b) the ILP
problem from Section VI-E in Matlab. For this case study, we
assume that the time budget to be the execution time of the
longest running path, oc = 1, of = 0, and no interrupts.

A. Trace Reliability for OpenEC

Figure 4 presents the trace reliabilities along the different
paths with the time budget equal to the longest executing
path. The x-axis displays each of the individual 20 paths.
The y-axis shows the monitoring reliability along each path.
Since we provision for no overhead, some paths cannot be
instrumented. Although the function handle power has exactly
one path using the worst-case execution time, four other paths
share its control flow sufficiently that they cannot be instru-
mented either. Using the equations from Section VI-C and our
abstraction, the monitoring reliability of the handle power is
35.83% for this scenario.
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Fig. 4. Monitoring reliability of function handle power in the ‘all out’
scenario.

B. Execution Time

Figure 5 shows the fitted density function for both programs.
Note that this figure is only for illustrative purposes, because
the execution time is a discrete function and so are all
expected values. This figure illustrates what happens during
instrumentation and suggests that our core idea outlined in the
introduction is correct. Although the instrumentation causes
only minor changes around the peak, the instrumented program
still requires more execution time than the original program
as one can see for example around values 120 to 140. The
extent of this shift is primarily influenced by the number of
assignments to heap variables outside the worst-case path.
More assignments per basic block imply a more prominent
shift in the density function.

0 20 40 60 80 100 120 140 160 180
0

0.005

0.01

0.015

0.02

0.025
Density Function of the Expected Execution Time

Execution time

P
ro

ba
bi

lit
y

 

 

Original program
Instrumented program

Fig. 5. Shift in the density function of the execution time of the function
handle power.

C. Minimal Buffer Size

To calculate the minimal buffer size, we use Algorithm 2
with the modifications described in Section VIII. The minimal
required buffer size is independent of any particular path’s
tracing reliability: even if the path has a low reliability and
low execution frequency, it may still eventually be executed
and then the system must provide sufficient storage capacity
for the trace.

The analyzed function handle power updates only the state
of the controller and sets hardware registers. All updates to
the state affect variables of type unsigned char, and these
variables include, for example, power private.my tick and
power private.timer. All updates to the registers are of the
same type. Using our static analysis tool, we discover that
Path 8 monitors the most variables of all paths with 16 assign-
ments. Thus a sufficient buffer size for this instrumentation is
16 · sizeof(unsigned char).

D. Increasing the Time Budget

In some applications, the developer can increase the time
budget to devote more time to the tracing effort; consider a
heavily-loaded system that drives a motor. The motor may
tolerate some jitter in its duty cycle. Reliable operation, how-
ever, demands as little jitter as possible. During the monitoring
effort, it might be acceptable to drive motors with functions
that introduce jitter but allow for instrumentation. How much
reliability can we gain by increasing our deadline by a few
cycles?

The surprising result is that adding a few extra cycles to the
deadline significantly increases the trace reliability. Figure 6
shows the result for the handle power function in which we
changed the deadline from 132 cycles to 137 cycles. The x-
axis lists the cycles that we add to the execution time of the
worst-case path. The y-axis shows the tracing reliability in the
function handle power. The reason for the surprising result is
that about 25% of the paths share critical parts with the worst-
case path. Thus, the algorithm cannot use the insertion points.
However, relaxing the deadline provides more flexibility and
the algorithm then also instruments these highly-frequented
basic blocks.
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Fig. 6. Effect of increasing the time budget for logging in handle power.

X. CASE STUDY II: FLASH FILESYSTEM

In this section, we describe the flash filesystem imple-
mentation. This second case study confirms the observations
from the first case study and provides more evidence for our
conclusions.

A. Overview

We investigated an implementation of a wear-levelling FAT-
like filesystem for flash devices [15]. The code was originally
written by Hein de Kock for 8051 processors. We slightly
modified the original implementation so that it would compile
with sdcc; in particular, we needed to modify the header
files to get the code to compile. The implementation consists
of about 3000 non-blank, non-comment lines of C code. We
ran our tool on 30 functions from the fs.c file, dropping
some uninteresting functions with mostly straight-line control-
flow. Of the 30 functions, 4 functions had more than 100 basic
blocks, and fclose had 200 basic blocks. For this case study,
we also assume that the time budget is the execution time of
the longest running path in the function, of = 0, oc = 1, and
no interrupts.

B. Measurements

Figure 7 compares density functions for four procedures in
the filesystem implementation, both before and after instru-
mentation. The solid blue line represents the density function
of the original procedures, while the dashed red line represents
the density function for the instrumented versions. Each of
this figures clearly shows that the original idea underlying our
method of time-aware instrumentation, as outlined in Figure 1,
works well.

The procedure fsetpos shown in Figure 7(b) exhibits the
biggest difference between instrumented and non-instrumented
versions. The reason is that although this procedure contains
many assignments spread across different paths, most assign-
ments do not lie on the worst-case path. The instrumentation
engine can therefore capture assignments along these non-
critical paths, raising their execution time and putting them
closer to the execution time of the worst-case path. Since the
engine can capture assignments on many paths, the density

function of the execution time for the instrumented version
shows a large increase on the right part of the figure, along
with a steep decrease on the left part of the figure.

The procedure rename shown in Figure 7(d) demonstrates
that sometimes the developer might want to add time to the
budget for instrumenting to enable the instrumentation of the
worst-case path. Figure 8 shows that even with a small increase
in the time budget, the reliability can increase significantly.
Figure 7 shows the function fputs without any additional
increase in the time budget, Figure 8(a) shows the function
with an extra budget of three assignments, and Figure 8(c)
shows the function with an extra budget of 15 assignments.
Figure 8(d) summarizes how instrumenting fputs improves as
we add more time to the time budget for the instrumentation.

XI. RELATED WORK

Debugging embedded systems is typically achieved through
capture and replay approaches. Capture and replay approaches
include tracing. Generally, a program is instrumented to gen-
erate traces which are then replayed offline, potentially in a
simulator. Capture and replay [16] is a well-established method
for debugging concurrent and distributed systems going back
to early publications in 1987 [17]. Thane et al. [18], [19], [18]
propose a software-based approach for monitoring and replay
in distributed real-time systems. Other approaches concentrate
on the problem of debugging concurrent programs [20], [21].
However, the mechanisms used for instrumentation in these
systems do not consider their impact on the timing of the
application, which is the main aim of this work.

Tsai et al. [22] propose a monitoring approach that min-
imizes the probe effect by using additional hardware. Our
proposed approach relies only on software mechanisms. Dodd
et al. [23] propose a software-based approach targeted for mul-
tiprocessor machines which uses software instruction counters.
In this approach, the program execution is cleverly distributed
to two processors to minimize the probe effect. Our approach
targets microprocessor systems which only have a single
execution unit.

Other monitoring approaches include AspectJ [1], Etch [2]
and Valgrind [24]. AspectJ is an implementation of aspect-
oriented programming, which enables developers to execute
given code when certain events occur. AspectJ supports instru-
mentation since potential events include memory writes; how-
ever, AspectJ will instrument these events indiscriminately,
without respect to resource bounds. Etch is a static monitoring
and instrumentation framework for instrumenting Win32/Intel
executables; it could support a time-aware instrumentation
plugin. Valgrind is a dynamic monitoring framework which
has been successfully used for detecting problematic memory
accesses. All of these monitoring approaches are for non-
real-time applications running on desktop computers; to our
knowledge, there are no proposed instrumentation approaches
for embedded systems.

Another category of tools are dynamic instrumentation tools
like DynamoRIO [25] and Pin [26]. Dynamic instrumentation
tools rewrite instructions executed at run time based on a
instrumentation specification. Our tool work uses static instru-
mentation as it provides better estimates of how the system
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Fig. 7. Examples in instrumenting functions in the filesystem implementation.

will behave at run time, which is important for safety and
time-critical applications.

Research on static instrumentation has culminated in dif-
ferent approaches and tools including Executable Editing
Library (EEL) [27], Etch [28], Morph [29], and Atom [30].
Each of these tools can be used to instrument an application
to, for instance, trace assignments; however, none of them
consider timing constraints or work in the context of real-time
embedded systems.

XII. DISCUSSION

Our case studies with the OpenEC keyboard controller and
flash filesystem implementation provided interesting insights
into our proposed solution for smart instrumentation. In this
discussion, we address questions about the general approach
of smart instrumentation and lessons learnt.

Partial instrumentation, as a special type of ensuring timeli-
ness, is useful for building an inductive debugging mechanism
for deployed resource and space constrained systems. It is
hard to reproduce bugs from user reports [31] and thus
having even a partial trace can help without additional tool
support. In addition, the partial trace then can be input for
additional debugging tools [32], [33]. Note, however, that the
achieved reliability of the partial instrumentation depends on
the execution paths taken at run time.

A developer may require definitive information about a par-
ticular assignment to a variable. In such a case, the developer
must force the instrumentation point at the cost of (a) low-
ering overall reliability and (b) possibly violating a temporal
constraint. Our framework allows the developer to estimate
the impact on both of these costs and make an informed
decision. Similarly, a developer may define instrumentation-
free sections in the code, for example time-sensitive operations
outside the worst-case path. Both forcing and exclusion are
trivial extensions to the presented work and target usability.

The anlaysis we require prior instrumenting the source code
is executed offline and can be done on a per-function basis.
While the run time complexity of the analysis is exponential,
our method aims at background/foreground systems with a rea-
sonable code base as usually found in microcontroller systems.
The largest example we tested contained about 124 000 nodes
and using Matlab’s ILP solver required less than a second
to solve this on a standard dual-core laptop with two GB of
memory.

The calculation of the instrumentation reliability shown in
Eq (2) is off by a small factor if the developer uses the
framework to extract control information. However, if all
paths except one—the worst-case path—contain at least one
instrumentation point, then if the run returns no data, the
developer knows that the program executed the worst-case
path. In this specific case, the reliability can be increased
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Fig. 8. Examples of increasing the reliability by increasing the time budget.

by the information gained times the likelihood of taking the
worst-case path. This is a very rare but notable case which
Eq (2) ignores.

Another extension of our work is to emit the line number
in which the variable assignment too place together with
the variable assignment value. This allows the developer to
recompute the accuracy of the trace after the logger captured
the trace. The work in Section VI helps the developer to
estimate the accuracy of the trace before actually running the
program. If the reliability is too low, then the developer might
want to add time to the time budget for tracing.

XIII. CONCLUSION

We have proposed time-aware instrumentation, a novel
approach to program instrumentation. The idea of time-aware
instrumentation applies to a variety of properties and in this
work we showed how it can be used to maximize trace
reliability and computing the minimal trace buffer size. Our
approach enables developers to, among other applications,
follow the evolution of program variables over the course of
a program’s execution.

We have evaluated our time-aware instrumentation approach
by automatically creating models of the OpenEC keyboard
controller code and a flash filesystem, and running simulations

on our models. Our approach successfully shifts the distribu-
tion of runtimes to more effectively use a time budget without
exceeding it, and enables calculations of the additional logging
reliability available with small violations (or increments) of the
time budgets.
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