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Abstract—We introduce a novel algorithm for mining temporal
intervals from real-time system traces with linear complexity
using passive, black-box learning. Our interest is in mining nfer
specifications from spacecraft telemetry to improve human and
machine comprehension. Nfer is a recently proposed formalism
for inferring event stream abstractions with a rule notation
based on Allen Logic. The problem of mining Allen’s relations
from a multivariate interval series is well studied, but little
attention has been paid to generating such a series from symbolic
time sequences such as system traces. We propose a method to
automatically generate an interval series from real-time system
traces so that they may be used as inputs to existing algorithms
to mine nfer rules. Our algorithm has linear runtime and
constant space complexity in the length of the trace and can
mine infrequent intervals of arbitrary length from incomplete
traces. The paper includes results from case studies using logs
from the Curiosity rover on Mars and two other realistic datasets.

I. INTRODUCTION

Earth-based personnel must construct their understanding of
a spacecraft’s operation from event sequences called telemetry.
Nfer is a recently introduced formalism for inferring abstrac-
tions of such event sequences for easier human and machine
comprehension [1]. The nfer notation is based on Allen’s
Temporal Logic (ATL), which has been traditionally employed
in the planning domain. Nfer resembles classical rule-based
systems from AI, in that the result of applying a specification
to a trace is a collection of fact-like items.

To use the results from nfer to improve telemetry compre-
hension, rules must specify the interval abstractions to infer
from the trace. Typically, such a specification would be written
by the engineers that designed the software. Writing spec-
ifications is time-consuming and error-prone, however, and
only captures facets of the software that were understood at
design time. Dynamic specification mining seeks to solve these
problems by using machine learning techniques to discover
rules that define how the system should behave.

We seek to mine nfer specifications from historical
telemetry, but prior research in pattern mining using Allen-like
relations has assumed the existence of a multivariate interval
series. To be able to use existing research in interval pattern
mining, we must first convert our telemetry (what Masseglia
called a symbolic time sequence [2]) to a multivariate interval
series.

Our requirements lead to an approach that combines aspects
of sequential pattern mining and automata-based specification

mining. We are interested in finding intervals that resemble
what Dwyer called response patterns [3] and what Mannila
called serial episodes [4]. We mine patterns in event sequences
that define the beginning and the end of a process in a real-
time embedded system such as a spacecraft. A process may
be any task, routine, or function that is part of the behavior of
the system. Since our technique outputs nfer rules, the mined
response patterns are expressed as ATL before relations.

Our contributions are the following. We introduce a black
box, passive, learning algorithm for mining interesting tem-
poral intervals from a symbolic time sequence generated by
the execution of a real-time embedded system. Our algorithm
is simple and easy to implement and has linear runtime
complexity and constant space complexity in the size of the
trace. Unlike previous efforts, we are able to mine episodes
of arbitrary length and frequency while supporting incomplete
traces. We justify the heuristics used in our technique both
through careful analysis and empirical research using realistic
case studies.

The rest of the paper is organized as follows. In Section II
we provide necessary background information. Section III lists
existing works related to our research. Section IV defines
the problem more rigorously. Section V discusses the how to
determine that an interval is interesting, Section VI describes
our algorithm, and Section VII gives an example of applying
it to a simple trace. Section VIII describes the case studies
we performed to evaluate the effectiveness of our technique.
Section IX concludes the paper.

II. BACKGROUND

B denotes the set of Boolean values {true, false}, N denotes
the set of all natural numbers and R denotes the set of all real
numbers. The notation C = R represents clock time stamps.
I is the set of all event names. Given a set S, the set of finite
sequences of S is S∗.

An event is a pair E = I × C, written (η, t), where
η ∈ I is the event name, and t ∈ C is the time when
the event occurred. A trace is a partially ordered sequence
of events (η1, t1), · · · , (ηk, tk)|(η1, t1), (ηi, ti) ∈ E, ti−1 ≤
ti ∀i ∈ N|1 < i ≤ k . The set of all traces is defined as
T = E∗. In our context, a trace corresponds to a symbolic time
sequence generated by the execution of a real-time embedded
system. Figure 1 shows an example of a trace. In the figure,
the event names are listed above the timeline and event times



are listed below. Note that neither event names nor times must
be unique in a trace.
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Fig. 1. Example trace

An interval is a triple I = I × C × C, written (η, b, e),
where η ∈ I is the interval name, b, e ∈ C are time stamps
which satisfy the condition b ≤ e where b represents the time
when the interval began and e represents the time when it
ended. The duration of an interval (η, b, e) ∈ I is equal to
e − b. An atomic interval is any interval (η, t, t) ∈ I. Given
two intervals (A, b1, e1), (B, b2, e2) ∈ I the ATL relation
“A before B” denotes that e1 < b2.

III. RELATED WORK

The problem of mining patterns based on Allen’s interval
relations from a multivariate interval series has been thor-
oughly studied. Kam et al. looked for nested combinations of
ATL patterns in an interval series [5]. Höppner used Allen’s
transitivity law in a sliding window to reduce the number of
candidate patterns [6]. Likewise, De Amo et al. constrained
candidate ATL patterns using regular expressions [7].

Our work is closely related to the field of specification
mining using dynamic inference. Although we do not seek
to mine general property specifications, we are interested in
what Dwyer et al. called response and precedence patterns [3].
Yang et al. proposed solutions to the scaling problems of
dynamic property inference in their Perracotta tool [8]. Ernst
et al. introduced the popular Daikon tool that uses a library
of patterns to efficiently check for program invariants [9]. Le
Goues and Weimer found that they could reduce false posi-
tives in the mined properties by incorporating trustworthiness
metrics [10]. Reger et al. introduced parametric specification
mining using Quantified Event Automata (QEA) [11] and
later proposed support for imperfect traces [12]. Lemieux et
al. supported user-defined Linear Temporal Logic (LTL) pat-
terns and imperfect traces in their Texada tool [13]. Cutulenco
et al. efficiently mined Timed Regular Expressions (TREs)
using a matrix of pattern automata [14].

A related and widely explored topic is sequential pattern
mining, which seeks to find frequent subsequences of events
in a database of sequences [2], [15]. Many sequential pattern
mining works differ from ours because they seek to find
arbitrary length patterns, because they expect the patterns to be
frequent, and because the duration of the patterns is limited.
Agraval and Srikant are often credited with introducing the
idea, and proposed a set of Apriori-based algorithms for find-
ing such consecutive subsequences [16]. Mannila et al. used
sliding-window algorithms with pattern matching automata to
mine frequent episodes, including serial episodes, from event
traces [4]. Han et al. introduced a series of algorithms to
reduce the search space of such algorithms by using tree-based
data structures and by projecting subsequences into smaller
databases [17], [18]. This work culminated in the well-known

CloSpan algorithm by Yan et al. to find closed sequences,
meaning sequences where no supersequence exists with the
same support [19].

Some existing sequential pattern mining techniques have fo-
cused on performance. Zaki proposed Sequential PAttern Dis-
covery using Equivalence classes (SPACE), which complexity
improvements using combinatorial properties to decompose
the problem using lattice search techniques [20]. Ayres et
al. used a bitmap representation in their Sequential PAttern
Mining (SPAM) tool to achieve improved performance over
SPACE, but with a prohibitive increase in its memory require-
ments [21]. Wang and Han introduced their BI-Directional
Extension (BIDE) tool to mine frequent closed sequences
and achieved an order of magnitude improvement in speed
over CloSpan [22]. They measured linear execution time and
memory scalability in the size of the trace in their experiments.
We are not, however, interested in mining frequent or closed
sequences.

Ding et al. introduced a variation called repetitive pattern
mining which more closely resembles our work [23]. Repet-
itive pattern mining considers infrequent patterns of arbitrary
length that may repeat in a trace. Our work achieves improved
time and space complexity over theirs but our application is
more specialized to finding patterns of length two in real-time
system traces.

IV. PROBLEM STATEMENT

Given a trace τ ∈ T, find pairs of event names (η1, η2) ∈
I × I such that ∃(η1, t1), (η2, t2) ∈ τ and t1 < t2, and such
that ∀(η1, tj), (η2, tk) ∈ τ the intervals ( · , tj , tk) ∈ I are
interesting.

It is simple to convert an event trace into a sequence of
atomic intervals, but this is insufficient for our purposes. Any
event may be converted to an atomic interval by applying a
simple transformation function e2i : E→ I, with the definition
e2i((η, t)) = (η, t, t). By applying this function to each event
in a trace, we can create an interval sequence called an atomic
interval sequence. However, such a sequence is not more
useful than the original symbolic time sequence for deriving
meaning from the trace or as the input to an algorithm meant
to mine ATL relations.

We observe that an algorithm to mine Allen’s or other tem-
poral relations on an interval series will not work on an atomic
interval sequence. The only Allen relation that can be applied
to an atomic interval sequence to define intervals is before.
We designed our algorithm therefore to mine before relations
from a symbolic time sequence. The intervals that result from
the mined relations may then be used for human or machine
comprehension, or combined with traditional algorithms meant
to mine temporal relations from an interval series.

V. MEASURING INTERESTINGNESS

We must also address the problem of whether or not
intervals are interesting. Although the concept is subjective,
we can observe properties that make some intervals more
interesting than others. It is often assumed that an interesting



interval is one that is derived from a rule that also appears
in a handwritten specification. This definition is only helpful
for judging the quality of a mining algorithm, however. We
must define metrics that we can use to mine intervals when no
specification exists. Below, we argue the value of the heuristics
we use to define the interestingness of intervals.

A. Minimality
A minimal interval is one which does not contain another

interval with the same name. Given a set of intervals π ∈ I,
an interval (η, b1, e1) ∈ π is defined as minimal in π iff
@(η, b2, e2) ∈ π | b1 ≤ b2 ∧ e2 ≤ e1. Our algorithm mines
before relations that match minimal intervals in the given
trace.

The example in Figure 2 illustrates why minimality is a
property of interesting intervals. The intervals 1, 2, and 3 all
match the relation A before B, but only 1 and 2 are minimal.
If A is the beginning of a process and B is its end, then interval
3 does not capture the intent of the relation.

A B A B

1 2
3

Time

Fig. 2. Minimality example

B. Support and Confidence
We use the two most common metrics used to judge the

acceptance of rules in specification or pattern mining: support
and confidence. Support is usually defined as the number of
times a rule is matched in the training data, and confidence is
the probability that the post-condition of the rule follows the
pre-condition of the rule.

Some research has suggested that these common metrics are
less effective than other statistical measurements for judging
the correctness of a rule. Le and Lo published a study that
compared the effectiveness of different metrics in mining
response and precedence patterns from the Java software
development kit (SDK) source code [24]. In their work, they
found that the “odds ratio” and “leverage” metrics outper-
formed support and confidence on average. Their definitions
for computing the leverage and odds ratio metrics for a relation
A before B include the notion of tracking the probability
that A occurs independently and tracking the probability that
neither A nor B occur.

However, Le’s research makes assumptions that do not
apply to this work. Most importantly, they assume the use
of a sliding-window algorithm which is not sufficient to mine
intervals of arbitrary duration. In our algorithm, which does
not use a sliding window, the probability of A occurring
independently will be either one or zero, and the same applies
to the probability of neither A nor B occurring. Additionally,
they used instrumented Java code in their research, where they
added logging to the beginning of each method. Alternately,
our traces represent telemetry or similar system traces logged
from real-time systems, where the data is periodic, and events
often occur at the end as well as the beginning of processes.

C. Relative Duration

We make the assumption that the average duration of an
interval that represents the execution of a process will usually
be shorter than the average duration of the time between
executions. The real-time software that generates the event
streams from which we mine intervals is made up of processes
that are mostly periodic. Even when they can be interrupted,
tasks are usually executed in a cycle where the system wakes
up, performs work, and shuts down.

In developing our algorithm, the periodic nature of em-
bedded software presented a challenge. In most cases, when
the support and confidence thresholds are met for a relation
A before B, they are also met for the relation B before A.
In a periodic process, one of those intervals represents the
time between when a process starts and ends (its duration)
and the other represents the time between when it ends and
starts again. The time between when a process ends and when
it starts again is called its between-job inter-arrival time (BJI).
If a process is interrupted its duration may be extended. The
time during which it is interrupted is called its intra-job inter-
arrival time (IJI).

Figure 3 shows a trace and the intervals that represent a
periodic task execution. In the figure, A marks the beginning
of the task and B marks the end, while I marks the beginning of
an interrupt service routine (ISR) and J marks its end. Interval
1 shows an IJI of the task, interval 3 shows a BJI of the task,
and intervals 2 and 4 show instances of the task’s duration.

A B A B

2 4

3
Time

I J

1

Fig. 3. Periodic processes

Without further heuristics, it is not possible to differentiate
between the BJI and duration of a periodic process. When a
process repeats, the result will be an alternating pattern of A
and B events. Since we do not assume a complete trace, we
cannot simply treat the first of the two to appear in the trace
as the beginning of the process’ execution.

A recent work by Iegorov et al. used the relationship
between the IJI and the BJI of a process to mine strictly
periodic tasks and their response times [25]. They used an
assumption that the IJI of a process should be shorter than its
BJI on average. This assumption comes from the predictable
way that real-time software is scheduled and the fact that
such systems are designed with a maximum expected CPU
utilization. We use the same idea to differentiate between the
duration of a process and its BJI.

We performed a simulation using the YAO-SIM tool [26]
to see if a relationship exists between the duration of a task
and its BJI that could be used to differentiate between them.
Following a similar procedure to [25] and [26], we generated
1,000 periodic task sets for CPU utilizations between 10% and
70% at 5% increments and simulated execution of the system
for 1 × 107 time units. We used two scheduling algorithms



common in real-time embedded systems: Rate Monotonic
(RM) scheduling with fixed priorities, and Earliest Deadline
First (EDF) scheduling with dynamic priorities. The number
of tasks in each task set and their worst-case execution times
(WCETs) were randomly chosen from a uniform distribution
and the period of each task was computed from its WCET and
the CPU utilization using the UUniFast algorithm [27]. The
number of tasks was selected from the interval [3, 10] and the
WCET was taken from the interval [1, 30].

Figure 4 shows the results of a scheduling simulation com-
paring the duration of a task to its BJI. The y-axis represents
the ratio of the mean of duration for a task set over the mean
of BJI, while the x-axis represents the CPU utilization of the
system. At each CPU utilization level, the results using EDF
scheduling are on the left and those using RM scheduling
are on the right. Dots that appear below the horizontal line
represent simulations where a task’s average duration was
shorter than its BJI, while dots that appear above the line
represent simulations where the reverse was true.

The choice of 70% CPU utilization as the upper bound
of the simulations was not arbitrary. The commonly accepted
notions of safe CPU utilization in real-time systems are that
69% is the theoretical safe upper limit, 51-68% is considered
“safe”, 26-50% is considered “very safe”, and below 26%
is considered “unnecessarily safe” [28]. These regions are
shown in Figure 4 by differently shaded backgrounds. For any
system in the “very safe” or “unnecessarily safe” regions, our
simulations show that any task’s duration should always be
shorter than its BJI. For systems in the “safe” region, this
assumption still holds most of the time.
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Fig. 4. Simulation results comparing duration with BJI

VI. PROPOSED SOLUTION

This section describes our solution to mine pairs of event
names which correspond to the beginnings and ends of min-
imal intervals. The details are shown in Algorithm 1. In
practice, we mine nfer rules with the before relation, but the
details of such rules are beyond the scope of this work. Our

algorithm is loosely based on work by Cutulenco et al. to mine
TREs [14] in that we achieve linear asymptotic complexity in
the length of the trace using a matrix of pattern statistics.

The idea behind the algorithm is as follows. We process the
trace in order. When we encounter an event with name A, we
store it as the most recent A event. For every succeeding event
B, we count the relation A before B as matched and record
the duration of the interval. When the next A event is en-
countered, we increment a success counter for all A before ·
relations marked as matched exactly once and increment a
failure counter otherwise. We also update the average duration
of successful relations. When all events have been read, we
check each pair of event names and output the associated rule
if the user specified confidence and support thresholds are
exceeded and if the average duration is shorter than that of
the inverse relation.

We create a square matrix data structure M where each
dimension maps to a name in the trace alphabet Σ ⊆ I. The
rows of M represent the left side of a before relation, and
the columns represent the right side. Each entry M(i, j) in
the matrix contains a 5-tuple (m, s, f, pd, ad) where m ∈ N
represents the number of times the event name Σ(j) has been
seen since the last Σ(i) (the matched count), s, f ∈ N are
success and failure counts, and pd, ad ∈ R are the previous
duration and the average duration of successfully matched
pairs. We also keep an array R, where indices map to names
in Σ and contain the most recent copy of each event if one
has been seen.

The user must specify a support threshold St and a confi-
dence threshold Ct. A count is kept of the success and failure
of each event to imply every other event. The support for a
pair is defined as the total number of successes for that pair.
This varies somewhat from other notions of support because
we do not use a sliding window in our algorithm and events
may occur many times in the trace. The confidence for a pair
is defined as the number of successes for that pair over the
sum of the successes and failures.

After the trace is complete, the matrix is iterated over,
and each cell is checked to see if it meets the acceptance
conditions. A pair (Σ(i),Σ(j)) is accepted if the following
conditions hold.

1) The event is not matching itself: i 6= j.
2) The confidence threshold is met: M(i,j).s

M(i,j).s+M(i,j).f > Ct.
3) The support threshold is met: M(i, j).s > St.
4) The average duration is less than the average duration

of the inverse pair: M(i, j).ad <M(j, i).ad.

After a trace has been processed, the matrixM is traversed
in a finalization step that facilitates handling multiple, non-
contiguous traces. For each cell of the matrix, its success
count is incremented if its matched count is exactly one and
its failure count is incremented if its matched count is greater
than one. Importantly, its failure count is not incremented if
the matched count is zero. This causes the algorithm to assume
that the behavior after the trace will not invalidate any of the
relations. The matched count of each cell is also set to zero



Algorithm 1 Interval Mining Algorithm
1: procedure ADDTOMODEL(event)
2: define i : Σ(i) = event.name
3: for left ∈ Σ.indices do
4: if R(left) is set then
5: // if the before relation holds
6: if R(left).time < event.time then
7: increment M(left, i).matched
8: M(left, i).pd ← event.time−R(left).time
9: end for

10: if R(event.name) is set then
11: for right ∈ Σ.indices do
12: if M(i, right).matched = 1 then
13: increment M(i, right).success
14: M(i, right).ad ← M(i, right).ad +

(M(i, right).pd−M(i, right).ad)/M(i, right).success
15: else
16: increment M(i, right).failure
17: M(i, right).matched← 0

18: end for
19: R(event.name)← event

and the array of the most recent events (R) is cleared. This
final step enables handling traces with few events such as the
example in Section VII and the case study in Section VIII-A.

VII. EXAMPLE

In this section, we present an illustrative example of the
mining algorithm discussed in Section VI. Assume a confi-
dence threshold Ct of 1.0, a support threshold St of 1, and the
trace shown in Figure 1: (A, 10), (B, 20), (B, 30), (C, 40), (A,
50), (C, 60). The state of the matrix M and the array R are
shown after each event is added to the model. Each field of
M contains the 5-tuple (m, s, f, pd, ad), and each field of R
contains the most recent event with that name.
• ADDTOMODEL((A,10)) – The indices corresponding to

A, B, and C in Σ are looped over on Line 3, but R
is empty so the condition on Line 4 is false and the
procedure continues on Line 10. The condition on Line 10
is also false because R is empty, so the event is simply
inserted into R on Line 19.

M :
A B C

A 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
B 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
C 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0

R :

A (A,10)
B
C

• ADDTOMODEL((B,20)) – There is now an A event in
R, so the conditional is taken for that event on Line 4 and
(A,10) is compared to (B,20) on Line 6. Since 10 < 20,
matched is incremented for the pair (A,B) on Line 7 and
its previous duration is set on Line 8. No B event is in R,
so the condition on Line 10 is false. The event is inserted
into R on Line 19.

M :
A B C

A 0,0,0,0,0 1,0,0,10,0 0,0,0,0,0
B 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0
C 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0

R :

A (A,10)
B (B,20)
C

• ADDTOMODEL((B,30)) – There are now A and B events
in R, so the conditional on Line 4 is taken for those.
The matched count for (A,B) and (B,B) are incremented,
and their previous durations are set. The pair (A,B) has
been seen twice, so its matched count is now two. For
the first time, the condition on Line 10 is true, since B
has been seen before. The indices corresponding to A,
B, and C in Σ are looped over on Line 11 and the pairs
(B,A), (B,B), and (B,C) are checked to see if matched
equals one on Line 12. This is only true for (B,B), so its
success counter is incremented on Line 13 and its average
duration is updated on Line 14. The failure counters for
(B,A) and (B,C) are incremented on Line 16. All three
matched counters are reset to zero on Line 17. Finally,
the index for B in R is replaced with (B,30).

M :
A B C

A 0,0,0,0,0 2,0,0,20,0 0,0,0,0,0
B 0,0,1,0,0 0,1,0,10,10 0,0,1,0,0
C 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0

R :

A (A,10)
B (B,30)
C

• ADDTOMODEL((C,40)) – There are both A and B
events in R, so the conditional on Line 4 is taken for
those. Both (A,C) and (B,C) have their matched counters
incremented, their previous durations are recorded, and
the event is inserted into R.

M :
A B C

A 0,0,0,0,0 2,0,0,20,0 1,0,0,30,0
B 0,0,1,0,0 0,1,0,10,10 1,0,1,10,0
C 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0

R :

A (A,10)
B (B,30)
C (C,40)

• ADDTOMODEL((A,50)) – All three event names have
been seen, so the condition on Line 4 is true in all cases.
The pairs (A,A), (B,A), and (C,A) all have their matched
counters incremented on Line 7 and their previous dura-
tions updated on Line 8. The condition on Line 10 is true
again, so the pairs (A,A), (A,B), and (A,C) are checked to
see if they have been matched once. The pairs (A,A) and
(A,C) have been matched once, so their success counters
are incremented and average durations updated. However,
(A,B) has been matched twice, so its failure counter is
updated. All three matched counters are reset. The index
for A in R is replaced with (A,50).

M :
A B C

A 0,1,0,40,40 0,0,1,20,0 0,1,0,30,30
B 1,0,1,20,0 0,1,0,10,10 1,0,1,10,0
C 1,0,0,10,0 0,0,0,0,0 0,0,0,0,0

R :

A (A,50)
B (B,30)
C (C,40)



• ADDTOMODEL((C,60)) – The pairs (A,C), (B,C), and
(C,C) have their matched counters incremented and pre-
vious durations updated. On Line 13, the success counter
for the pairs (C,A) and (C,C) are incremented and their
average duration updated, as they have been matched,
while on Line 16 the failure counter for the pair (C,B) is
incremented since its matched count is zero. The event
is added to R, and the trace is complete.

M :
A B C

A 0,1,0,40,40 0,0,1,20,0 1,1,0,10,30
B 1,0,1,20,0 0,1,0,10,10 2,0,1,30,0
C 0,1,0,10,10 0,0,1,0,0 0,1,0,20,20

R :

A (A,50)
B (B,30)
C (C,60)

• Finalize – After the trace has completed, each cell of
the matrix is iterated over, and the success count is
incremented if the cell’s matched count is exactly one.
The success counters are incremented for (B,A) and (A,C)
and their average durations are updated. Failure counts
are only incremented if the call’s matched count is greater
than one, so this is done for (B,C). All matched counts
are reset to zero and R is cleared.

M :
A B C

A 0,1,0,40,40 0,0,1,20,0 0,2,0,10,20
B 0,1,1,20,20 0,1,0,10,10 0,0,2,30,0
C 0,1,0,10,10 0,0,1,0,0 0,1,0,20,20

R :

A
B
C

The result of processing the example trace is that the
pair (C,A) is output. Although (C,A) only appears once in
the visible trace, the trace is assumed to be incomplete and
contains no evidence to refute the hypothesis that A before C
is an interesting relation.

The other pairs inM are rejected for the following reasons.
• (A,A), (B,B), (C,C) – fail condition 1, that the event is

not matching itself
• (B,A), (A,B), (C,B), (B,C) – fail condition 2, that the

confidence threshold of 1.0 is met
• (A,B), (C,B), (B,C) – fail condition 3, that the support

threshold of 1 is met
• (A,C) – fails condition 4, that the average duration is

shorter than that of the inverse pair

VIII. CASE STUDIES

We performed a series of case studies to demonstrate the
viability of our algorithm. We ran the algorithm on datasets for
which we had a handwritten nfer specification and compared
the rules in those specifications to those that our algorithm
mined from the same datasets. Although nfer rules concern
a hierarchy of intervals, we were only interested in comparing
against before relations on events rather than general ATL
relations on intervals.

We implemented our algorithm in the C programming
language and support both a command-line tool and an R-
language interface. Our tool currently loads the entire trace

into memory before processing, but this is an implementa-
tion detail, not a requirement of the algorithm. We ran the
command-line version of the tool, compiled using the GNU
Compiler Collection (GCC) 4.9.4 with -O3 optimizations.

Experiments were performed in Linux 4.9.6 on an Intel Core
i5 at 2.4 GHz with 16 GB of RAM. We obtained execution
time information from the GNU time command and memory
usage from the Valgrind Massif heap profiler. We ran each
experiment 20 times and took the mean of their execution
times, while the memory usage was fully deterministic.

All experiments were run with the confidence threshold
Ct = 0.90 and the support threshold St = 10. Tuning these
parameters is difficult without an established ground truth the
algorithm is attempting to match for a dataset. We found,
through experimentation, that these values were effective in
cases where such a ground truth was known.

A. SSPS Dataset

The Sequential Sense-Process-Send (SSPS) dataset consists
of application logs from software mimicking an embedded
data collection device. The device-under-test (DUT) was a
first generation BeagleBone with a 720 MHz ARM Cortex-A8
running version 6.6.0 of the QNX real-time operating system.
Logs were collected using the QNX tracelogger utility. The
tested dataset contained 1,451,193 events broken up into 404
trace files. Our tool ran on this dataset in 0.88 seconds and
used 14.1 MB of memory.

The SSPS system executes a periodic process with three
phases: acquisition, processing, and communication. Data ac-
quisition is accomplished using the dd utility to copy random
data to a file. There are two phases of data processing. The
first creates a checksum for the data using cksum and the
second compresses the data using bzip2. The communication
phase consists of using scp to transfer the compressed file to
another host on the network. After the communication phase,
the process is made pseudo-periodic by sleeping for a period.

The system logs an event between each phase, and between
the two parts of the processing phase. This complicates log
comprehension, as each event must serve as both the end of
the previous phase and the beginning of the next. The trace
also contains anomalies, in that the communication phase is
sometimes absent. These issues are illustrated in Figure 5,
which shows the phases of execution and their relationship to
the events in the trace. In the figure, event D and scp interval
are highlighted because they are absent from anomalous traces.

dd cksum bzip2 scp sleep
Time

A B C D E

Fig. 5. SSPS events and application phases

Another challenge of the SSPS dataset was that it was
broken up into 404 separate traces that mostly contained events
related to interrupt handling. Each trace contained, on average,
only 8.6 events related to phases of the application. This meant
that a single trace usually did not contain events from two full



cycles of the main loop. These traces were non-contiguous, so
events were missing between them and they could not simply
be concatenated together and treated as one trace.

Our algorithm mined relations that established the sequen-
tial nature of the main application with no incorrect rules.

The most interesting aspect of the mined relations from the
SSPS dataset was that some of the rules defined the BJI of
a phase rather than its duration. This highlighted a problem
with the dataset rather than with our algorithm. We discovered
that the system that generated the logs had an average CPU
utilization of 84%. As this is above the theoretical safe limit for
a real-time system of 69% (see Section V-C) we should expect
some tasks’ BJIs to become shorter than their durations.

B. LANL Dataset

The System Call Logs with Natural Random Faults (LANL)
dataset consists of application logs from a simulation of an
automotive cruise-control application on a CPU under ionizing
radiation bombardment [29]. The DUT was a Xilinx ZC706
featuring a XC7Z045 System-on-a-Chip (SoC) running version
6.6.0 of the QNX real-time operating system. The dataset
contains faults from placing the SoC in the path of a high
energy neutron beam at the Los Alamos Neutron Science
Center (LANSCE) facility in New Mexico, USA. The dataset
contained 100,000 events. Our tool ran on this dataset in 0.06
seconds and used 12.6 MB of memory.

The nfer specification for the LANL dataset defines
request-response behavior for sensors, controllers, and ac-
tuators and then defines nominal and off-nominal relations
between them. The cruise-control application that generated
the dataset executes in a polling loop, but most events occur
in response to external factors. The intervals that are meant
to be derived from the event stream are the request-response
patterns, where the response may be nominal or off-nominal.

The nfer specification for the LANL dataset defines peri-
ods of activity for each component and then defines the nomi-
nal and off-nominal behavior during those periods. During the
period of activity for the speed sensor, the nominal behavior
is for the speed value to be sent and no off-nominal behavior
is defined. During the period of activity for the actuators, the
nominal behavior is for a unanimous response to be received
after a request to the controllers for commands is sent and the
off-nominal behavior is for a non-unanimous or non-quorum
response to be received. During the period of activity for the
controllers, the nominal behavior is for the correct actuator
to acknowledge receipt after a controller sends its command
and the off-nominal behavior is for an incorrect actuator to
acknowledge receipt of the command.

Our algorithm found every relation describing nominal
behavior for the speed sensor and actuator components, but
was unable to find off-nominal behavior relations. This is
not surprising, as the faults that are part of the off-nominal
behavior occur infrequently in the trace. As a result, the
relations that include events from faults do not have enough
support to be mined.

More surprisingly, many nominal behavior relations de-
scribing the controller functionality were missing from the
mined rules. The only relation we mined from the controller
behavior was from two events that appeared sequentially in the
source code with only inter-process communication occurring
between them. We discovered that the missing rules were
explained by the parallel execution of multiple controllers.
This design caused events to appear in non-deterministic order.

Figure 6 shows the problem of the parallel execution of mul-
tiple controllers in the LANL dataset. The events from every
controller shared the same names, so it became impossible to
find the correct relations without having a way to differentiate
between them. We discovered that the controllers logged their
process identifiers as data parameters in the trace, so we would
be able to differentiate between the processes if we supported
the notion that data parameters should be equal, as in the
case of [11]. For now, we suggest that users choose unique
event names per process instance. We plan to incorporate data
parameters into our algorithm in future work.

controller 1

Time

A A B A B B

controller 2

controller 3

Fig. 6. LANL parallel controller execution

C. MSL Dataset
The Mars Science Laboratory (MSL) dataset consists of

telemetry in the form of EVent Reports (EVRs) received from
the Curiosity rover on Mars. Experiments with these logs were
made possible through collaboration with researchers at the
National Aeronautics and Space Administration (NASA) Jet
Propulsion Laboratory (JPL) in Pasadena, California, USA.
The events in the MSL logs are generated by the rover when
commands are executed from daily activity plans uploaded
by controllers on Earth. The logs cover a period of about 60
days and are filtered only to contain the events relevant to
the available nfer specification, written for the case study
in [1]. The dataset contained 49,999 events. Our tool ran on
this dataset in 0.64 seconds and used 45.7 MB of memory.

The nfer specification for the MSL dataset defines situa-
tions where errors that have been reported by the spacecraft
can safely be ignored. We specifically analyzed one set of rules
that defines a benign race condition where the routine servicing
a radio reports missing telemetry due to thread starvation.
The intervals that are meant to be derived take the form of
a command being dispatched and later completing. The same
pattern of dispatch before complete follows for 464 different
types of commands in the trace, all intermingled together.

Our algorithm found 117 pairs of dispatch before complete
relations for the same command. Encouragingly, no com-
plete before dispatch rules were mined for the same command,
meaning that our assumption that the duration should be
shorter than the BJI held throughout.

A scientist at JPL examined the mined rules from running
our algorithm on the MSL dataset. He found that the rules



captured some useful information about how the spacecraft
behaves, and we were able to use his analysis to verify that
a sequential task was correctly identified. For example, a set
of rules successfully describes a periodic activity that loads a
schedule table for the Rover Environmental Monitoring Station
(REMS) instrument that monitors Mars’ weather. The table
tells the REMS instrument what data to collect and consists
of a sequence of six commands. Our algorithm found relations
between dispatch and complete events for each command, but
it also found relations for the different commands in sequence.

IX. CONCLUSION

In this work, we present an algorithm for mining interesting
temporal intervals from real-time system traces. Our algorithm
uses black-box, passive learning to mine ATL before relations
in linear time and constant space complexity in the size of the
trace. We justify our heuristics and present three case studies
that demonstrate the value of our contribution.

Our choices of heuristics to define an interesting interval are
based on our interest in mining representations of the duration
of processes in real-time systems. We rely on the minimality
of these intervals to avoid the use of a sliding window in our
algorithm and support arbitrarily long and infrequent relations.
We use a property of real-time systems scheduling to support
incomplete traces and improve the quality of our results.

Our ongoing and future work includes supporting data
parameters in our mining algorithm. We describe in Sec-
tion VIII-B how some intervals in which we are interested can-
not be mined because it would require differentiating between
processes based on their data parameters. Nfer supports
arbitrary expressions on data maps, so some discretion must
be used to avoid drastic increases in runtime complexity.
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