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Abstract— In this paper, a novel estimation procedure is
proposed, which consists of designing a distributed class of
time-varying Kalman filter based on wireless sensor networks
topology along with a new sensor fusion method. The proposed
technique is employed to estimate the states and outputs of a
linear time-varying system with a high level of accuracy. Both
the dynamics of the system and the measurements are assumed
to be contaminated by external noises. The notion of Orness and
Ordered Weighted Averaging (OWA) operator technique are
utilized to fuse the estimation of the sensors. O’Hagan method,
along with the gradient descent method, is employed to find the
optimal weights. In the introduced approach, OWA weights are
learned for each observation such that they efficiently minimize
the estimation error for that particular observation. This will
result in an outstanding high accurate sensor fusion outcome.
In addition, two optimistic and pessimistic exponential OWA
operators are used and compared together to achieve a pre-
specified level of Orness. The simulation results are shown on
a given linear time-varying system to verify the effectiveness of
the proposed sensor fusion distributed filtering design method.

I. INTRODUCTION

A. Motivation

One of the most interested scopes of the control commu-
nity is designing and implementing different types of filters
to estimate the states of a target plant. In simple cases,
it is assumed that there exist no disturbances involved in
the dynamics of the system under study and also an ideal
measurement with no measurement noises is considered.
Although it simplifies the design and analysis of the filter in
a great deal, it is not being confirmed by practical aspects in
real-world applications anymore. Wireless sensor networks
are great candidates to be adopted by their sparseness
topology to design filters with high practical capabilities
of estimating the states of the system in the presence of
disturbances and measurement noises. Due to the limitation
of the transmission bandwidth and power transmission of
each sensor, it is preferable to take transmission actions as
conservative as possible over the network.

Decentralized filtering is one of the ways that could
address the above challenge by benefitting from the base
structure of wireless sensor networks, which is shown in Fig.
1. In this manner, a set of intelligent sensors (nodes) try to
estimate the states of the system locally and cooperatively. In
some class of filters, the data will be sent over the network
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only when a certain triggering condition is satisfied [1].
In fact, by utilizing certain conditions of triggering, they
will send their data to their neighbors only in a set of
certain time instances. The triggering rules could be designed
based on different methods and regarding user/application
requirements. These class of event-triggered filters, reduce
the use of transmission bandwidth and energy resources in a
great amount in comparison to time-triggered counterparts.
A general view of the event-based filtering procedure is
shown in Fig. 2. The cases in which the considered plant is
assumed to have disturbances and there exist measurement
noises could be addressed by the decentralized approach over
a wireless sensor network as well by developing stochastic
filters [2], [3]. In particular, in the research works such as
[4] and [5], the authors design the stochastic version of the
Kalman filter for multi-sensor networks in which there exist
inevitable unreliabilities. In the latter, stochastic stability
conditions are also derived for the extended version of the
Kalman filter.

Besides, in some recent works, an upper bound for the
estimation error covariance matrix has been proposed, which
is minimized by properly designing the filter parameters [1].
In some cases, the limitation on the transmission bandwidth
is a highly demanding requirement that requires the filtering
procedure to have the only valuable data transmitted over the
network [6].

B. Literature Review

In [1], a distributed recursive filter based on the structure
of a wireless sensor network has been designed. This filter is
an event-triggered one, which makes it quite distinguishable
from typical time-driven counterparts. In particular, in that
work, a linear time-varying plant has been considered. Based
on a wireless sensor network, each intelligent sensor (node)
tries to estimate the states of the system locally. Each sensor
sends its data to its neighbors only when a certain threshold
called SoD (Send-on-Delta) has been satisfied. This will have
two main advantages in comparison to time-driven filters.
Firstly, it reduces a significant number of unnecessary data
transmissions over the network. Secondly, the use of energy
resources will be reduced, which is an essential feature due
to the limited power transmission of sensor nodes.

In [7], a consensus-based approach but relying on Lya-
punov stability theorem to improve the estimation perfor-
mance has been proposed. Furthermore, not only a sensing
system but also actuating devices have been studied there.
It has shown that using that consensus-based design, one
can achieve a faster convergence to the system states. Fur-
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Fig. 1. Base structure of wireless sensor networks [6]

thermore, the hybrid model derived in [8] could be utilized
to enhance the state estimation performance of the systems
composed of both event and time-driven components.

While in [1] a linear model has been considered for
the plant under study, in [6] a nonlinear continuous-time
stochastic system has been considered for the target plant.
The main goal of that study is to design filter parameters so
that the filtering error ei(t) = x̂i(t) − x(t) is exponentially
mean square stable. Theorem 1 of that paper proposes a
sufficient condition to determine filter parameters such that
the exponentially stability of the filtering error is guaranteed.
Besides it introduces an upper bound for the mean of the
filtering error. Some other studies, like [9], [10], focus on
consensus Kalman filter design aiming at different applica-
tions such as tracking in sensor networks.

C. Contributions

To the knowledge of the authors, there is not a suitable
study in which time-varying Kalman filter design is incorpo-
rated with OWA sensor fusion technique that can minimize
the estimation errors corresponding to each of the observa-
tion data. In the current study, we will design a distributed
class of time-varying Kalman filter for a class of linear time-
varying systems based on a sensor network topology. Then,
OWA sensor fusion technique will be employed to fuse the
sensor estimations to achieve an accurate estimation of the
states of the system for a pre-specified degree of Orness. In
the proposed method, the OWA sensor fusion technique is
modified such that the resulting optimal weights minimize
the estimation error for each of the observations separately.
Besides, exponential OWA operators will also be utilized and
compared together so that a pre-specified degree of Orness
is achieved.

D. Paper Organization

The remainder of this paper is organized as follows. A
description of the general structure of the plant considered
in this study is represented in Sec. II. Sec. III and Sec. IV are
devoted to describe the proposed structure method and the
fusion method, respectively. In Sec. V, the simulation results

Fig. 2. A general view of event-based filtering procedure [11]

of a numerical example are stated. Finally, a conclusion is
represented in Sec. VI.

II. PLANT DESCRIPTION

The general structure that we are going to consider has
the following form which is a linear time-varying system,

x(k + 1) = A(k)x(k) +B(k)u(k) +Gw(k) (1)
yv(k) = C(k)x(k) +Dv(k) (2)

where x(k) ∈ Rnx is the system states, w(k) ∈ Rnw is the
process noise and v(k) ∈ Rnv is the measurement noise with
covariance Q and R respectively. In this study both w(k) and
v(k) are assumed to be white Gaussian noise. A,B,C and
D are matrices with appropriate dimensions.

III. PROPOSED STRUCTURE METHOD

Here we will have a brief review on two main Kalman
filter designs, steady-state and time-varying design.

A. Steady-State Kalman Filter

The equations of the steady-state Kalman filter for the
above problem are given as follows (in this case without
loss of generality assume B = G),

• Measurement update:

x̂(k|k) = x̂(k|k − 1) +M(yv(k)− Cx̂(k|k − 1)) (3)

• Time update:

x̂(k + 1|k) = Ax̂(k|k) +Bu(k) (4)

where
x̂(k|k−1) is the estimate of x(k), given past measurements

up to yv(k−1). Besides, x̂(k|k) is the updated estimate based
on the last measurement yv(k). Subscript v in yv(k) denotes
to the measurement which is contaminated by an external
noise v(k).

To have a one-step-ahead predictor, the time update tries
to predict the state of the system at the next time instance
k+1 by having the current estimate x̂(k|k). This prediction
will then be adjusted by the measurement update based
on the new measurement yv(k + 1). The correction term
is a function of the innovation, which is the difference
between the measured and predicted values of y(k+1). This
difference is given by:

yv(k + 1)− Cx̂(k + 1|k) (5)

The innovation gain M is chosen to minimize the steady-
state covariance of the estimation error, by having the noise
covariances,

E
(
w(k)w(k)T

)
= Q (6)



Fig. 3. A general schematic view of the plant and Kalman filter [13]

E
(
v(k)v(k)T

)
= R (7)

N = E
(
w(k)v(k)T

)
= 0 (8)

It is also possible to combine the time and measurement
update equations into one state-space model, the Kalman
filter,

x̂(k + 1|k) = A(I −MC)x̂(k|k − 1)

+ [B AM ]

[
u(k)
yv(k)

]
(9)

ŷ(k|k) = C(I −MC)x̂(k|k − 1) + CMyv(k) (10)

This filter generates an optimal estimate ŷ(k|k) of yv . It is
notable that the filter state is x̂(k|k−1). A general schematic
view of the plant and Kalman filter is shown in Fig. 3 [12],
[13].

B. Time-Varying Kalman Filter

A generalized version of the steady-state filter for time-
varying systems (or LTI systems with nonstationary noise
covariance) is time-varying Kalman filter.

The time-varying Kalman filter for system model defined
by (1)-(2) is given by the following recursive equations:

• Measurement update:

x̂(k|k) = x̂(k|k − 1) +M(k)(yv(k)− Cx̂(k|k − 1))
(11)

M(k) = P (k|k − 1)CT (R(k) + CP (k|k − 1)CT )−1

(12)
P (k|k) = (I −M(k)C)P (k|k − 1) (13)

• Time update

x̂(k + 1|k) = A(k)x̂(k|k) +Bu(k) (14)
P (k + 1|k) = A(k)P (k|k)AT +GQ(k)GT(15)

where x̂(k|k − 1) and x̂(k|k) are defined as before. The
following definitions should be used in the measurement and
time update steps [12], [13]:

Q(k) = E(w(k)w(k)T ) (16)

R(k) = E(v(k)v(k)T ) (17)

P (k|k) = E({x(k)− x̂(k|k)}{x(k)− x̂(k|k)}T ) (18)

P (k|k − 1) = E({x(k)− x̂(k|k − 1)}{x(k)− x̂(k|k − 1)}T )
(19)

In order to implement time-varying Kalman filter, we assume
the initial conditions as x̂(1|0) = 0 and P (1|0) = BQBT .

IV. SENSOR FUSION BASED ON OWA OPERATORS

Now we intend to perform a procedure in which we
fuse our sensor estimations together and achieve a united
estimation for each of the two states and the output of the
system. In this respect, first, we will see how to learn the
optimal weights of the OWA operator. Then we will employ
our modified sensor fusion technique. In our contribution,
we will learn the OWA weights such that they minimize the
estimation error for each particular observation dataset. To
learn the weights of the OWA operator, we define the fused
value in sample k for n different attributes as follows,

F (ak1, ak2, . . . , akn) = dk (20)
bk1w1 + bk2w2 + . . .+ bknwn = dk (21)

where, dk is the desired aggregated value. We would use the
Hurwicz method to define the desired aggregated value dk,

dk = ρmax
i
ai + (1− ρ)min

i
ai (22)

where, ρ is the optimism of the decision maker and belongs
to [0, 1]. Based on the O’Hagan method a constrained mini-
mization problem should be solved [14],

min e(k) =
1

2
(bk1w1 + bk2w2 + . . .+ bknwn − dk)2 (23)

n∑
i=1

wi = 1, wi ∈ [0, 1] (24)

It is common to convert the above-constrained problem to
an unconstrained one by defining,

wi =
eλi∑n
j=1 e

λj
, i = 1, 2, . . . , n (25)

Here we use the gradient descent method with learning
rate β ∈ [0, 1] to learn the weights,

λi(l + 1) = λi(l)− βwi(l)(bki − d̂k)(d̂k − dk) (26)

The estimate of the desired aggregated value based on the
updated weights is obtained as follows for each observation,

d̂k = bk1w1(l)+ bk2w2(l)+ . . .+ bknwn(l), k = 1, . . . ,m
(27)

where the reordered objects of the kth sample are denoted
by bk1, bk2, . . . , bkn where bkj is the jth largest element of
the argument collection ak1, ak2, . . . , akn. It is notable that,
as was mentioned before, in our approach, we learn OWA
weights for each of the observations such that they minimize
the error defined by (23) for that particular observation.
Although at first glance it may come to mind that it might not
be a fully efficient method for estimating the desired weights,
it will result in a high accurate fusion outcome. Besides,
these days due to the availability of powerful computers, the
computational complexity of our method will definitely not
be a big deal especially for a sufficiently small set of data,
and its outstanding result would clearly justify its complexity.



Fig. 4. Actual state x1 of the system and four estimation corresponding
to each of the sensors

Fig. 5. Actual state x2 of the system and four estimation corresponding
to each of the sensors

V. SIMULATION RESULTS

The plant model which is a linear time-varying one that
is considered in this study has the form defined by (1)-(2)
with the following matrices,

A(k) =

[
0.98 + 0.05 sin(0.12k) −0.4

0.15 −0.75

]
(28)

B(k) = [0.16 0.18]T (29)

that is a modified version of the system introduced in [1].
In this plant, 4 sensors have been considered for the sake
of output measurement. The dynamics of the sensors are as
follows,

C1 = [0.82 0.62 + cos(0.12k)] (30)
C2 = [0.75 + 0.25 sin(0.1k) 0.80] (31)
C3 = [0.74 + 0.5 sin(0.1k) 0.75 + 0.5 cos(0.1k)](32)
C4 = [0.75 0.65] (33)

Fig. 6. Actual state x1 of the system and fused estimation of the sensors
using OWA operators

Fig. 7. Actual state x2 of the system and fused estimation of the sensors
using OWA operators

with process and measurement covariances Q = 1 and
R = 1, respectively. We excite the system with the input
signal u(t) = sin( t5 ). This will provide the opportunity to
benefit from the persistence of excitation (PE) property in
our estimations, which is pointed out in Remark 1 [15].
Since our plant is a time-varying one, we design a time-
varying Kalman filter for each of the sensors. The estimation
of each of the sensors for states of the system is calculated.
Fig. 4 shows state x1 of the system and its estimation by
four sensors. The actual state and estimations of x2 is also
shown in Fig. 5.

Now we use the sensor fusion technique, OWA operator,
to fuse the sensor state estimations. We will also use the
exponential OWA operators and compare the sensor fusion
procedure in two cases, an optimistic exponential OWA
operator and a pessimistic exponential OWA operator. In
addition, we will see the output error of the system using



Fig. 8. Actual state x1 of the system and fused estimation of the sensors
using optimistic exponential OWA operator

the fused sensor outputs.
To learn the OWA weights we update the weights in a re-

cursive manner based on gradient descent method described
in (26). In each time sample, we solve the minimization
problem (23) using gradient descent method with learning
rate β = 0.35 and optimism of the decision maker ρ = 0.2.
As one can easily see from Fig. 6 and 7, the fused estimation
of both states x1 and x2 closely represent the true values.

For the sake of sensor fusion using exponential OWA
operator to achieve a pre-specified degree of Orness, first,
we need to introduce the definition of Orness. The definition
of Orness(W ) is a follows,

Orness(W ) =
1

n− 1

n∑
i=1

(n− i)wi (34)

We choose Orness Orness(W ) = 0.9 and try both the
optimistic and the pessimistic exponential OWA operators.

1) Optimistic exponential OWA operator: In this case,
after setting Orness Orness(W ) = 0.9 and n = 4, by using
the optimistic exponential OWA operators curve [14] we
select α = 0.75. The corresponding weights for the each
of the sensors are calculated,

w1 = α = 0.75, w2 = α(1− α) = 0.1875,

w3 = α(1− α)2 = 0.0469, w4 = α(1− α)3 = 0.0156,
n=4∑
i=1

wi = 1

With the above weights, the actual Orness would be
Orness(W ) = 0.8906.

2) Pessimistic exponential OWA operator: In this case,
after setting Orness Orness(W ) = 0.9 and n = 4, by using
the pessimistic exponential OWA operators curve [14] we
select α = 0.93. The corresponding weights for the each of
the sensors are calculated,

w1 = α3 = 0.8044, w2 = (1− α)α2 = 0.0605,

Fig. 9. Actual state x2 of the system and fused estimation of the sensors
using optimistic exponential OWA operator

w3 = (1− α)α = 0.0651, w4 = (1− α) = 0.0700,
n=4∑
i=1

wi = 1

With the above weights, the actual Orness would be
Orness(W ) = 0.8664.

Based on the above results, since the actual Orness in the
optimistic case is closer to the considered Orness, we use the
weights calculated in this case for our sensor fusion purpose.

By utilizing the derived weights for the optimistic expo-
nential OWA operator, the fused estimation of the sensors
for state x1 and x2 of the system are shown in Fig. 8 and 9.
As is seen from these figures, the fused estimation of four
sensors can finally estimate both states x1 and x2 accurately.

Since in most of the applications, the output of the
system is of high importance (for tracking or regulation
objectives), we are also interested in fusing output estimation
of the sensors. In this respect, we fuse four sensor output
estimations and compare it with the actual output of the
system. Moreover, it would also be helpful to compare the
fused measurement error of the sensors with their fused
estimation error. Fig. 10 shows these quantities. We see from
the top figure that the fused estimations of output resulting
from the four sensors can track the actual output. Besides, it
can be easily seen from the bottom figure that the fused
estimation error is significantly reduced compared to the
fused measurement error for almost all of the time instances.

Remark 1: It is remarkable that similar to a notion called
the “certainty equivalence” design approach in adaptive
state estimation, the estimated states may not fully converge
to their true values (x2); however, due to the chosen PE
input, the persistence of excitation condition is satisfied that
guarantees the convergence of the estimated output to the
true value [16].
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Fig. 10. (a) Actual output and fused estimations of output (b) Fused measurement error and fused estimation error

VI. CONCLUSION AND FUTURE WORK

In this paper, a novel approach was proposed to estimate
the states and outputs of a linear time-varying system with a
high level of accuracy. In the proposed method, a distributed
class of time-varying Kalman filter incorporated with a new
sensor fusion method has been employed to estimate the
states and outputs of a linear time-varying system. In the con-
sidered system, both the dynamics and the measurements are
assumed to be contaminated by external noises. The filtering
and estimation design is based on a wireless sensor network
topology, which provides the opportunity to use sensor fusion
techniques. OWA sensor fusion method was employed to
fuse the estimation of the sensors. The OWA weights were
determined to efficiently minimize the estimation error for
each observation. That provided a high level of accuracy for
the estimation of the states and outputs of the system under
study. Besides, two different exponential OWA operators,
optimistic and pessimistic methods, were used to achieve
a pre-specified level of Orness. Finally, the effectiveness of
the method was shown in a numerical example. To continue
this work, one can extend our method for nonlinear systems
with other state estimators.
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