
In Model-Driven Development of Reliable Automotive Services, LNCS 4922,
pages 48–66. Springer, 2008.

Revised version.

Generating Sound and Resource-Aware Code
From Hybrid Systems Models?

Madhukar Anand, Jesung Kim, Sebastian Fischmeister, Insup Lee

Department of Computer and Information Science
School of Engineering and Applied Sciences

University of Pennsylvania
{anandm,jesung,lee}@cis.upenn.edu, sfischme@seas.upenn.edu

Abstract. Modern real-time embedded systems are complex, distributed,
feature-rich applications. Model-based development of real-time embed-
ded systems promises to simplify and accelerate the implementation pro-
cess. Although there are appropriate models to design such systems and
some tools that support automatic code generation from such models,
several issues related to ensuring correctness of the implementation with
respect to the model remain to be addressed.
In this work, we investigate how we can derive sampling rates for dis-
tributed real-time systems generated from a hybrid systems model such
that there are no switching discrepancies and the resources spent in
achieving this are a minimum. Of particular interest are the resulting
mode switching semantics and we propose an approach to handle faulty
transitions and compute execution rates for minimizing missed transi-
tions. As a guiding example for our approach, we describe a hybrid sys-
tems model for vehicle coordination in which one vehicle acts as a leader
and a second follows the leader guaranteeing to maintain a safe distance
between the two vehicles.

1 Introduction

Modern real-time embedded systems are complex, distributed, feature-rich appli-
cations. For example a car incorporates thirty to sixty micro-controller units [1]
and desired functionality includes automatic parking, automatic car coordina-
tion, and automatic collision avoidance. The development of such functionality is
time-consuming and difficult, since faults in the temporal or value domain may
lead to system failures, which in turn can lead to catastrophes with possibly hu-
man losses. Model-based development of real-time embedded systems promises
to simplify and accelerate the implementation process. This is because of its
promises such as formal guarantees and code generation. Several mathematical
models such as Timed Automata [2], Hybrid Systems [3], State-charts [4] have
been successfully applied to real-time embedded systems.
? This research was supported in part by NSF CNS-0410662, NSF CCF-0429948,

NSF CNS-0509143 ARO DAAD19-01-1-0473, ARO W911NF-05-1-0182, and OEAW
APART-11059

For embedded control software, hybrid systems are an appropriate modeling
paradigm because it can be used to specify continuous dynamics as well as dis-
crete switching between modes. Once the system has been designed with such
a model, developers can verify safety and liveness properties such as meeting
deadlines, failed responses, communication collisions, and error propagation. Af-
ter the system has passed the verification, code generation allows the developers
generate correct code from that correct model.

A problem for code generation from verified models is to understand the
relationship between the model and the code. The model’s verification and anal-
ysis are only useful, if the generated code has the same properties as the model.
Several code generators can derive code from a model, however, the relationship
between model and the code using continuous time is not their primary concern
(c.f., [4, 5] or commercial tools like Real-Time Workshop or TargetLink). How-
ever, some academic code generators ensure that the model and the code have
the same properties (c.f., [6]), but the issue remains challenging. Our previous
work [7–9] is unaware of the resources available on the implementation platform
and therefore needs manual parameter assignment.

In this paper, we extend previous, related work and consider the problem of
calculating sampling rates based on the platform resource model. Specifically,
we investigate how to derive criteria to preserve the model’s switching semantics
based on the platform resource model to ensure that there are no faulty or missed
transitions [9].

Our ideas are demonstrated in the context of the modeling language CHARON,
a design environment for specification and analysis of embedded systems that
allows hierarchical specifications of interacting hybrid systems. In this paper, we
propose an additional step in CHARON’s code generation. A platform resource
model specifies the available hardware and its properties. We use the platform re-
source model to computes the optimal sampling rates so the switching semantics
are preserved while expending the least amount of resources in the process.

2 Assumptions and the Basic Model

A hybrid model consists of a real vector x denoting the continuous state, a finite
set of discrete states P that associates x with a differential equation ẋ = fp(x).
For each p ∈ P , and a set of transitions E ⊆ P×P . The continuous state x evolves
according to the differential equation ẋ = fp(x) when the current discrete state
is p. When the current discrete state is changed from p to p′, x is optionally reset
to a new value R(x, p, p′) defined by a map R : Rn×P ×P → Rn, and continues
evolution in accordance with a new differential equation ẋ = fp′(x) associated
with p′. To control the discrete behavior, discrete transitions can be guarded by
predicates over x. That is, a set G((p, p′)) ⊆ Rn for each (p, p′) ∈ E specifies
the necessary condition on the continuous state that the transition (p, p′) can
be taken. Note that a discrete transition is not necessarily taken immediately
even if the guard is true. To enforce a transition, an invariant set I(p) ⊆ Rn is
associated for each p ∈ P to specify the condition that the discrete state can stay

2

in p (that is, the condition that x will follow ẋ = fp(x)). An outgoing transition
should be taken before the continuous state goes out of the invariant set.

In this paper, we assume that there is a network of hybrid automata (called
agents) communicating via a set of shared variables. We will denote a single agent
by A = (A,SV) where A is the hybrid model of the agent, and SV is the set of
shared variables. A system of communicating hybrid agents is represented by the
tuple C = 〈(A,SV)1, . . . , (A,SV)n〉. We assume that every s ∈ SV is updated
by a unique agent, and it follows dynamics such that ṡ ∈ [L1,L2],L1,L2 ∈
Q \ {0}. Such linear automata are of practical significance, as hybrid systems
with very general dynamics can be locally approximated arbitrarily closely using
rectangular dynamics [10]. The transition guards are assumed to be such that
at most one of them is enabled at a time.

Example 1. Consider the example of vehicle coordination where we assume that
there are two vehicles. The first vehicle is the leader and follows the dynamics
depicted as agent A1 in Figure 1. x1 denotes the distance of the leader from the
baseline, v1, its velocity. The leader’s dynamics are determined by the control
function u. The second vehicle trails the leader and maintains a safe distance
from it. The dynamics of this vehicle is described as the agent A2. Its distance
from the baseline is given by x2, and velocity by v2. If it is closer than dmin

from the leader, it slows with a rate v̇2 = −1 and if it is farther than dmax,
it accelerates with a rate v̇2 = 1. The invariant in the state q1 is x1 − x2 ∈
[dmin− η, dmax + η], in q2 is x1−x2 ≥ dmin− η, and in q3 is x1−x2 ≤ dmax + η,
where η is the tolerance parameter. It is assumed that, there is an infrastructure
for communicating variables between the vehicles and that, the transmission
delay is bounded and known.

G3 : x1 − x2 ∈ (dmin, dmax)

q1 q2

A2

v̇1 = u

q3

ẋ2 = v2

v̇2 = 0
ẋ2 = v2

v̇2 = 1

A1

q0

ẋ1 = v1

G1 : x1 − x2 ≥ dmax

G2 : x1 − x2 ≤ dmin

G4

G5G6

G5 : x1 − x2 ≥ dmax

G6 : x1 − x2 ≤ dmin

G4 : x1 − x2 ∈ (dmin, dmax)

v̇2 = −1
ẋ2 = v2

Fig. 1. A system with two agents

ut

We now formally define the resource model and the platform on which the
code will be implemented. Our definitions present abstractions that retain the
parameters pertinent to the problem of faithful translation of the model. There-
fore, we will abstract away details such as the exact method of communication
of variables, jitter, etc.

3

Implementation of the continuous model involves assigning a suitable sam-
pling rate to every agent. Such a discretization of the continuous model can be
defined as,

Definition 1. (DCHA) Given a system of communicating hybrid agents C, and
a relative period of update of variables ρ, ρ ∈ Z+, the discretized system of
communicating agents (DCHA) is given by D = 〈(A,SV, ρ)1, . . . , (A,SV, ρ)n〉,
such that gcd(ρ1, . . . , ρn) = 1. ut

Note that the DCHA is the model implemented on actual platforms. We
will therefore, give guarantees of execution with reference to this model. For a
rigorous definition of system of communicating agents and their semantics, we
refer the reader to [7].When the discretized model is mapped to a real time task in
the code-generation environment, each agent is assigned a period of execution.
These periods of execution are assigned taking into consideration correctness
guarantees and the resources available at each node. The exact procedure for
assigning periods is elaborated in Sections 4.

Our objective in incorporating the resource model (i.e., model of memory,
energy, CPU, etc.) in addition to the hybrid model is that we can generate an
optimal sampling frequency that can be supported on the platform. This opti-
mum is calculated by ensuring the model semantics and conserving the resources
available. Therefore, we define a resource as consisting of a utilization function
and a specification of energy utilization for every operation.

Definition 2. (Resource) A resource R is defined by the tuple 〈id, U, E〉, where,
id ∈ Z+ is a unique identifier of the resource, U is the maximum amount of uti-
lization, and an optional field E which indicates the amount of energy consumed
per unit of utilization. A node N is defined as a set of interacting resources. ut

The definition of platform consists of a mapping between the model and the
node that executes the code corresponding to that model, the communication
delay involved, and finally a quantum of execution supported at each node. The
quantum is defined by how often a computation can be performed on any node.

Definition 3. (Platform) A platform P is the tuple 〈N ,M, φ, ν〉 where N is
a system of nodes, M : A → N is a function that maps an agent to a node
on which it is to be executed, φ is a map that takes as input the agent ids and
returns the bound on communication delay between two agents in A, and ν is
the baseline period, i.e., the quanta of the period of execution of any agent.

Example 2. Consider the vehicle coordination system with two agents as shown
in Figure 1. For the trailing vehicle (V2), the resources could be a battery, the
CPU and the sensor for tracking the leader(V1). The resource model for the
vehicle V2 can thus be represented as,

V2 id Umax E
Batt1 1000mAh -

CPU 5Mhz 0.001J/op

Sensor1 1kHz 0.2J/sample

4

The target platform here consists of two nodes, the leader and the trailing vehicle,
and if we assume no communication delays, it is described as 〈{V1, V2},M, φ(V1, V2)〉,
where M = {A1 → V1, A2 → V2}, and φ(Ai, Aj) = 0. The baseline period (quan-
tum of execution) is the smallest sampling period that could be supported. For
example, we could have ν to be 0.01. ut

3 Code Generation from Hybrid System Models

This section gives a brief overview of the procedure of code generation from
hybrid models. We first present translation of continuous behavior specified by
differential equations and algebraic equations, and then explain translation of
discrete actions specified by guarded transitions. Later in this section, we discuss
the issue of discrepancy between the model and the generated code, real-time
resource concerns and choice of correctness criteria. For more details on code
generation, we refer the reader to [3, 7].

3.1 Code Generation Procedure

A differential equation of the form of ẋ = f(x) specifies continuous change of
variable x at the rate specified as the first derivative f(x) of x with respect to
time (i.e., dx/dt = f(x)). Continuous change of a variable can be simulated by
stepwise update of the variable based on a numerical method that computes
an approximate value of the variable after a discrete time step (e.g., Runge-
Kutta method [11]). The simplest numerical method is the one known as Euler’s
method, which projects the value of the variable at the next time step through
linear extrapolation. For example, a differential equation ẋ = 2 is translated into
an assignment statement x := x + 2 × h, where h is the step size. In fact, no
more sophisticated method is necessary if the right-hand side of the differential
equation is a constant.

Once the differential equations are solved, algebraic equations are evaluated
to reflect the change due to differential equations. The general form of algebraic
equations is y = g(x). An algebraic equation can be implemented by an assign-
ment statement of the same form. That is, an algebraic equation y = g(x) is
simply translated into an assignment of the form y := g(x). The transition has
a guard that specifies the necessary condition for the transition to be taken, and
may have optional assignments to variables that are presently performed when
the transition is taken. When a transition is taken, differential equations and
algebraic equations defined in the source position become no longer active, and
those defined in the destination position take effect immediately.

The guard in the hybrid system model enables or disables a transition, rather
than immediately triggers a transition in hybrid systems models. This means that
enabled transitions may be taken delayed as long as the invariant is satisfied.
Conceptually, transitions are non-deterministic in the model, and the implemen-
tation determines exactly when a transition is taken. An obvious policy is an
urgent transition policy where a transition is taken as soon as the guard evaluates

5

true. We have proposed a transition policy what we call instrumentation [7] that
enforces transitions to be taken some time ∆ after the transition is enabled but
no later than ∆ before the transition is disabled. Yet, another possibility is to
enforce a transition once it is enabled. We call such a policy an eager transition
policy. We consider only an eager transition policy in this paper.

3.2 Switching Discrepancies in the Code

There are some issues, such as ensuring the switching semantics and faithful
translation of continuous dynamics that need to be addressed to provide guar-
antees in the generated code. Here, we focus on preventing switching discrepan-
cies. The continuous semantics of the model are implemented in the code with
the help of numerical methods, which introduce an error due to discretization
in addition to the roundoff and truncation errors on target platforms. These
errors along with the order of scheduling of the reads may cause a transition to
be falsely enabled. If such a faulty transition is taken, the dynamics of the sys-
tem may be completely different from the intended model. The example below
highlights such a possibility.

Example 3. (Faulty Transition) Consider the vehicle coordination system in Ex-
ample 1. Let us say that the relative period of update for agents A1 and A2 be
(5, 3) and the actual periods of updates be 0.1s and 0.06s, respectively. Also, let
u = 2, dmin = 0.1, dmax = 0.5, and initial positions of vehicles be x0

1 = 0.3072
and x0

2 = 0.2, from the baseline, initial velocities v0
1 = 0, v0

2 = 0, the commu-
nication delay φ(A1, A2) = 0.03, and the current states of agents be q0 and q2.
Then, a possible run of the system is,

t x1(A1) x1(A2) x2(A2)

0.06 0.3072 0.3072 0.2018

0.10 0.3172 0.3072 0.2018

0.12 0.3172 0.3072 0.2072

. . .

where xi(Aj) denotes the value of variable xi on agent Aj . Notice that at time
0.12, the difference between vehicles is 0.3172 − 0.2072 = 0.11(> 0.1), but the
estimated distance at A2 is 0.3072−0.2072 = 0.0956 < 0.1 and the system makes
a faulty transition to q3. ut

Although the above example indicates a faulty transition, since the transition
is made to q3 in which the trailing vehicle decelerates, it is not critical to ensuring
safety. However, in some cases, if the system makes a faulty transition to an
accelerating state q2, then, the trailing vehicle accelerates. This is critical to
safety as the gap between the vehicles decreases in this case. The example below
illustrates this.

Example 4. (Faulty Transition) Now consider that the relative period of update
for agents A1 and A2 be (2, 1) and the actual periods of updates be 0.2s and 0.1s,

6

respectively. Also, let dmin = 0.1, dmax = 0.2, and initial positions of vehicles
be x0

1 = 0.19 and x0
2 = 0.1 from the baseline, initial velocities v0

1 = 0.1, v0
2 = 0.2,

the communication delay φ(A1, A2) = 0.01, and the current states of agents be
q0 and q3. The first vehicle reverses its direction at v̇2 = −1 at time 0.1s. Then,
a possible run of the system is,

t x1(A1) x1(A2) x2(A2)

0 0.19 0.19 0.1

0.1 0.21 0.19 0.1

0.2 0.20 0.21 0.11

. . .

At time 0.2, the difference between vehicles is 0.20 − 0.11 = 0.09(< dmax), but
the estimated distance at A2 is 0.21− 0.11 = 0.1(= dmax) and the system could
a faulty transition to q2. Since q2 is an acclerating state, this transition reduces
the distance between vehicles, potentially causing a collision. ut

Yet, another possibility for switching errors is that of missed transitions.
Insufficient sampling rates, choice of scheduling of reads, etc., may cause a tran-
sition to be missed. Missing some transitions may cause the system to end up in
an erroneous state. We illustrate this with an example below.

Example 5. (Missed Transition) Consider the system in Example 1. Let the rel-
ative periods of execution be (5, 3), the actual periods of update (0.25s, 0.15s),
dmin = 0.25, dmax = 0.5, the control parameter u = 0. x1 = 0.48, v1 = 5,
v2 = 4.5 at t = 0.15, and the current state of A2 be q2. Further, let d = x1 − x2,
ḋ = ẋ1 − ẋ2 ∈ [0.45, 0.5].

The guard G4 is then the condition d ∈ (0.25, 0.5) which on instrumentation
will become d ∈ (0.25 + 0.1× 0.5, 0.5− 0.1× 0.5) = (0.3, 0.45) as the maximum
skew is 0.1, and L2 = 0.5. We would then have a run of the system as,

t x1(A1) x2(A2)

0.15 0.48 0.0

0.25 0.98 0.0

0.30 0.98 0.6862

. . .

We see that the transition from q2 to q1 is missed here, and at time t = 0.3s,
the system transits to q3. ut

Switching can also be affected by resource constraints and its dynamic na-
ture. For example, as the battery wears off, it may not yield the same output
causing a deadline miss of some task. If the tasks scheduled to run do not meet
the deadlines, it may affect the dynamics which in turn could induce faulty
transitions. To counter this, in our proposed approach, we start with an assign-
ment of relative periods to different agents. From these relative periods, and the
current estimates of resources, the actual periods of execution are synthesized.
We choose these actual periods so that these correspond to the least amount of
energy used while retaining the guarantees of switching behavior.

7

3.3 Correctness Criteria

The generated code and the model can be termed equivalent if the code exhibits
a trace that is also a trace in the model. However, to account for delays in
communication and skew because of different rates of execution in the code, we
relax this requirement and define a relative faithful implementation. Under this
relaxed form of correctness, the code exhibits a trace of the model, but the state
of the model is entered later. This can be captured formally as,

Definition 4. (Relative Faithful Implementation) Let V C be the set of all vari-
ables and αx be the maximum bound on the error of a variable x. Given a trace
of states of the code K for an agent Aj, 〈q0, q1, . . .〉, at physical timestamps
〈clk0, clk1, . . .〉, if, ∀clk,

1. ∀x ∈ V C, |xD(lt)− xK(lt)| < αx, where xK and xD represent the value of
variable in the code and the model respectively, and lt, the logical time in the
code.

2. ∀j, ∃qD, qK = qD , (ltD − ltK) < φj(ltK)+ϕ(ltK) where qK is the state of the
code of logical time ltK, at physical time clk, qD is the projection of the state
of the model onto the code for Aj at logical time ltD, φj = maxi φ(i, j) and
ϕ is the maximum skew due to different rates of updates at the logical time
ltK.

then, code for Aj is said to be a relative faithful implementation. If ∀j, Aj is a
relative faithful implementation, then K is a relative faithful implementation of
D. ut

We will now present the framework that would help ensure that the imple-
mentation is relative faithful to the model.

4 Proposed Implementation Framework

In this section, we propose a framework for code generation with an emphasis
to avoid switching discrepancies (faulty and missed transitions) and conserve re-
sources while giving these guarantees. The Figure 2 provides an overview of how
the model-driven development process in our framework with CHARON: first,
the developer creates the application-specific hybrid systems model by program-
ming agents, modes, and mode changes and by defining relative update periods.
Then he specifies the platform resource model, which includes, for instance, an
agent-to-node assignment, each node’s hardware properties, power levels, com-
munication delays, and agent’s worst-case execution times. This resource model
is then fed into a constraint solver, which computes the optimal agent’s sam-
pling rates to prevent faulty and missed transitions as described in the following
sections.

Before we elaborate on computing the optimal rates of sampling of agents,
we highlight the solution to avoiding faulty and missed transitions.

8

GenerationAppl. hybrid
system model

Constraint
solver

CHARON
generated code

resource model
Platform

Fig. 2. Resource-aware Code-generation Framework

4.1 Preventing Faulty Transitions

A faulty transition is a violation of equivalency of discrete states in a faithful
implementation. It may occur because of the following reasons : 1) errors in the
variables cause the guard to be evaluated true that should otherwise be false, or
2) variables are updated at different times because of scheduling and/or different
update frequencies, causing the guard to be evaluated to be true. The essence of
that technique is to refine the model by tightening transition conditions accord-
ing to the maximum errors because of numerical and different sampling rates.
The approach enforces that the transitions in the code are consistent with the
model.

Errors in variables could result from roundoff, truncation or be timing-
induced due to the different rates of execution of the agents. Roundoff and
truncation errors are assumed to be given, the communication delay is obtained
by monitoring and the maximum skew, denoted by ϕ because of dissimilar peri-
ods can be computed by, ϕ(Ai, Aj)max = maxn∈[1..N]

(
nhj −

⌊
nhj−φ(Ai,Aj)

hi

⌋
hi

)
where N = LCM(hi,hj)

hj
.

Definition 5. (Instrumentation) Let p be a state of agent Aj with EAj (p) being
the set of discrete transitions, and the interval under consideration be [lt, lt+∆].
If the guard set g ∈ GAj

(e), e ∈ EAj
is of the form, g =

∧
i xi ∈ [lxi

, uxi
], the

invariant IAj (p) =
∧

i xi ∈ [l
′

xi
, u

′

xi
], ϕ and φ(Ai, Aj) compute the skew and delay

between the agents, then, the instrumented guards and invariants are given by,

ginst =
∧
i

xi ∈
[
lxi + γp,xi + L2xi

δxi , uxi − γp,xi − L2xi
δxi

]
(1)

Iinst =
∧
i

xi ∈
[
l
′

xi
+ γp,xi + L2xi

δxi , u
′

xi
− γp,xi − L2xi

δxi

]
(2)

where δxi = ϕ(Ai, Aj) + φ(Ai, Aj), xi is updated by agent Ai, with ẋi ∈
[L1xi

,L2xi
], and γp,xi is the roundoff and truncation error in xi in the state p.

ut

We now illustrate how instrumentation prevents faulty transitions with the
following example.

Example 6. Consider the system in Example 3 and the time interval under con-
sideration be [0,1]. If we denote d = x1−x2, then, ḋ = ẋ1− ẋ2 = 2t− t = t. Since

9

t ∈ [0.05, 1], we can say that ḋ ∈ [0.05, 1]. Now, given that φ(A1, A2) = 0.03, and
the skew at t = 0.12 is 0.02, and assuming the bound on roundoff and trunca-
tion errors is 0.001, the transition guard, x1 − x2 ≤ 0.1 upon instrumentation
becomes x1−x2 ≤ (0.1− 0.001− 1 · (0.02 + 0.03)) = x1−x2 ≤ 0.049. Therefore,
the faulty transition at t = 0.12 can be prevented. ut

The theorem below formally states that instrumentation prevents faulty tran-
sitions. For a sketch of the proof, we refer the reader to [7].

Theorem 1. Let the code K of the model D be implemented on a distributed
platform. Let for every agent Aj, p be the current state with IAj (p) the set of
invariants in that state, and GAj (e) the set of guards. If every guard (in GAj (e))
that evaluates to true is instrumented as given in Definition (5) then there will
be no faulty transitions. ut

Notice that in Example 6, the instrumentation reduces the guard interval
substantially. Generally, it is possible that with the shrinking of the guard set,
the transition is missed completely. In the next section, we will analyze and
derive a condition to check for missed transitions and possibly avoid them by
sampling at a higher rate.

4.2 Preventing Missed Transitions

Missed transitions are transitions that are enabled in the model but not taken
in the code. They occur either because the guard is not evaluated sufficiently or
scheduling affected the order of evaluation. Generally, a transition will not be
missed, if it stays enabled long enough to be detected. The theorem below gives
a sufficient condition to prevent missed transitions.

Theorem 2. Let the code K of the model D be implemented on a distributed
platform, hj be the period of sampling in agent Aj. Let I be an instrumented
invariant in a state and g =

∧
i xi ∈ [lxi , uxi], g ⊆ I represent the instrumented

guard of a transition in that state. If lt represents the current logical time at Aj,
xi(lt) the current estimate of xi at Aj, and Txi

are defined as,

Txi(k) =


[
lt + lxi

−xi(lt)

Lkxi

+ δmax, lt + uxi
−xi(lt)

Lkxi

+ δmin

]
if (xi(lt) < lxi), ẋi > 0[

lt + uxi
−xi(lt)

Lkxi

+ δmax, lt + lxi
−xi(lt)

Lkxi

+ δmin

]
if (xi(lt) > uxi), ẋi < 0

k = 1, 2, then, the transition will not be missed if,∥∥∥∥∥∥
⋂
i

 ⋂
k=1,2

Txi(k)

∥∥∥∥∥∥ ≥ 2hj (3)

where δmin = ϕmin + φ(Ai, Aj), δmax = ϕmax + φ(Ai, Aj) between agents Ai

and Aj, and ẋi ∈ [L1xi
,L2xi

], then, the transition will be detected and will not
be missed if they are taken as soon as enabled.

10

Proof. See Appendix A. ut

The example below illustrates a case where a transition is missed and the
sufficient condition is not met.

Example 7. Consider the case of Example 5. As a quick check, we find that if
the system evolves as fast as 0.5, then T2 = (0.48−0.45

0.5 + 0.1, 0.48−0.3
0.5 + 0.05) =

(0.16, 0.41). Similarly, T1 = (0.48−0.45
0.45 + 0.1, 0.48−0.3

0.45 + 0.05) = (0.167, 0.45). We
find that ‖T1 ∩ T2‖ = 0.243 6≥ 2(0.15) does not satisfy the sufficient condition
for preventing missed transitions. However, if we choose the period of execution
to be 0.12, we can see that the transition will not be missed. ut

With the Theorems 1 and 2, we have a sufficient condition to ensure a relative
faithful implementation that we record in the following corollary.

Corollary 1. Let the code K of the model D be implemented on a distributed
platform. If the code for every agent Ai every G ∈ GAj

is dynamically instru-
mented so that G and corresponding invariant I satisfy the condition of overlap
in Theorem 2, and all variables in K have bounded error, then, K is a relative
faithful implementation of D. ut

4.3 Optimal Periods of Execution

In this section, we describe an algorithm to choose optimal periods of execution
to avoid missing a transition and meeting the resource constraints.

The main idea of the approach described as Algorithm 1 is to scale the relative
periods of execution so that they meet the supported level of utilization. This
is implemented in the function SMALLEST-K. Here, we consider schedulability
under EDF and Rate Monotonic(RM) algorithms. The function takes as input
α that is the level of utilization permissible with the supported levels of energy,
and returns the smallest k for which all the agents mapped onto a particular
node (N) can be scheduled. Voltage scaling techniques [12] can be used to fix
a level of utilization of the CPU. Besides checking schedulability, we assume
that a function RESOURCE-CHECK is implemented that checks to see whether
agents are scheduled with a particular period and other resource constraints. For
example, the function could check to see, if the frequency of reading of sensor
data is less than the maximum permissible sampling frequency of the sensor. If
an energy budget is associated, then it can be used to check whether the budget
is met. If a particular k does not satisfy schedulability or resource constraints,
it is incremented and then tested again. Note that increased k results in longer
periods of execution.

The function SELECT-PERIODS-NODE returns the maximum and mini-
mum possible utilization and returns the range of scaling factor k possible on
that node. The KNmin corresponds to the smallest periods possible on the node
N with the supported amount of resources on node N . The SELECT-PERIODS
function takes as input the present set of states 〈p1, . . . , pn〉 and computes the
possible values of k for every node and computes the range of k’s possible for all

11

Algorithm 1 Algorithm to find periods of execution of agents.
SMALLEST-K (α,N):

1: k ← 1
2: CASE-EDF:
3: while

““P
M(j)=N

Wj

k·ρj
6≤ α

”
∨ (RESOURCE-CHECK(N) 6= true)

”
do

4: k ← k + 1
5: end while
6: CASE-RM:
7: J = {j1, . . . jn|M(ji) = N}
8: while

““
∀j ∈ J,

P
jd

ρj

ρ1
e ·Wj 6≤ α · k · ρj

”
∨ (RESOURCE-CHK(N) 6= true)

”
do

9: k ← k + 1
10: end while
11: return k

SELECT-PERIODS-NODE (N):

1: kNmax ← SMALLEST-K(αmin)
2: kNmin ← SMALLEST-K(αmax)
3: return (kNmin , kNmax)

SELECT-PERIODS (〈p1, . . . , pn〉):
1: (kmin, kmax)← (0, 0)
2: for N ∈ N do
3: (k1, k2)← SELECT-PERIODS-NODE(N)
4: (kmin, kmax)← (max(kmin, k1), max(kmax, k2))
5: end for
6: k ← kmax

7: while k ≥ kmin do
8: if (CHECK-MISSED(〈p1, . . . , pn〉, k)) then
9: return k

10: end if
11: k ← k − 1
12: end while

the nodes. This range is represented by (kmin, kmax). To find the optimal value
of k, we start iterating from kmax since it represents the least utilization level.
At each iteration, we check to see whether choosing that value of k would lead
to a missed transition. The function CHECK-MISSED implements this check.
Thus, at the end of the while loop (Steps 7-12), we would have found a k which
can be supported on all nodes while being guaranteed for no missed transitions.
Once we have found the value of k, we can supply the parameters to the code.

Example 8. (Room Heater) Our example for illustrating the algorithm is adapted
from the heater benchmark for hybrid systems verification [13]. The benchmarks
considers the case of a set of rooms being heated by limited number of heaters
that are shared by the rooms. The number of heaters is strictly less than the num-
ber of rooms. In our example, we consider two rooms and one heater. The model
of this system, described in Figure 3 consists of two thermostats and a heater.

12

The temperature in a room is assumed to vary as, ẋi = cihi + bi(u−xi), i = 1, 2
where hi is 1 if the heater is in the room, otherwise 0, u is the outside tempera-
ture, and ci, and bi are constants. The heater model is a pure switched system.
If (xi ≤ geti) ∧ (xj − xi ≥ difi), then the heater is moved from room j to room
i, where i = 1, 2; j = 2/i.

G2 : (xi ≤ offi) ∧ (hi = 1)

Thermostat

ẋi = bi(u− xi)

bi(u− xi)

ON
OFF

G1 : xi ≥ oni

ẋi = ci+

Fig. 3. The hybrid system model of the thermostat

The system is implemented on two nodes. There are two agents, one to check
whether the heater has to be moved (A1), and the other for switching on or
switching off the heaters(A2). The controller in the room with the heater runs
both of them, and the controller in the other room runs only the second agent.

Let us assume that the relative periods of the two agents are (3, 1) and
the relative worst case execution times be (2, 1). Let us also assume that the
levels of utilization are 0.25 and 0.5. In the room with the heater (say room 1),
the controller has to schedule both the agents so, we have k1min is such that

1
k1max

(2
3 + 1

1) ≤ 0.5 which yields k1min = 4. Similarly with utilization 0.25, we
can get k1max = 7. In room 2, since there is only one agent to be scheduled, we
have, k2min is such that 1

k1max
(1
1) ≤ 0.5 which yields k2min = 2. Similarly with

utilization 0.25, we can get k2max = 4. Therefore, after taking the maximum over
both nodes, we get (kmin, kmax) = (4, 7). The agent A2 in room 1 is waiting on
transition G1 and in room 2 is waiting on transition G2. It can be seen that k = 7
that corresponds to utilization 0.25, indeed satisfies the sufficient condition for
no missed transitions. ut

5 Conclusions and Future Work

We have proposed a framework for generating resource-aware code from hybrid
systems models with guarantees of no switching discrepancies. Our approach is
an effort to bridge the semantic gap between the model and the code because of
discretization and resource constraints. We accomplish this by incorporating a
resource model of the target platform in addition to the application model and
generating parameterized code from this model. The parameters are supplied
at runtime by monitoring the state of the resources and checking for missed
transitions.

There are potentially many directions of future work. We hope to complete
the implementation of the framework. In the paper, we have largely focused

13

on power and CPU as the main resources. We would like to extend it to more
comprehensive set of resources. Also, in the present scheme of things, a change in
resource levels or transition on any agent can trigger a recalculation of the periods
of all the agents. This is so because of the assumption that all the agents have
relative periods of execution. An alternative, would be to start with constraints
on periods, such as ρ1 ≤ 2ρ2. This way, we would only need to recompute the
periods whenever the constraints are about to be violated. Another possible
extension to the framework, would be to mask faults and failures or consider
graceful degradation by viewing it as an extreme case of resource dynamism.
Finally, we hope to use ideas from runtime monitoring [14] to monitor and steer
the system to the desirable behavior.

Acknowledgments. We would like to thank our peers for their suggestions in
improving this paper.

References

1. Martin, N.: Lock who’s talking: Motorola’s c.d. team. LockSmart Online Article
(1998)

2. Alur, R., D.L.Dill: A Theory of Timed Automata. Theoretical Computer Science
126 (1994) 183 – 235

3. Alur, R., Ivančić, F., Kim, J., Lee, I., Sokolsky, O.: Generating embedded software
from hierarchial hybrid models. In: Proceedings of LCTES. (2003)

4. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8 (1987) 231–274

5. Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Luvig, J., Neuendorffer, S., Sachs,
S., Xiong, Y.: Taming heterogeneity–the Ptolemy approach. Proceedings of the
IEEE 91 (2003) 127–144

6. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Charon: a language for modular
specification of multi-agent hybrid systems. Technical Report MS-CIS-00-01, Dept.
of Computer and Information Science, University of Pennsylvania (2000)

7. Hur, Y., Kim, J., Lee, I., Choi, J.Y.: Sound code generation from communicating
hybrid models. In: Proceedings of HSCC. LNCS 2993 (2004) 432–447

8. Anand, M., Fischmeister, S., Kim, J., Lee, I.: Distributed-code generation from
hybrid systems models for time-delayed multirate systems. In: Fifth ACM Inter-
national Conference on Embedded Software, (EMSOFT). (2005) 210–213

9. Anand, M., J.Kim, I.Lee: Code generation from hybrid systems models for dis-
tributed embedded systems. In: Proceedings of the IEEE ISORC. (2005) 166–173

10. Henzinger, T.A., Ho, P.H.: Algorithmic analysis of nonlinear hybrid systems. In
Wolper, P., ed.: Proceedings of the 7th International Conference On Computer
Aided Verification. Volume 939., Liege, Belgium, Springer Verlag (1995) 225–238

11. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C: the Art of Scientific Computing, 2nd Ed. Cambridge University Press, Cam-
bridge, UK (1999)

12. Pillai, P., Shin, K.: Real-time dynamic voltage scaling for low-power embedded
operating systems. In: Proceedings of the 18th Symposium on Operating Systems
Principles SOSP’01. (2001)

14

13. Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Hybrid
Systems: Computation and Control, 7th International Workshop, (HSCC). (2004)
326–341

14. Tan, L., Kim, J., , Lee, I.: Testing and Monitoring Model-based Generated Pro-
gram. In: Proceeding of Runtime Verification Workshop (RV’03), Boulder, Col-
orado (2003)

Appendix A : Proof of Theorem 2

Proof. We proceed to sketch the proof of the theorem in two parts. First, we will
derive a condition on the overlap of guard and invariant that will allow us to
detect the enabling of the transition. Then, given that the guard is of the form
g =

∧
i xi ∈ [lxi

, uxi
] , we will derive a sufficient condition to meet this overlap,

based on the periods of execution of agents.
To prove the first statement, assume that we are given a task-period set

Ω = {(τi, hi)}1 ≤ i ≤ n. Each task τi will be treated as a periodic task with
period hi executing in a distributed environment. Let the execution time of τi

be ηi and this is scheduled to run every hi time units. Note that ηi here includes
both execution time and also perhaps communication delay associated. Also, we
speak of time in the reference frame at the processor executing task τi. Therefore,
in the worst case, τi might be scheduled at time jhi and a guard might be enabled
(in the code, perhaps on a different processor) immediately after that, i.e., at
time jhi + ε, ε > 0 and be detected only when τi is next scheduled to run which
may be as late as (j +2)hi−ηi. Since we assume eager switching, this transition
will be taken at (j +2)hi−ηi. Thus, if a guard is not enabled at (j +2)hi−ηi, it
will go undetected and this will result in a missed transition. Hence, the guard
should stay enabled for at least ((j + 2)hi − ηi)− (khi + ε) = 2hi − ηi − ε time
units. Since ε is arbitrary, to be safe, we can claim that it should stay enabled
in the code for 2hi time units so that the transition is not missed.

Now, consider the guard set g =
∧

i xi ∈ [lxi , uxi]. Let the current logical time
be lt and current values of variables at agent Aj given by xi(lt). We will consider
the case where xi(lt) < lxi and xi(lt) > 0, the argument for the case where
xi(lt) > uxi and xi(lt) < 0 is similar. Since ẋi ∈ [L1xi

,L2xi
], ẋi can utmost grow

as L2xi
. The guard on xi, ([lxi , uxi]) will then be enabled for the time interval

T2 = [lt + lxi
−xi(lt)

L2xi

+ δmax, lt + uxi
−xi(lt)

L2xi

+ δmin], assuming that in the worst
case, the notification for enabling of the guard gets to Aj in time δmax and the
notification for exiting comes at δmin. This is true because xi is continuous and
the guards are assumed to be disjoint in time, otherwise there could be resets
and the dynamics of xi would be different. Similarly, if ẋi grows as slow as L1xi

],

then, it will be enabled for the time interval of T1 = [lt + lxi
−xi(lt)

L1xi

+ δmax, lt +
uxi

−xi(lt)

L1xi

+ δmin]. Therefore, if T1 ∩ T2 6= ∅, then it represents the time interval
for which guard on xi will be enabled. Hence considering the time interval for
each of the xi’s, we can find the time interval when the guard will definitely be
true.

15

From the above arguments, we can conclude that a Condition (3) gives a
sufficient condition for preventing missed transitions, if the transitions are taken
as soon as they are detected. ut

16

