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Abstract In this work, we provide an experimental comparison between
Global-EDF and Partitioned-EDF, considering the run-time overhead of a
real-time operating system (RTOS). Recent works have confirmed that OS
implementation aspects, such as the choice of scheduling data structures and
interrupt handling mechanisms, impact real-time schedulability as much as
scheduling theoretic aspects. However, these studies used real-time patches
applied into a general-purpose OS. By measuring the run-time overhead of an
RTOS designed from scratch, we show how close the schedulability ratio of
task sets is to the theoretical hard real-time schedulability tests. Moreover, we
show how a well-designed object-oriented RTOS allows code reuse of schedul-
ing components (e.g., thread, scheduling criteria, and schedulers) and easy
real-time scheduling extensions. We compare our RTOS to a real-time patch
for Linux in terms of the task set schedulability ratio of several generated
task sets. In some cases, Global-EDF considering the overhead of the RTOS is
superior to Partitioned-EDF considering the overhead of the patched Linux,
which clearly shows how different OSs impact hard real-time schedulers.
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1 Introduction

Multicore processors are being increasingly used in real-time system domains
due to the evolution and integration of features and consequently the need for
more processing power. In automotive environments, for instance, new safety
functionalities like “automatic emergency breaking” and “night view assist”
should read and fusion data from sensors, process the video, and give warnings
when an obstacle is detected on the road under real-time constraints (Mohan
et al, 2011). In addition, adding more functionalities to the system costs in
terms of power consumption, heat dissipation, and space (e.g., cables) (Cull-
mann et al, 2010). Thus, multicore processors become an alternative to de-
crease these costs and integrate features in a single processing unit, instead of
several electronic control units (ECUs) spread over the vehicle. Especially for
hard real-time (HRT) systems, in which deadlines must be always met, the use
of a well-designed real-time operating system (RTOS) and multicore real-time
schedulers are crucial to provide HRT guarantees.

Traditional real-time multicore scheduling can be classified in two cate-
gories: global and partitioned-based schedulers (Carpenter et al, 2004). In
this context, Global Earliest-Deadline-First (G-EDF) and Partitioned-EDF
(P-EDF) are examples of each category. Although suboptimal, G-EDF has
less frequent preemptions and migrations and consequently, less run-time over-
head, than optimal global schedulers (Brandenburg et al, 2008), such as pro-
portional fairness-based schedulers (Baruah et al, 1996; Srinivasan et al, 2003;
Levin et al, 2010). Furthermore, optimal multicore real-time schedulers are
difficult to implement in practice, and G-EDF proved to have reasonable run-
time overhead for a moderate number of processors! (Bastoni et al, 2010b), as
those processors found in the embedded HRT domain. Also, G-EDF is interest-
ing for mixed-criticality systems, where applications with different criticality
levels co-exist in the same system, because it ensures tardiness bounds for soft
real-time (SRT) applications as long as the total system utilization is at most
m, which m is the number of processors (Leontyev and Anderson, 2007). P-
EDF, on the other hand, has a limitation due to similarity to the bin-packing
problem: heavy utilization tasks? strongly affect task partitioning heuristics.
P-EDF is superior to G-EDF for HRT scenarios, mainly because the G-EDF
schedulability tests are too pessimistic (Bastoni et al, 2010b).

Additionally, considering the RTOS point of view, implementation issues,
such as scheduling data structures and interrupt handling, impact schedulabi-
lity as much as scheduling theoretic issues (Brandenburg and Anderson, 2009;
Bastoni et al, 2010b). In general, all the recent works that have measured the
influence of run-time overhead in SRT and HRT multicore schedulers used
a Linux-based infrastructure to support their studies (Brandenburg and An-
derson, 2009; Bastoni et al, 2010b; Lelli et al, 2012). Despite being a good
development platform, real-time Linux-based studies suffer from the inherent

1 In this paper we interchangeably use the terms processor and core.
2 A task that has a utilization higher than 0.5 is considered a heavy task.



Title Suppressed Due to Excessive Length 3

non real-time behavior of Linux, which affect the run-time overhead observed
in these works. This leads us to a few questions: what is the difference between
Linux-based real-time patches and an RTOS designed from scratch in terms of
run-time overhead? Is this difference significant for HRT applications? What
is the influence of this run-time overhead when incorporated into G-EDF and
P-EDF schedulability analyses?

Aiming at investigating these questions, we compare the Embed-
ded Parallel Operating System (EPOS) (Frohlich, 2001; EPOS, 2012) to
LITMUSR?T (Calandrino et al, 2006) in terms of run-time overhead and the
impact of both OSes on the schedulability ratio of generated task sets for G-
EDF and P-EDF schedulers. We measure the run-time overhead of EPOS and
LITMUSRT using a modern 8-core processor. In addition, we extend the run-
time overhead analysis and compare the ideal (i.e., without overhead) G-EDF
and P-EDF using eight state-of-the-art G-EDF schedulability tests and three
P-EDF partitioning heuristics up to 100 processors for HRT systems.

In summary, the main contributions of this paper are:

— We show how a well-designed object-oriented component-based RTOS
(EPOS) allows code reuse of system components (e.g., scheduler, thread,
semaphore, etc) and easy global and partitioned real-time scheduling ex-
tensions. To the best of our knowledge, EPOS is the first open-source RTOS
that supports global schedulers. We believe that EPOS can be used to con-
duct research for multicore HRT related areas due to higher predictability
and smaller overhead compared to real-time patches for Linux.

— We show that the RTOS run-time overhead, when incorporated into G-
EDF and P-EDF schedulability tests, can provide HRT guarantees close
to the theoretical schedulability tests. Moreover, in some cases, G-EDF
considering the overhead in EPOS is superior to P-EDF considering the
overhead in LITMUSRT, contradicting the theoretical tests.

— A comparison in terms of task set schedulability ratio between P-EDF
and G-EDF, considering also the OS overhead, for HRT tasks. P-EDF has
obtained the same or better performance than G-EDF for all analyzed
scenarios. In our experiments, P-EDF and G-EDF had the same behavior
for task sets composed only of heavy tasks, mainly because of G-EDF’s
schedulability test bounds. We observed a slightly improvement in G-EDF
for this heavy tasks scenario compared to related work (Calandrino et al,
2006), due to the use of up to date G-EDF schedulability tests (Bertogna
and Cirinei, 2007; Baruah et al, 2009).

— We measure cache-related preemption and migration delay (CPMD) on a
modern 8-core processor, with shared level-3 cache, using hardware per-
formance counters. We use the obtained values to compare P-EDF and
G-EDF through the weighted schedulability metric (Bastoni et al, 2010a).

The rest of this article is organized as follows. Section 2 discusses related
work. Section 3 defines the task model and presents the main concepts used
in this paper. Section 4 presents in details the real-time support on EPOS.
Section 5 shows the evaluation between G-EDF and P-EDF as well as the
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influence of run-time overhead into schedulability of both algorithms. Section 6
discusses the main findings. Finally, Section 7 concludes the article.

2 Related Work

In this section we discuss related work. We organize the discussion in three
topics: multicore real-time scheduling, run-time overhead and implementation
tradeoffs, and cache-related preemption and migration delay. For each topic
we present the main works available in the literature.

2.1 Multicore Real-time Scheduling

Recently, several scheduling algorithms have been proposed to provide real-
time guarantees for multicore applications. They are usually either global or
partitioned approaches. Considering the P-EDF algorithm, some works pro-
pose new task partitioning, splitting, or admission control techniques (Kato
and Yamasaki, 2007; Masrur et al, 2010; Burns et al, 2012). Additionally, semi-
partitioning algorithms combine characteristics from partitioning and global
scheduling: they allow few tasks to migrate between the processors to im-
prove the system utilization (Anderson et al, 2005; Kato and Yamasaki, 2008;
Bletsas and Andersson, 2009). Other works compare different real-time sche-
dulability tests for G-EDF (Goossens et al, 2003; Baker, 2005, 2003; Baruah,
2007; Baker and Baruah, 2009; Bertogna et al, 2005; Bertogna and Cirinei,
2007; Baruah et al, 2009). In general, the performance evaluation in theses
works considers the ratio of schedulable task sets. For example, Bertogna and
Baruah compared the main G-EDF schedulability tests for HRT scenarios
up to 8 processors (Bertogna and Baruah, 2011). Baker compared three G-
EDF schedulability tests with P-EDF approaches also in terms of the ratio of
schedulable task sets (Baker, 2005).

Global schedulers based on different concepts have also been proposed.
Cho et al. proposed a new abstraction for task execution on multiprocessors,
named the time and local remaining execution-time plane (T-L plane) (Cho
et al, 2006). The entire scheduling over time is the repetition of T-L planes
of various sizes. Other global scheduling algorithms are based on the propor-
tional fairness, such as PFair and its variants (Baruah et al, 1996; Anderson
and Block, 2000; Anderson et al, 2003; Srinivasan et al, 2003; Levin et al,
2010). Proportional Fairness-based schedulers are optimal, since they correctly
schedule any feasible intra-sporadic task system on m processors. On the other
hand, proportional fairness algorithms incur more run-time overhead, because
of higher scheduling decision and migration rates (Srinivasan et al, 2003).

Other real-time schedulers focus on different processor architectural as-
pects, such as memory hierarchy. Calandrino and Anderson proposed a cache-
aware scheduling algorithm (Anderson et al, 2006; Calandrino and Anderson,
2008). In their approach, there are two scheduling phases: (i) all tasks that
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may induce significant memory-to-L2 traffic are combined into groups off-line;
and (ii) at run-time, the system uses a scheduling policy that reduces concur-
rency within groups. The authors introduce the concept of megatask, which
represents a task group treated as a single schedulable entity. F'Po 4 is another
cache-aware scheduling algorithm that divides the shared cache space into par-
titions (Guan et al, 2009). Tasks are scheduled in a way that at any time, any
two running tasks’ cache spaces (e.g., a set of partitions) are non-overlapped.
A task can execute only if it gets an idle core and enough cache partitions.
The authors proposed two schedulability tests, one based on a linear problem
(LP) and another one as an over-approximation of the LP test. Tasks are not
preemptive and the algorithm is blocking, i.e., it does not schedule lower pri-
ority ready jobs to execute in advance of higher priority even though there are
enough available resources.

In this paper, we extended the G-EDF versus P-EDF comparison made
by previous related works. We compare eight G-EDF schedulability tests with
three P-EDF partitioning techniques (first-fit decreasing, best-fit decreasing,
and worst-fit decreasing) using synthetic task sets composed of different peri-
ods and utilizations in a scenario with 100 processors.

2.2 Run-time Overhead and Implementation Tradeoffs

During the last years, a group of real-time extensions were proposed to the
Linux kernel. Linux/Resource Kernel (Linux/RK) is an implementation of
the Portable RK in the Linux kernel (Oikawa and Rajkumar, 1999). Portable
RK is a framework that abstracts the resource management (e.g., CPU, net-
work, and disk bandwidth reservation) from a specific OS. Moreover, Portable
RK provides an API (Application Program Interface) to users, thus a devel-
oper when porting the framework for a different OS, only needs to deal with
the differences in the OS APIs (Oikawa and Rajkumar, 1999). However, for
implementing the Portable RK in the Linux kernel, the authors inserted a
number of callback hooks to send relevant scheduling events to the Portable
RK framework. The authors measured several run-time overhead sources in
the framework, but did not provide a comparison with other Linux-based real-
time implementations. Current research topics in Linux/RK include multicore
processors, integration with real-time java, and resource reservation strategies.

SCHED_DEADLINE is an implementation of a real-time scheduling class
using the Linux scheduling class mechanism (Faggioli et al, 2009). The schedul-
ing class supports EDF and Constant Bandwidth Server (CBS) (Abeni and
Buttazzo, 2004) algorithms to provide temporal isolation among tasks. Fur-
thermore, SCHED_DEADLINE uses the control groups (cgroups) API to na-
tively support multicore platforms and hierarchical scheduling.

ExSched is a scheduler framework that enables the implementation of
different (real-time) schedulers as external plugins without modifying the
(ON) (Asberg et al, 2012). ExSched hides all OS dependencies, which allows dif-
ferent OSes to reuse the same plugin implementation. An API is responsible
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for all communication between user applications and the target OS, occurring
in more execution time overhead. The authors implemented some multicore
real-time scheduling algorithms, such as partitioned and global fixed-priority
schedulers, and compared the run-time performance of ExSched multicore im-
plementations to the SCHED_FIFO Linux scheduler in terms of schedulabi-
lity ratio of generated task sets. For some cases, fixed-priority schedulers in
ExSched had worse performance than the Linux SCHED_FIFO scheduler.

Advanced Interactive Real-time Scheduler (AIRS) is another real-time
extension for Linux designed on top of SCHED_DEADLINE scheduling
class (Kato, 2012). AIRS increases the system performance when multiple
interactive real-time applications, like multimedia applications, run on a mul-
ticore processor. AIRS proposes two new concepts: Flexible CBS (F-CBS) that
improves the CPU bandwidth reservation and the Window-constrained Migra-
tion and Reservation (EDF-WMR) scheduler that improves the absolute CPU
bandwidth available for multicore real-time applications (Kato, 2012). In a
comparison carried out by the authors, ARIS delivered higher quality to si-
multaneous multiple videos than the existing real-time Linux extensions (e.g.,
AIRS, SCHED _DEADLINE, Linux/RK, and LITMUSHT) (Kato, 2012).

Adaptive Quality of Service Architecture (AQuoSA) is a patch for Linux
that allows the interception of scheduling events and consequently, the imple-
mentation of external schedulers (Palopoli et al, 2009). The main objective
of AQuoSA is to provide Quality of Service (QoS) to time-sensitive applica-
tions. A resource reservation module implements different algorithms, such as
CBS, IRIS and GRUB. The module also implements an EDF scheduler to
manage the internal queues. Generally, all the above related works are either
patches or extensions applied to the Linux kernel. In consequence, all of these
works suffer from the inherent non real-time aspect of Linux, higher run-time
overhead (mainly the OS-independent frameworks), and are tightly coupled to
the Linux infrastructure. Differently, our work shows how an RTOS designed
from scratch allows a better code reuse and a smaller run-time overhead than
Linux-based approaches.

Several multicore real-time schedulers were evaluated considering run-time
overhead using the LInux Testbed for MUltiprocessor Scheduling in Real-
Time systems (LITMUSTT — see Section 3.2 for an overview). Calandrino
et al. measured run-time overheads of G-EDF, P-EDF, and two variants of
the PFair algorithm (Calandrino et al, 2006). Brandenburg et al. investigated
the scalability in terms of number of processors in partitioned and global
schedulers (Brandenburg et al, 2008). Brandenburg and Anderson discuss how
the implementation of the ready queue, quantum-driven versus event-driven
scheduling, and interrupt handling strategies affect a global real-time sched-
uler, considering the different run-time overhead sources in each implementa-
tion (Brandenburg and Anderson, 2009). The results indicate that implemen-
tation issues can impact schedulability as much as scheduling-theoretic trade-
offs. Moreover, in their case study, the system achieved the best performance
by using a fine-grained heap, event-driven scheduling, and dedicated interrupt
handling. An empirical comparison of G-EDF, P-EDF, and Clustered-EDF (C-
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EDF) on a 24-core Intel platform, assuming run-time overhead (e.g., release,
context switch, and scheduling) and cache-related preemption and migration
(CPMD) delay, has concluded that P-EDF outperforms the other evaluated
algorithms in HRT scenarios (Bastoni et al, 2010b). Moreover, the same study
suggests the use of “less global” approaches (P-EDF and C-EDF-L2, which
cluster at the cache level 2) in contrast of “more global” approaches (G-EDF
and C-EDF-L3) for HRT applications. Bastoni et al. investigated implementa-
tion tradeoffs in semi-partitioned schedulers (Bastoni et al, 2011). Mollison and
Anderson proposed a userspace scheduler implemented on top of Linux that
supports C-EDF (Mollison and Anderson, 2012). The authors measured OS
overhead, including releasing, scheduling and switching context, and compared
the obtained values with LITMUSRT. They concluded that the overheads of
both implementations are roughly comparable.

Following the same research line, Lelli et al. compared the performance of
partitioned, clustered, and global Rate Monotonic (RM) and EDF scheduling
algorithms on top of Linux, focusing on SRT applications (Lelli et al, 2012).
The authors concluded that the migration overhead is not more costly than
a context switch, using an AMD Opteron with 48 cores NUMA platform.
In addition, the clustered variants were more efficient than the global ap-
proaches mainly due to reduced run-time overhead, as also noted by Bastoni
et al (2010b). Other studies created micro-benchmarks to quantify context
switch overhead on specific processors and/or situations, e.g., hardware in-
terrupts, program data size, and cache performance (Mogul and Borg, 1991;
David et al, 2007; Li et al, 2007; Tsafrir, 2007).

In general, the related works that measured run-time overhead in real-time
multicore schedulers used Linux as OS. We extended these works by comparing
LITMUSET (that uses Linux) with EPOS RTOS in terms of run-time overhead
and schedulability ratio. Moreover, to the best of our knowledge, EPOS is the
first open-source research RTOS that supports global schedulers in the context
of multicore real-time systems. We believe that the OS can be extensively and
easily used to conduct research in the area, due to higher predictability and
smaller overhead, obtaining more precise results for HRT scenarios.

2.3 Cache-related Preemption and Migration Delay

Cache-related Preemption and Migration Delay (CPMD) is the delay caused
by the loss of cache affinity after a preemption/migration. Basically, there are
two ways of estimating CPMD: through offline static analyses and through
online empirical experiments. Static analysis techniques estimate CPMD by
analyzing the program code/data of the preempted and preempting tasks.
Then, the analysis determines which data or instructions are reused after a
preemption (Negi et al, 2003; Starner and Asplund, 2004; Staschulat and Ernst,
2005; Yan and Zhang, 2008; Hardy and Puaut, 2009; Altmeyer et al, 2012).
Schedule-Sensitive and Synthetic are two methods to measure CPMD
through experimentation (Bastoni et al, 2010a). In the first method, the sys-
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tem records the delays online by executing tests and collecting the measured
data through the use of a time-stamp counter. The drawback of this method is
the impossibility of controlling when a preemption or migration happens, what
causes many useless data to be collected (Bastoni et al, 2010b). The second
method tries to overcome this problem by explicitly controlling preemptions
and migration of a task, and thus measuring the delays. The evaluation shows
that the CPMD in a system under load is only predictable for working set
sizes that do not trash the L2 cache (Bastoni et al, 2010a).

On our work, we measure the CPMD by using hardware performance coun-
ters online through an RTOS in an 8-core modern processor. We use the ob-
tained CPMD values to compare P-EDF and G-EDF through the weighted
schedulability metric (Bastoni et al, 2010a). For high CPMD, P-EDF and
G-EDF tend to have the same performance.

3 Task Model and Background

In this work we consider the periodic task model, in which a task set 7 is
composed of n tasks, {T1,Ts,...,T,}, that are scheduled on m identical pro-
cessors or cores {Pi, Ps, ..., Pp}. Each task T;, where ¢ < n and ¢ > 1, has
a period p; and a worst-case execution time (WCET) e;. A task T; releases
a job at every p; time units. 7 denotes the release time of the jth job of Tj,
named Tij . The relative deadline of the task T; is equal to its period: d; = p;.
The relation e;/p; defines the utilization of a task T;, called u;. The sum of all
tasks’ utilizations defines the total system utilization (> u;).

We focus on HRT applications. A HRT system is considered schedulable
if and only if no job misses its deadline. System designers use schedulability
tests to prove that a task set 7 is schedulable or not considering a specific real-
time scheduling algorithm. Our empirical evaluation in this work considers two
real-time scheduling algorithms: G-EDF and P-EDF.

The G-EDF scheduling algorithm organizes the jobs in ascending order
by deadlines and schedules the jobs according to this order. There is only
one global ready queue from which the scheduler chooses ready jobs to be
scheduled based on available processors. Consequently, a job can be preempted
due to the release of a higher priority job and can be later resumed on another
processor, resulting in a job migration. Migrations and preemptions cause
delay with relation to the cache affinity, since a preempted job may evict the
preempting task’s cached data. Several schedulability tests for the G-EDF
scheduling provide a HRT bound for a task set (Goossens et al, 2003; Baker,
2005, 2003; Baruah, 2007; Baker and Baruah, 2009; Bertogna et al, 2005;
Bertogna and Cirinei, 2007; Baruah et al, 2009).

The P-EDF scheduling algorithm statically partitions tasks of a task set 7
into available processors using a partitioning heuristic, such as first-fit decreas-
ing, and schedules the tasks on each processor using the EDF scheduling (Liu,
2000), separately. The partitioning problem is equivalent to the bin packing
problem when a task set has deadlines equal to periods. The bin packing
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problem is a NP-hard problem (Garey and Johnson, 1990), and so is tasks
partitioning. This means that partitioning heuristics can produce a solution
that is not optimal. P-EDF does not allow migrations among processor, con-
sequently there is no migration overhead. Moreover, there are cases (task sets
with heavy tasks) that a task set cannot be partitioned. For example, consider
the scheduling of five tasks with the same utilization of 0.51 on four processors.
There is no partitioning algorithm able to allocate these five tasks into four
Processors.

3.1 OS Overhead

In this section we summarize the main sources of run-time overhead and pro-
vide an overview of main OS implementation strategies.

There are two basic ways to implement a scheduler in an OS: using event-
driven scheduling or quantum-based scheduling (Liu, 2000). In the former, the
OS performs every scheduling decision after an event, such as a job release
or job completion. In the latter, the OS performs every scheduling decision
at a timer interrupt. The hardware timer period (a tick) defines the interval
of two interrupts. However, the quantum-driven scheduling can have precision
problems. For instance, in a system that generates an interrupt every 10 ms, a
15 ms task period interval may have to wait for 20 ms to be released. On the
other hand, a periodic timer can be very precise if every interrupt coincides
with a job releasing (Frohlich et al, 2011).

In addition, the data structure responsible for ordering the tasks in the
scheduler also plays an important role on the performance. The use of a list
or heap as ready queue affects the time to insert and remove tasks and conse-
quently, impacts the real-time scheduling.

The design of timer interrupts in the system is also relevant. In a multicore
processor, a single core can handle timer interrupts or timer interrupts can be
distributed across all cores (each core handles its own timer interrupts). More-
over, each timer interrupt can be periodic, based on tick counting, or single-
shot. The periodic approach generates an interrupt at the hardware timer
period rate, while the single-shot approach only generates an interrupt when
there is an event to be released. However, the single-shot approach requires a
timer reprogramming at each interrupt to set up the timer with the next event
interval. The single-shot approach can also fall back to tick counting if the re-
quested event period is greater than the maximum hardware timer period. In
general, single-shot tends to cause less interference on the system (Frohlich
et al, 2011).

Additionally, the processor architecture is also a source of overhead for real-
time applications. For example, the way that the DRAM controller handles
concurrent accesses, the implementation of bus arbiters, and different cache
replacement algorithms significantly impact the execution time of an appli-
cation. Although important, processor architecture overhead is difficult to be
controlled by the OS and will not be discussed in this work.
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In summary, the main sources of overhead in an RTOS are:

— Context switching: the process of storing and restoring CPU context of
the running task and the next schedulable task. Its time is largely depen-
dent on the CPU (e.g., registers, stack, etc) and OS.

— Tick counting: it is the delay spent to handle a timer interrupt and
count a tick, in case of periodic timer, or to reprogram the timer, in case
of single-shot timer.

— Task releasing: it is the delay required to release a task after a timer
interrupt.

— Scheduling: it is the delay taken to choose a new task to be ran. Schedul-
ing overhead includes operations such as inserting and removing from the
run queue and changing the state of a task, from ready to waiting for
example.

— Inter-process interrupt latency: an inter-process interrupt (IPI) is nec-
essary when a job is released on one core and must be executed on another
core because it has the lowest priority running task. An IPI is issued to call
a reschedule operation on another core. In our platform (Intel i7 processor,
see Table 1) for example, the WCET of an IPI is 0.3 ps (see Section 5).

— Preemption and migration delay: the CPMD is the delay caused by a
preemption that incurs a loss of cache affinity after resuming the preempted
job (Bastoni et al, 2010a). Predicting CPMD on processors with complex
shared caches hierarchy is a difficult problem. Related works commonly
use empirical approximations and/or static analyses (Wilhelm et al, 2008;
Yan and Zhang, 2008; Hardy and Puaut, 2009; Bastoni et al, 2010a). This
delay is highly dependent on the working set size (WSS) of a task.

Each job incurs a scheduling and context switch overhead twice, a releasing
overhead once, and a preemption/migration delay at most once (Liu, 2000;
Brandenburg and Anderson, 2009).

3.2 LITMUSRET

LITMUSPET is a real-time extension to Linux. LITMUSRT is implemented as
a plugin and allows different multiprocessor scheduling algorithms to be imple-
mented as plugin components using the available Linux infrastructure (Calan-
drino et al, 2006). The current LITMUSE?Y version (2012.1) is based on Linux
3.0 and supports G-EDF, P-EDF, C-EDF, and PFair scheduling algorithms.
LITMUSRT adds a new and highest priority scheduling class to the tra-
ditional Linux scheduler. As a consequence, LITMUSRT always executes the
highest priority jobs in advance of the Linux original scheduler (Brandenburg
et al, 2008). LITMUSRT changes the Linux scheduler to invoke the plugin ini-
tialization functions, scheduling and tick handlers at run-time. At each timer
interrupt interval (1 ms), the processor invokes the tick handler. Linux invokes
the scheduler handler at every scheduling decision to select the next task to
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be executed (Brandenburg and Anderson, 2009). In addition, LITMUS®T pro-
vides a userspace library to create real-time tasks. Initially, tasks are created
as non real-time and specific functions are called to initialize real-time settings
and per-task data structures and put a task in real-time mode.

3.3 Hardware Performance Counters

Hardware Performance Counters (HPCs) are special registers available in most
of the modern microprocessors through a hardware Performance Monitoring
Unit (PMU). HPCs offer support for counting or sampling several micro-
architectural events in real time, such as cache misses and retired instruc-
tions (Sprunt, 2002). However, HPCs are typically difficult to use due to
limited hardware resources (for example Intel Sandy Bridge supports event
counting with four event counters per core-thread) and complex interfaces
(e.g., low-level and specific to micro-architecture implementation) (Azimi et al,
2005).

Nevertheless, it is possible to use multiplexing techniques to overcome the
limitation in the number of HPCs (May, 2001; Sprunt, 2002) or specific li-
braries that make the use of HPCs easier (Dongarra et al, 2003; Gracioli and
Frohlich, 2011), yet adding a low overhead to the application. HPCs can be
used together with OS techniques, such as scheduling and memory manage-
ment, to monitor and identify performance bottlenecks to perform dynamic
optimizations (Azimi et al, 2009). In multicore systems, for instance, it is
possible to count the numbers of snoop requests, last-level cache misses, and
evicted cache lines.

4 Real-time Support on EPOS

The Embedded Parallel Operating System (EPOS) is a multi-platform, object-
oriented, component-based, embedded system framework (Frohlich, 2001;
EPOS, 2012). Platform-independent system components implement tradi-
tional OS services, such as threads and semaphores. Hardware Mediators im-
plement platform-specific support (Polpeta and Frohlich, 2004). Hardware me-
diators are functionally equivalent to device drivers in Unix, but do not build
a traditional Hardware Abstraction Layer (HAL). Instead, hardware media-
tors sustain the interface contract between software and hardware by means
of static metaprogramming techniques and inlining code that “dilute” medi-
ator code into components at compile time (no calls, no layers, no messages;
mostly embedded assembly). EPOS has been used in several academic and in-
dustry research and development projects in the last years, such as software-
defined radio (Miick and Frohlich, 2011), wireless sensor networks (Wanner
and Frohlich, 2008), and energy-efficient applications (Frohlich, 2011). In the
next subsections we summarize the real-time support on EPOS, highlighting
the advances of this work.
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4.1 Scheduling

Figure 1 shows the three main components that form the real-time schedul-
ing support on EPOS. The Thread class represents an aperiodic task and
defines its execution flow, with its own context and stack. The class imple-
ments traditional thread functionalities, such as suspend, resume, sleep, and
wake up operations. The Periodic_Thread?® class extends the Thread class to
provide support for periodic tasks by aggregating mechanisms related to the
periodic task re-execution. The wait next method performs a p operation on
a semaphore that forces the thread to sleep during its defined period. The
Alarm class, on the other hand, performs a v operation to release and wake
up the thread. The periodic thread constructor creates the alarm. Section 4.2
shows the activities performed on each periodic thread operation (sleep and
wake up).

T:
Scheduler ~ ---"-p-------

+ insert(obj: List_Link<T>)
+ remove(obj: List_Link<T>) : T
1 j: List_Link<T>)

1.*
. +
Thread 1 + suspend(obj: List_Link<T>)
! +chosen(): T
i +choose() : T

Periodic_Thread

- _semaphore : Semaphore |
- _handler : Semaphore_Handler i !

+ choose_another(): T

ion::QUEUES : int, i

- -alarm : Alarm Criterion arion::GLOBAL_SCHEDULER : bool __ .
it i
+ wait_next() " int)
Priority

# _priority : volatile int

+timed : bool = false

+ preemptive : bool = true

+ GLOBAL_SCHEDULER : bool = false
+ QUEUES : unsigned int = 1

+ operator int() : volatile int

+ queue() : int

‘ ]
[ Round_Robin | FCFS RM EDF CPU_Affinity
+timed : bool = true +timed : +_deadline : +_deadline : + _affinity : volatile int
bool = false Microsecond Micr +_next_cpu :int
+ preemptive : + deadline() : + deadline() : + QUEUES : unsigned int =
bool = false Microsecond Micr MAX_CPUS
+ current() : int
+queue() : int

GRM GEDF
+ GLOBAL_SCHEDULER : + GLOBAL_SCHEDULER :
bool = true bool = true
+ current() : int + current() : int

Fig. 1 UML class diagram of the real-time scheduling components on EPOS.

The Scheduler class and Criterion sub classes define the structure that
realizes task scheduling. Usually, object-oriented OS scheduler implementa-
tions use a hierarchy of specialized classes of an abstract scheduler class.
Sub classes specialize the abstract class to provide different scheduling poli-

3 An EPOS periodic thread is conceptually implemented as a real-time periodic task.
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cies (Marcondes et al, 2009). EPOS reduces the complexity of maintaing such
hierarchy and promotes code reuse by detaching the scheduling policy (here
represented by the Criterion sub classes) from its mechanism (e.g., data
structure implementations as lists and heaps). The data structure in the sched-
uler class uses the defined scheduling criterion to order the tasks accordingly.
At compile time the thread’s Trait® class defines the scheduling criterion
(for example typedef Scheduling Criteria::GEDF Criterion defines the
scheduling criterion as G-EDF). The Scheduler consults the information pro-
vided by the criterion class to define the appropriate use of lists and operations.

Each criterion class basically defines the priority of a task, which is later
used by the scheduler to choose a task (operator ()), and other criterion
features, as preemption and timing, for instance. In this work, we extended the
EDF criterion to support G-EDF. We created a flag, GLOBAL_SCHEDULER, that
informs the scheduler whether the criterion is global or not. If the criterion
is global, the scheduler uses a specialized version of the Scheduling Queue
class, with only one global queue in the system. It is important to highlight
that the Scheduler, Scheduling Queue, and all other list implementations
are metaprogrammed, which means that the compiler solves all dependencies
and consequently, there is no overhead at execution time. The current version
of the EPOS G-EDF scheduler uses an ordered list.

With this separation of concerns among scheduler, criterion, and thread, it
is straightforward to add new scheduling policies into the system. Moreover,
in cases where a scheduling policy requires specific scheduling treatment, a
new scheduler may be created by extending the existing schedulers through
metaprogramming specialization techniques (Czarnecki and Eisenecker, 2000).

4.2 Periodic Thread Operations

As stated before, the Periodic_Thread implementation uses an Alarm and
a Semaphore to guarantee the re-execution of a thread. In this case, the
Semaphore performs the sleep and wake up periodic thread operations, instead
of preventing concurrent accesses. After executing a code, the periodic thread
calls the wait_next method to wait until the next period. The wait_next
method is a call to the p method of the periodic thread’s Semaphore. Fig-
ure 2 depicts the UML sequence diagram of the sequence of calls starting from
the wait next method. The begin_atomic method prevents concurrent ac-
cesses by accessing a spinlock and disabling interrupts. The thread dispatch
method releases the spinlock and enables the interrupts later. The Semaphore
passes a Queue as an argument to the thread Sleep method. This method
suspends the running thread, inserts this thread into the semaphore queue,
chooses another thread to be ran by calling the Scheduler chosen method,
and switch the context between them by calling the dispatch method. The

4 A trait class is a template class that associates information of a component at compile
time.
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scheduler suspend method removes and updates the head from the scheduling
ordered list and the chosen method gets the new head.

Application
% .
I
I
I

\ wait_next (:)

scheduler:

“Scheduler Queue
T

Periodic_Thread
T

'Semaphore|
T

I I
I I
I I
| |
i |
I

begin_gtomic ()
1

sleep (s_queue)
7

Thread *thy = running() |
| |

‘ Thread
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PO
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[

I
i

i

I I

' I

thr->stlate = WAITING |

! |
_queue->insert (sthr->link)
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\ 1

| |

I

next = chogen ()

I I I <o I
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i i i dispatdh (thr, next) |
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Fig. 2 UML sequence diagram of thread sleep method.

The Alarm class is responsible for counting the time until a periodic thread
can be released. To release a thread, the Alarm calls the v method of the
Semaphore class. Figure 3 depicts the UML sequence diagram of the wake up
operation. The alt label means an if/else condition and the opt label means
an if clause. Again, the begin_atomic method protects shared data by locking
a spinlock and disabling interrupts. The thread dispatch method, called by
the reschedule method, releases the spinlock and enables the interrupts.
The Semaphore calls the wakeup method, which removes the Thread blocked
on the semaphore’s Queue and calls the scheduler to reinsert the thread into the
scheduler list (resume method) according to the defined scheduling criterion
(Criterion sub classes in Figure 1). In the end, the wakeup method calls the
thread reschedule to choose the highest priority task to be ran.

Figure 4 shows the thread reschedule UML sequence diagram. We in-
serted a condition to test if an IPI is necessary in case of using a global sched-
uler. The system fires an IPI when the CPU that is executing the reschedule
is not the CPU that is executing the lowest priority thread on the system.
Then, the Interrupt Controller (IC) hardware mediator sends an IPI through
the ipi_send method to switch the context on that CPU. A method in the
Scheduler informs the lowest priority CPU. Moreover, we do not send an IPI
when the lowest priority thread on another CPU is an idle thread, since an idle
thread yields the CPU when there is a thread to be scheduled and the time to
send an IPT (about 0.3 ps on our platform, shown in Section 5.2) is slower than
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‘ Alarm ‘ 'Semaphore| | Thread ‘ ngi,e _ssgneegﬂllg::
) i i i i
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[else] |
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Fig. 3 UML sequence diagram of thread wake up method.

the idle thread yield cycle. It is important to highlight that the idle thread
only calls the locking mechanism (e.g., spinlock and disable interrupts) when
there is a thread to be scheduled. Consequently, there is no influence in the
system. If an IPI is not needed, the reschedule method just calls the choose
method from the Scheduler to choose the next thread and switch the context
between the running thread and the chosen thread. Note that the schedul-
ing criterion statically sets the GLOBAL_SCHEDULER flag. As a consequence, the
compiler processes the if condition in the reschedule method at compile time
and thus does not incur in run-time overhead.
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Fig. 4 UML sequence diagram of thread reschedule method.
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4.3 Context Switching

The thread dispatch method is responsible for switching context between the
previous and chosen threads. The method verifies if a context switch needs
to be performed by checking if the chosen thread is not the same as the run-
ning thread. If both threads are different, the method changes the state of the
running thread to “ready”, the chosen thread state to “running”, and calls
the CPU hardware mediator switch_context method to perform the context
switch. Figure 5 presents the UML class diagram of the CPU hardware media-
tor. The mediator handles the most dependencies of process management. The
inner class CPU: :Context defines the execution context for each process ar-
chitecture. The method CPU: : switch_context is responsible for the switching
context, receiving the old and new contexts. The CPU mediators also imple-
ment several functionalities as enabling and disabling interrupts and test and
set lock operations. Each process architecture defines a set of registers and
specific addresses, but the same interface remains. Thus, it is possible to keep
the same operations for platform-independent components, such as threads,
synchronizers, and alarms.

<<interface>>
CPU

+ switch_context(old : *“Context, new : *Context) : void | | 1 CPU::context
+ init_stack(...) : Context
+ ts(value : bool): void

+ enable_int() : void

+ disable_int() : void

+ halt() : void

+..()

+ load() : void
+ save() : void

Fig. 5 CPU hardware mediator UML class digram.

4.4 Alarm and Timer Interrupt Handler

The Alarm component handles timed-based events. The component uses a
Timer hardware mediator class that abstracts the hardware timer. In a periodic
event model, EPOS sets the hardware timer with a constant (configurable)
frequency. When a new alarm event is registered, its interval is converted to
timer ticks, with T =1 / F, where T is the number of ticks, I is the desired
interval, and F is the timer frequency (Frohlich et al, 2011). The alarm inserts
all created events in an ordered and relative request queue. Thus, operations
on the queue only affect its head, because all queue elements are relative to
the first element. The Alarm component registers an interrupt handler that
increments the tick counter, thus promoting every alarm in the event queue
by a tick, at every hardware timer interrupt. The Alarm interrupt handler
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releases the head queue’s event handler if there are no more ticks to count to
that event. The event handler, when using a Periodic_Thread, releases the
thread by calling the p semaphore method.

We changed the described alarm handler in two ways. First, we dis-
tributed the handler across all CPUs. Thereby, when the application creates
a Periodic_Thread, the alarm constructor assigns the event handler of that
Periodic_Thread to a specific CPU. Each different handler manages its own
event list separately. Second, we changed the handler to release all events that
reach 0 ticks in the same alarm interrupt handler. This way, we guarantee that
all events are released without any tick delay (i.e., wait one or more ticks to
be released) and that the OS always executes the m highest priority threads.

4.5 Summary of Real-time Extensions and Overhead Sources

Figure 6 summarizes the sources of run-time overhead in EPOS. In Figure 6(b),
message 1 and the Alarm handler method form the tick counting and thread
release overheads. The Thread dispatch and CPU::switch_context meth-
ods constitute the context switching overhead. Finally, message 2 and the
Thread sleep method in Figure 6(a) and messages 2 and 3 and Thread
wakeup/reschedule methods in Figure 6(b) form the scheduling overhead.

1: handler() 2:v()

1: wait_next() 2:p()
[Aomicat }4’

:HW Timer

—
:Alarm :Semaphors
Interrupt @ Semaphore

‘3: sleep() ‘ 3: wakeup()

5: switch_context() 6: switch_context()

R ey -
(a) (b)
Fig. 6 UML communication diagram summarizing the sources of run-time overhead in

EPOS. (a) Operations initiated by the periodic thread sleep operation. (b) Operations ini-
tiated by the hardware timer.

‘ 4: reschedule()
5: dispatch()

In summary, we carried out the following extensions into the original EPOS
real-time support:

— G-EDF scheduling criterion: we have added the G-EDF scheduling cri-
terion by extending the EDF criterion and inserting a new flag representing
a global scheduler (GLOBAL_SCHEDULER). This flag informs the scheduler
that the scheduling criterion is global and thus, allows the scheduler to
choose an appropriate scheduling list implementation. We also added a
new scheduler specialization class that chooses the implementation of the
global scheduling list.

— Distributed alarm handler: we have performed two modifications in
the original EPOS alarm handler. First, we distributed the handler in all
available CPUs. Each handler has its own private relative and ordered list.
Second, we changed the handler to release all periodic threads that reached
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0 ticks at the same interrupt. In this way, we are sure that the OS always
executes the m highest priority periodic threads.

— Support for global schedulers: we have extended the IC hardware me-
diator to support IPI messages and added the IPI call into the thread
reschedule method. The IPI message allows the implementation of virtu-
ally any global scheduler.

5 Evaluation

This section shows the comparison between G-EDF and P-EDF. First, we
discuss the generation of task sets and the evaluation methodology. Then,
we show the comparison between EPOS and LITMUSRT (version 2012.1, see
Table 1) overheads and the empirical evaluation of the schedulability ratio.

5.1 Experiments Description

To measure the OS overhead and the schedulability ratio of G-EDF and P-
EDF, we randomly generated task sets with different distributions similar
to Baker (2003, 2005) and Brandenburg and Anderson (2009). For generating
tasks periods (all values are in ms), we used a uniform distribution between
[3, 33] (short), [10, 100] (moderate), and [50, 250] (long). For generating tasks
utilizations, we used a uniform distribution between [0.001, 0.1] (light), [0.1,
0.4] (medium), and [0.5, 0.9] (heavy), and a bimodal distribution (combining
two uniform distribution) between [0.001, 0.1] and [0.5 ,0.9], with probabilities
8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and 5/9 (heavy), respec-
tively. There are in total 18 combinations of periods and utilizations. Based
on the generated task’s period and utilization, we defined the task’s WCET
(before adding the OS overhead).

For measuring the overhead associated to OS activities, we fixed the num-
ber of tasks to 5, 15, 25, 50, 75, 100, and 125, and used the light uniform
utilization with short periods to generate the tasks. Each task sums a local
variable in a loop of 50 repetitions. Then, we applied three sufficient schedu-
lability tests (Goossens et al, 2003; Baker, 2005; Bertogna et al, 2005). A task
set was considered feasible if it had passed in at least one test. We then used
the generated task sets to measure the overhead of EPOS and LITMUSRET.
We executed each task set for 100 times on the Intel i7-2600 processor (see
Table 1) for LITMUSRT and 10 times for EPOS®, and extracted the sampled
WCET for each overhead from these executions. We used these numbers of
tasks to measure the run-time overhead, because they represent the range of
tasks in our generated synthetic task sets.

5 This is due a technical reason. EPOS does not have file system neither 1/O drivers for
our platform. The only way to collect data is printing on the screen after each execution.
Although the comparison seems unfair, the standard deviations in EPOS are low compared
to LITMUSRT.
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Table 1 Intel i7-2600 processor features and LITMUS®T version.

Clock speed 3.4 Ghz
Cores 4
Hyper-threading (SMT) 2 per core (8 logical cores)
L1 cache 4 x 64 KB 8-way set associative (32 KB separate data
and instructions caches)

L2 cache (non-inclusive) 4 x 256 KB 8-way set associative (unified)

L3 cache (inclusive) 8 MB 16-way set associative (unified)

LITMUSET version 2012.1 kernel 3.0

To determine the schedulability of a task set that considers OS overhead,
we first inflated the WCET of each task by adding the measured overheads,
as described in Section 3.1, and then applied eight sufficient schedulability
tests® (Goossens et al, 2003; Baker, 2005, 2003; Baruah, 2007; Baker and
Baruah, 2009; Bertogna et al, 2005; Bertogna and Cirinei, 2007; Baruah et al,
2009). The additional overhead for a task is dependent on the number of tasks
in the task set. We verified the number of tasks and associated it with the
measured overhead interval. For example, the additional overhead for a task
set with 20 tasks is the measured overhead for 15 tasks, since the task number
is between 15 and 25.

As in (Brandenburg and Anderson, 2009), we did not use the Baruah’s
test (Baruah, 2007) for light uniform utilization due to high processing time
caused by its pseudo-polynomial behavior. We considered a task set schedu-
lable if it passed at least one test. We created tasks until reaching a fixed
utilization cap (from 2 to 8, in steps of 0.1). For each utilization, we defined
a slack related to the utilization cap. For example, a slack of 0.05 specifies
that a utilization cap U of a task set 7 is always between the interval U - 0.05
and U. Thus, we make sure that the utilization values are always between two
consecutive caps. The slacks used were 0.07, 0.07, and 0.1 for light, medium,
and heavy utilization distributions, respectively. We generated 1000 task sets
for each utilization cap. For the P-EDF algorithm, we first partitioned the task
set using three partitioning algorithms (first-fit decreasing, best-fit decreasing,
and worst-fit decreasing (Johnson, 1973)) and then applied the EDF test (Liu
and Layland, 1973) for each partition (eight in total). A task set is schedu-
lable if all the eight partitions pass in the test and at least one partitioning
algorithm correctly partitions the task set.

6 We used the open-source implementation of the eight G-EDF schedulability tests
available at http://www.cs.unc.edu/~bbb/diss/. We changed the code to allow the tests
to be executed in parallel in a cluster and extended it to support also P-EDF parti-
tioning heuristics and EDF uniprocessor test. The new code is also available online at
http://epos.lisha.ufsc.br.
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5.2 Run-time Overhead

We measured the context switch, release, tick, IPI, and scheduling overheads
for EPOS and LITMUSET on the Intel i7-2600 processor. To record the over-
heads, in EPOS, we use the processor Time-Stamp Counter (TSC) and in
LITMUSRT the tracing support accomplished by Feather-Trace (Branden-
burg and Anderson, 2007).

Context switch overhead. For EPOS, we configured a test case com-
posed of two threads a and b. Thread a sets the TSC before switching the
context (Thread dispatch method, as described in Section 4.3) and thread
b reads the TSC and calculates the difference, resulting in the total context
switch time for thread a. Thus, we can isolate the exact time that a context
switch takes. We measured in total 5,000,000 context switches and extracted
the worst-case” and average times from these executions. For LITMUSET, we
measured the worst-case and average times by using Feather-Trace and run-
ning the task sets with fixed number of tasks, as presented previously. The total
execution time is about 16 seconds, since the greatest period of all periodic
tasks is 33 ms and each periodic thread repeats for 500 times.

Figure 7 shows the average and worst-case context switch overhead. The
z-axis shows the number of threads and the y-axis the measured execution
time in ps. The greater the execution time, the higher the run-time overhead.
The error bars represent the observed standard deviation. The average con-
text switch overhead for EPOS is 0.03 ps and the worst-case is 0.3 ps. For
LITMUSRT, the average context switch overhead is about 1.2 ps both for P-
EDF and G-EDF. For the worst-case context switch overhead, there is a high
variation of the observed execution times, from 9.4 ps to 29.56 ps in G-EDF
and from 2 ps to 26.95 ps for P-EDF.
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Fig. 7 Average (a) and worst-case (b) context switch overhead.

7 From now on, whenever we refer to worst-case is the observed worst-case from the
experiments.
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EPOS is up to 76.3 times faster than the LITMUSRT context switch func-
tion. For algorithms with a high rate of preemptions and context switches,
such as fairness-based schedulers (Baruah et al, 1996; Anderson and Block,
2000; Anderson et al, 2003; Srinivasan et al, 2003; Levin et al, 2010), the use
of an RTOS with low context switch overhead certainly improves the task
set schedulability ratio, as will be shown in Section 5.4. It is important to
highlight that we removed few (from two to eight) outliers from LITMUSRT
measurements. For example, we obtained a worst-case context switch time
of up to 2.000 ps. This interference may be due to a set of factors, such as
warm-up effects in the instrumentation code and non-deterministic aspects
of Linux (Brandenburg et al, 2008). This result corroborates the theory that
Linux suffers interference from other system’s parts, harming the predictability
needed in HRT systems.

IPI latency. For measuring the IPI latency in EPOS, we used a similar
approach to the previous context switch overhead measurement. We designed
a test case in which a thread running on a core sends an IPI to another core.
This thread sets the TSC before sending an IPI and reads it after the IPI
is delivered. We are sure that the IPI was delivered, because the IC hard-
ware mediator method waits until the requested interrupt to be delivered by
checking a register flag. We measured the worst-case and average times for
5,000,000 IPIs. The observed worst-case IPI time for EPOS was 0.41 ps and
the average case was 0.009 ps with a standard deviation of 0.003 ps. The ob-
served worst-case is comparable to the worst-case context switch overhead.
Additionally, we measured the IPI latency in LITMUSET for 125 tasks. In
LITMUSRT, the worst-case IPI latency was 69.52 ps and the average case was
15.67 ps with a standard deviation of 18.15 ps. This difference between EPOS
and LITMUSRT is mainly caused by the IC hardware mediator and EPOS’
design. The ipi_send mediator method is “diluted” into the application code
at compile time. There are no software layers between the application and OS,
only embedded assembly code. Moreover, we used the EPOS library mode,
in which the system is linked with the application, avoiding the overhead of
system calls. EPOS also supports a kernel mode, which creates a system call
layer between the application and OS. The system designer can choose the
best configuration that fits the application requirements. Our focus is on per-
formance, that is the reason we chose the library mode. Low IPI latency is
important because it delivers the interrupt message faster, which affects the
preemption delay in the core that is receiving the interrupt message.

Scheduling overhead. We measured the G-EDF and P-EDF scheduling
overheads in EPOS and LITMUSRT. The CPU_Affinity scheduler, described
in Section 4.1, implements the P-EDF algorithm in EPOS by assigning prior-
ities according to the EDF scheduling. The sleep, wakeup, and reschedule
thread methods, including the list operations and thread state changes, as
demonstrated in the UML sequence diagrams of Section 4.2, represent the
scheduling overhead in EPOS. In EPOS, we measured the scheduling over-
head using the processor’s TSC and in LITMUSRT, using the Feather-Trace.
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Figure 8 shows the average and worst-case scheduling overhead for both
P-EDF and G-EDF in EPOS and LITMUSRT. The z-axis shows the number
of threads and the y-axis the measured execution time in ps. The error bars
represent the observed standard deviation. For instance, the average scheduling
overhead of EPOS for 100 tasks is about 0.5 ps with a standard deviation of
about 0.2 ps. In Figure 8(b), the observed worst-case scheduling overhead for
EPOS increases after 75 threads, mainly in G-EDF scheduler. This is due to
the scheduling list: insertion and removal operations take more time, because
there are more threads in the list (time complexity in the worst-case of O(n)).
For P-EDF, on the other hand, as the threads are evenly distributed across
the cores and each core has its own ready scheduling list, we did not observe
a considerable variation in the overhead. For LITMUSRT, as the number of
threads increases, the unpredictability of Linux increases as well. We again
removed few outliers in the LITMUSRT measurements, as explained before.
For G-EDF, EPOS was up to 7 times faster than LITMUSRT, while for P-
EDF it was up to 21.05 times faster.
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Fig. 8 Average (a) and worst-case (b) scheduling overhead.

Tick counting and thread release overheads. Tick counting and
thread release are two different sources of run-time overhead. However, we
combined the two overheads because EPOS performs both tick counting and
task releasing in the same alarm handler method (see Section 4.4). Moreover,
we did not measure separate overheads for the P-EDF and G-EDF schedulers,
because tick counting and thread releasing operations are the same for both
schedulers.

Figure 9 shows the average and worst-case tick counting and release over-
heads. The z-axis shows the number of threads and the y-axis the measured
execution time in ps. The error bars represent the observed standard devi-
ation. For example, the average overhead for 125 threads in EPOS is about
0.3 ps with a standard deviation of about 0.5 ps. Considering the worst-case
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tick counting and release overhead, in Figure 9(b), the observed worst-case
times increase according to the number of threads in the system: the alarm
handler releases more threads in the same tick, affecting the overhead. On
the other hand, the overhead in LITMUSRT increases considerably after 75
threads. One of the contributing factor for this is also the greater number of
threads in the kernel data structures. Furthermore, the use of a slower data
structure in EPOS (list) against the LITMUSRT heap implementation is not
critical, because EPOS performs less operations before and after inserting or
removing elements from the data structure. As the number of threads in-
creases, the standard deviation of EPOS increases as well. This is because the
greater time difference between an interrupt that only counts a tick and an
interrupt that releases several threads.

Average tick and release overheads Worst-case tick and release overheads
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Fig. 9 Average (a) and worst-case (b) tick counting and thread release overheads.

5.3 Preemption/Migration Overhead

We measured the CPMD using the EPOS hardware performance counter
API (Gracioli and Frohlich, 2011). We configured HPCs to count hardware
events that together form three metrics, represented in Equations 1, 2, and 3.
The metrics calculate the impact of L1, L2, and L3-cache misses in terms of cy-
cles spent serving them (Intel Corporation, 2011, 2012). The Last-Level Cache
Miss Impact (LLC MI) is the number of all memory accesses that missed the
LLC multiplied by the number of cycles spent to serve one LLC miss:

LLC MI = 200 * mem load uops retired that miss LLC (1)

The Last-Level Cache Hit Impact (LLC HI) is the sum of all memory
accesses that hit the LLC with no bus snoop needed, all memory accesses that



24 Giovani Gracioli et al.

hit the LLC and required a cross-core snoop hit, and all memory accesses that
hit the LL.C and had a hit modified response from another core multiplied by
the processor cycles spent to serve each hardware event:

LLC HI = 31 * mem load uops retired that hit LLC +
43 * mem load uops with LLC hit and snoop hit +
60 * mem load uops with LLC hit and hitm response (2)

The L2-cache Hit Impact (L2 HI) multiplies the number of all memory
accesses that hit the L2-cache by the processor cycles spent in one hit:

L2 HI = 12 * mem load uops that hit L2 (3)

The sum of the three equations gives us the total impact of all accesses
that missed in the L1-cache. However, the platform presents a hardware lim-
itation to perform this calculation. Intel i7-2600 processor offers only four
programmable and three-fixed hardware counters per each core-thread, while
the metrics need five counters. We eliminated from Equation 2 the event that
counts the LLC hit and had a cross-core snoop hit modified response, because
there is no data sharing in our test application (see Figure 10) and this event
only captures cache coherency activities.

Figure 10 shows part of the application code used to measure the CPMD.
We vary the Working Set Size (WSS) from 4 KB to 10 MB, which provides a
reasonable relation to the size of the three cache memory levels (see Table 1).
The Perf Mon component configures the hardware counters and then reads
them into a buffer. At every iteration, the application calls the wbinvd instruc-
tion to write back all modified cache lines to main memory and to invalidate
the internal caches. Thus, we emulate a situation where a thread entirely loses
its cache affinity after a preemption/migration. We used the CPU_Affinity
scheduler and at every thread period we changed the affinity to force a CPU
migration.

We executed the test application for ten times and extracted the worst-
case values and the average cases for each WSS from these executions. We
also considered a theoretical worst-case bound: the cache line size (64) divides
the WSS, and the processor cycles to treat an LLC (200) multiplies the di-
vision resulting value. Figure 11 shows the calculated worst-case bound, the
sampled worst-case, and the average CPMD for our test application. On the
z-axis, we vary the WSS and on the y-axis, we present the CPMD in ps and in
logarithm scale. Comparing the sampled worst-case with the calculated worst-
case bound, the hardware pre-fetcher considerably improves the CPMD: it
brings data to the LLC that is later accessed, which does not cause an LLC
miss. For WSS of 10 MB, it is possible to observe a smaller difference between
the sampled and calculated worst-case bound values, because the application
thrashes the cache. Additionally, the CPMD difference between the average
and sampled worst-case is not high, and the average cases have a low standard
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1 int job(int factor, int id)

> {

3 Perf_Mon perf;

4 int array[WSS];

5 int sum = 0;

6 for(int i = 0; i < ITERATIONS; i++) {
7 Periodic_Thread::wait_next();

8 asm(”wbinvd”);

9 perf.cpmd();

10 for(int k = 0; k < factor; k++) {

11 for(int j = 0; j < WSS; j++)

12 sum += array[j];

13 if (k == 0)

14 perf.get_cpmd(threads[id]—> _buffer);
15

16

17}

Fig. 10 CPMD application code.

deviation (error bars that represent standard deviation are almost impercep-
tible). This shows that hardware performance counters can provide a correct
view of the application behavior.

Cache-related preemption and migration delays

B Worst-case
@ Sampled Worst-case
O Average

1000.0

Overhead (us)

10.0

0.1

4KB 128KB 512KB 1MB 2MB 1omB

WSS

Fig. 11 Cache-related preemption and migration delay varying the WSS in microseconds.
Note that the y-axis uses a logarithm scale.

5.4 Schedulability Tests Evaluation

We present below the empirical comparison between G-EDF and P-EDF. We
first show the comparison considering the run-time overhead measured in eight
processors and then we extend the results to 100 processors, considering only
the ideal P-EDF and G-EDF tests (i.e., without overhead).

Schedulability experiments considering the run-time overhead.
Figure 12 shows the task set schedulability ratio for short periods and the
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six combinations of uniform and bimodal utilization distributions. In the z-
axis, we vary the utilization cap and in the y-axis, we present the ratio of
schedulable task sets. A ratio of 0.6, for instance, means that 60% of the total
generated task sets are schedulable.

In Figure 12(a), that shows the results for the light uniform utilization, P-
EDF is able to partition and schedule all task sets. The partitioning heuristics
performed well, because tasks utilizations are very low. For the bimodal light
utilization, P-EDF did not have the same behavior due to few heavy tasks: for
instance, in Figure 12(b), the P-EDF schedulability ratio starts to decrease
around the utilization cap of 7.0.

For all analyzed distributions, except in the uniform heavy utilization,
G-EDF is worse than P-EDF. When all tasks in a task set have utilizations
between 0.5 and 0.9 (in the uniform heavy utilization), the partitioning heuris-
tics can only partition a task set with a total number of tasks equal to the
processor number (eight). Figure 12(f) exemplifies this situation, where around
the utilization cap of 5.1, task sets have more than eight tasks. Consequently,
the schedulability ratio starts to drop. For G-EDF, instead, the HRT bounds
in the sufficient schedulability tests limit the schedulability ratio.

In the light uniform utilization, when the number of tasks in a task set
is greater than in the medium and heavy utilization distributions, the run-
time overhead impact is more significant. For example, in the uniform light
utilization (Figure 12(a)), P-EDF considering the overhead in LITMUSRT is
worse than G-EDF and G-EDF considering the overhead in EPOS.

Figure 13 shows the task set schedulability ratio for moderate periods and
the six combinations of uniform and bimodal utilization distributions. We
observe a reduction in the overhead impact for all distributions compared to
shorter periods: as the periods become larger, the proportion among periods
and overheads becomes smaller. Figure 13(a) exemplifies this situation, where
the lines for G-EDF with EPOS and LITMUSRToverheads are closer to the
theoretical G-EDF than the previous graph with short periods (Figure 12(a)).
Moreover, for the same light uniform distribution, P-EDF with EPOS and
LITMUSRT overheads also improved the schedulability ratio compared to the
short period. For instance, the schedulability ratio of P-EDF with EPOS and
LITMUSRT overheads in moderate periods start to decrease from 1 in the
utilization caps of 7.9 and 6.6, respectively. For short periods, in contrast, the
schedulability ratio of P-EDF inflated by the overhead in EPOS starts to drop
in the utilization cap of 7.8 and the schedulability ratio of P-EDF considering
the overhead in LITMUSRT in the utilization cap of 4.6.

Figure 14 shows the task set schedulability ratio for long periods and the six
combinations of uniform and bimodal utilization distributions. Following the
same trend, long period lengths reduce the overhead impact on the schedula-
bility ratio. Moreover, for the light uniform utilization (Figure 14(a)), P-EDF
inflated by the overhead in LITMUSRT was better than the ideal G-EDF for
the first time. Additionally, P-EDF inflated by the overhead in EPOS presents
an improvement of 79% in the schedulability ratio for the utilization cap of
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Fig. 12 Comparison between G-EDF and P-EDF with short periods (a) Uniform light (c)
Uniform medium (e) Uniform heavy (b) Bimodal light (d) Bimodal medium (f) Bimodal
heavy.

7.9 compared to the same utilization cap in the light uniform utilization with
short periods.

Table 2 summarizes the schedulability ratio results of P-EDF and G-EDF,
considering the three utilization variants (light, medium, and heavy), and the
uniform and bimodal distributions. G-EDF and P-EDF have the same perfor-
mance for heavy uniform utilizations. Considering the different periods (short,
moderate, and long), the biggest difference in terms of schedulability ratio
between G-EDF and P-EDF is in the bimodal light utilization. The presence
of few heavy tasks profoundly affects the bound in the G-EDF schedulability
tests. Moreover, in the light uniform utilization and short periods scenario, the
impact of the run-time overhead on the schedulability ratio is more significant,
because the proportion between period and overhead is smaller. Furthermore,
G-EDF inflated by the overhead in EPOS is better than P-EDF inflated by the
overhead in LITMUSRT differently of the theoretical tests, in which P-EDF is
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Fig. 13 Comparison between G-EDF and P-EDF with moderate periods (a) Uniform light
(¢) Uniform medium (e) Uniform heavy (b) Bimodal light (d) Bimodal medium (f) Bimodal
heavy.

always better than G-EDF (except for heavy uniform utilizations). In the bi-
modal heavy utilization, the run-time overhead only changes the schedulability
ratio for P-EDF and short periods.

Weighted schedulability. We used the weighted schedulability to ac-
count for CPMD (Bastoni et al, 2010a). As the schedulability ratio depends
on two variables (i.e., utilization cap and CPMD), the weighted schedulability
reduces the results to a two-dimensional plot without the use of the utilization
cap.

Let D, be a maximum CPMD incurred by any job and U be a utilization
cap. S(U, D.) denotes the schedulability ratio for a given U and D., which is
in the interval [0, 1]. Let @ be a set of utilization caps (Q = {2.0, 2.1, ..., m}).
Then, Equation 4 defines the weighted schedulability for a D., W(D,) (Bastoni
et al, 2010a).
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Fig. 14 Comparison between G-EDF and P-EDF with long periods (a) Uniform light (c)
Uniform medium (e) Uniform heavy (b) Bimodal light (d) Bimodal medium (f) Bimodal
heavy.
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We used the calculated worst-case bound CPMD values shown in Figure 11
as input to D.. We assume that each task suffers the CPMD once — a single
job is potentially preempted multiple times, but each job in the system can
only cause one CPMD on one other job. We then inflated the WCET e; of each
task T; by the CPMD and the run-time overhead measured before and applied
the eight G-EDF schedulability tests and the three partitioning heuristics into
the same previously generated task sets.

Figure 15 shows the obtained results for task sets with short periods. The
z-axis defines the CPMD), while the y-axis presents the weighted schedulability
metric. For instance, the weighted schedulability for a CPMD of 128 KB and
P-EDF inflated by the overhead in EPOS is 0.82, which means that 82%

W(D.)

(4)
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Table 2 Summary of the schedulability ratio comparison between G-EDF and P-EDF,
considering also the run-time overhead in EPOS and LITMUSRET,

P-EDF G-EDF
P-EDF and P-EDF consid- | G-EDF with EPOS overhead
. ering the overhead in EPOS | is better than P-EDF with
Uniform have the best performance | LITMUSRT overhead.

Light among all analyzed scenarios.
utilization P-EDF is better than G-EDF.
Bimodal | All the three P-EDF variants | The biggest difference in the
are better than G-EDF. schedulability ratio between

the algorithms.

The run-time overhead is
smaller than in light utiliza- All G-EDF

Uniform | 4511 due to the lower number worse than P_E]S)CEH?\Z)O: o Ova;e
Medium of tasks in the task sets. ; ' o
utilization PEDF considering - G-EDF w1‘th the OS run-time
bead ¢ EPOS d overhead is equal or close to
overhea o an .
i the ideal G-EDF.
Bimodal LITMUSRT is close to the !
ideal P-EDF.
Uniform | G-EDF and P-EDF have the same performance.
Heavy The run-time overhead ]
wtilization changes the schedulability The run-time overhead does

Bimodal | ratio only for short periods. not. change the schedulability
P-EDF is better than G-EDF. | ratio.

of all generated task sets are schedulable. G-EDF and P-EDF lines serve as
a reference for analyzing the results, since they have no overhead. For the
uniform heavy utilizations distribution (Figure 15(e)), we observe the same
trend as before: G-EDF and P-EDF have the same performance for all CPMD
values. For small WSSs (4 KB and 128 KB), P-EDF is superior to G-EDF.
As the WSS increases, the difference between P-EDF and G-EDF decreases,
which can be clearly seen in Figure 15(c). For WSSs greater than 512 KB,
P-EDF and G-EDF tend to be equal mainly due to the high CPMD values.
Figures 15(a), (b), and (c) show the cases where the difference between the
weighted schedulability of EPOS and LITMUSRET is more significant: there
are more tasks in a task set, which favors EPOS due to the smaller run-time
overhead.

For moderate and long periods the graphs are similar to the previously
ones: as the periods become larger, the proportion between CPMD and the
period becomes smaller. As a consequence, the weighted schedulability ratio
starts to drop only for higher CPMD values. For example, Figure 16 shows the
weighted schedulability results for light uniform utilization and long periods.
Compared to the light uniform utilization and short periods, the weighted
schedulability reaches 0 only for WSS of 10 MB, instead of 1 MB as for short
periods.

Extended schedulability evaluation for 100 processors. We ex-
tended the empirical comparison between the ideal G-EDF and P-EDF to 100
processor. We used the same period and utilization distributions as described
early to generate the task sets. However, we used different utilization slacks:
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15 Weighted schedulability for short periods.
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Fig. 16 Weighted schedulability for light uniform distribution and long periods.

0.5, 0.5, and 1 for light, medium, and heavy utilization distributions, respec-
tively. Then, we executed the eight G-EDF sufficient schedulability tests and
the three P-EDF partitioning techniques in the SHARCNET cluster (SHAR-
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CNET, 2012), varying the utilization cap from 2, 3, 4,..., to 100. The total
computation time for all tests and task sets generation was more than 1.1 year.

Figure 17 shows the obtained task set schedulability ratio for uniform uti-
lization distributions. Each row in Figure 17 shows different utilization dis-
tributions (uniform, medium, and heavy) and each column different period
distributions (short, moderate, and long). The z-axis defines the utilization
cap and the y-axis the ratio of schedulable task sets. A ratio of 0 means that
none of the task sets is schedulable, while a ratio of 1 means that all task sets
are schedulable. P-EDF is always better than G-EDF, except for the heavy
distribution. For the heavy distribution (Figures 17(g), (h), and (i)) G-EDF
had the same results as P-EDF, for the same reason as explained early: the
number of tasks in a task set affects the partitioning heuristics and the HRT
bounds in the G-EDF sufficient tests limit the schedulability.
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Fig. 17 Comparison between G-EDF and P-EDF using uniform utilizations: first row light
uniform, second row medium uniform, and third row heavy uniform.

Figure 18 shows the obtained task set schedulability ratio for the bimodal
distributions. The z-axis defines the utilization cap and the y-axis the ratio
of schedulable task sets. P-EDF is again always better than G-EDF for HRT
tasks. Moreover, for light bimodal utilization (Figures 18(a), (b), and (c)), the
schedulability ratio of G-EDF reaches 0 when the utilization cap is 45. This
clearly states the need for less pessimistic G-EDF sufficient schedulability tests,
since 55% of the available processors are “wasted” due to HRT guarantees.
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Fig. 18 Comparison between G-EDF and P-EDF using bimodal utilizations: first row light
bimodal, second row medium bimodal, and third row heavy bimodal.
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6 Discussion

During our evaluation, we observed a set of interesting facts regarding aspects
of the OS, processor architecture, and real-time scheduling:

— OS design versus data structures: we noticed that the OS design is
as important as the internal data structures of the scheduling and task
release functions. In comparison to LITMUSRET, EPOS performs less oper-
ations before and after a scheduling decision and a task release, resulting
in less overhead. Furthermore, we believe that changing the current EPOS
lists to a data structure with better performance, such as heaps, can re-
duce the run-time overhead and consequently, reduce the impact on the
schedulability ratio.

— RTOS versus general-purpose OS: our results show that an RTOS
designed from scratch considerably reduces the run-time overhead in com-
parison to general-purpose OSes with real-time patches. In scenarios com-
posed of several light utilization tasks, we could note an improvement of
about 25% in the task set schedulability ratio of G-EDF considering the
overhead in EPOS in contrast to the G-EDF inflated by the overhead in
LITMUSRT (Figure 12(a)). Considering P-EDF, each ready scheduling list
has less tasks than the global scheduling list of the G-EDF, which reduces
the scheduling run-time overhead. Nevertheless, for the same light uniform
utilization scenario, P-EDF considering the overhead in EPOS was about
20% better than P-EDF considering the overhead in LITMUSRT. For ex-
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ample, while P-EDF inflated by the overhead in LITMUSRT reaches 0%
of schedulability ratio at the utilization cap of 6.2, P-EDF considering the
overhead in EPOS reaches 0% at the utilization cap of 8. For task sets
composed of only heavy tasks, the influence of the run-time overhead on
the schedulability ratio is less significant, because there are few tasks in
the system. Thus, the scheduling and alarm lists (see Section 4) manage
less elements, reducing the overhead.

P-EDF is always equal or better than G-EDF for HRT: for all
distributions, except the heavy utilization, P-EDF was superior to G-EDF.
For task sets consisting of only heavy utilization tasks, P-EDF and G-EDF
had the same schedulability ratio. This is due to the bin packing problem
limitation, in which the partitioning heuristics can only partition task sets
with a task number equal to the number of processors, and due to the
G-EDF schedulability bounds, which usually have a relation between the
number of processor and the largest utilization or density (Bertogna and
Baruah, 2011). For task sets with few heavy tasks, as in the case of light
bimodal utilization distribution, G-EDF presented the biggest difference
in terms of task set schedulability ratio in comparison to P-EDF. This
reinforces the need for better G-EDF schedulability tests for HRT systems
with heavy utilization tasks (Brandenburg and Anderson, 2009).
Differences in task period length: varying period lengths (short, mod-
erate, and long) in our empirical evaluations did not affect the schedula-
bility tests for the theoretical (i.e., without overhead) G-EDF and P-EDF
schedulers. On the other hand, it has a significant impact on the run-time
overhead. In short period distributions, the proportion between the pe-
riod length and the overhead is higher than in long period distributions
(see Figure 12(a), Figure 13(a), and Figure 14(a)). For example, for short
periods and light uniform utilization, the schedulability ratio for G-EDF
inflated by the overhead in LITMUSRT starts to drop at the utilization
cap of 3.8, while for long periods and the same utilization distribution, the
schedulability ratio starts to drop at the utilization cap of 6.9.
Hardware performance counters: we believe that hardware perfor-
mance counters are useful for helping scheduling and memory management
in RTOSs. Although each processor architecture supports different hard-
ware events, different names for the same events, and presents different
hardware limitations (e.g., number of registers and features), well-designed
OS APIs can abstract these differences for the rest of the system. Usually,
hardware event names change but their meaning remain.

Moreover, we believe that performance monitoring units (PMUs) will sup-
port even more events and features in the near future. Examples of features
that could be added by hardware designers into future PMUs are (Graci-
oli and Frohlich, 2011): (i) data address registers to store addresses that
generated an event; (ii) monitoring address space intervals to provide more
precise view of specific application address ranges; (iii) processing cycles
spent in specific events, such as bus activities and memory coherency proto-
cols; and (iv) OS trap generation according to pre-defined event numbers.
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These features can improve scheduling decisions at run-time, providing a
correct and precise view of the running applications. Also, such features im-
prove shared memory partitioning algorithms, which are useful to avoid the
overlap of shared cache spaces by tasks executing on different processors.
Thus, cache partitioning reduces the contention for the shared cache and
increases the system predictability (Lin et al, 2008; Suhendra and Mitra,
2008; Srikantaiah et al, 2008; Muralidhara et al, 2010).

— Cache-related preemption and migration delay: we measured the

CPMD using hardware performance counters and used the weighted sche-
dulability to account for CPMD in the task set schedulability ratio. In our
evaluations, P-EDF is better than G-EDF for WSSs of 4 KB and 128 KB.
As the WSS increases, P-EDF and G-EDF tend to be equal due to higher
CPMD. For uniform and bimodal light and uniform moderate utilizations
distributions, which have more tasks than the other generated task sets, the
difference between EPOS and LITMUSET is higher. Moreover, P-EDF and
G-EDF had the same performance for task sets composed of only heavy
tasks.
A possible way to decrease the CPMD is the use of cache locking mecha-
nisms (Vera et al, 2003; Suhendra and Mitra, 2008; Aparicio et al, 2011).
Cache locking prevents cache lines or ways to be evicted by the cache re-
placement policy during the program execution. The combination of cache
partitioning and cache locking improves the system predictability (Suhen-
dra and Mitra, 2008). However, most of the current processors do not
support cache locking. Hardware designers should consider this feature for
future processors.

7 Conclusion

In this work, we performed an empirical evaluation in terms of the task set
schedulability ratio between G-EDF and P-EDF up to 100 processors. We used
eight state-of-the-art G-EDF sufficient schedulability tests and three P-EDF
partitioning techniques. Our results show that P-EDF is always better than
G-EDF for HRT tasks. An exception is for task sets formed by only heavy
tasks, in which P-EDF and G-EDF had the same performance due to par-
titioning limitation and G-EDF test bounds. These results clearly reinforce
the need for better G-EDF schedulability tests, both in terms of HRT bounds
and processing time. We also provide real-time multicore support on EPOS
by extending the scheduling mechanism to support global schedulers. To the
best of our knowledge, EPOS is the first open-source RTOS that supports
global real-time schedulers. We then compared EPOS to LITMUSET in terms
of the run-time overhead. The use of a RTOS properly designed to fulfill the
application requirements can provide HRT guarantees close to theoretical sche-
dulability tests. In addition, we measured CPMD through the use of hardware
performance counters and used the weighted schedulability metric to account
for CPMD in the schedulability ratio. In our platform, P-EDF is better than
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G-EDF for WSSs of 4 KB and 128 KB. As the WSS increases, P-EDF and
G-EDF tend to be equal due to higher CPMD.

Future work. There are several directions for future work. First, we want
to improve the real-time support on EPOS by implementing different data
structures, such as heaps, and real-time scheduling algorithms, such as PFair,
cache-aware, and semi-partitioned schedulers. Second, we want to evaluate how
different cache partitioning strategies affect real-time scheduling algorithms.
Third, we would like to port EPOS to an embedded multicore processor, such
as Arm cortex-A9. Finally, we would like to investigate how shared data be-
tween tasks affects HRT schedulers.
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