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Abstract—Developers of performance sensitive production soft-
ware are in a dilemma: performance regression tests are too
costly to run at each commit, but skipping the tests delays and
complicates performance regression detection. Ideally, developers
would have a system that predicts whether a given commit is
likely to impact performance and suggests which tests to run
to detect a potential performance regression. Prior approaches
towards this problem require static or dynamic analyses that
limit their generality and applicability. This paper presents an
approach that is simple and general, and that works surprisingly
well for real applications.

I. INTRODUCTION

The performance of a computer system determines its cost
and usability (e.g., [1]). Consequently, many software projects
maintain both a test suite for exposing correctness bugs and
a benchmark suite for exposing performance bugs. Accurately
measuring the performance of real systems is expensive, be-
cause many performance improvements or degradations only
show up once the system is warm (e.g., once all the software
and hardware caches are warm and the system is under full
load) and, to account for run-to-run variations, each benchmark
needs to be run multiple times [2]. As a consequence, it is
often impractical to run a benchmark suite multiple times each
time a developer commits code to the software repository;
therefore, developers often check for changes in performance
only at significant milestones (e.g., periodically at the end of
the week or on each public release of the system).

Infrequently running the benchmark suite may expose
changes in performance; however, infrequent runs will not
identify which of the multiple commits, since the last bench-
mark suite run, is responsible for that performance change.
Worse, the performance impact of different commits may
cancel each other out and thus the developers may not realize
that some commits improve performance while others degrade
performance.

The problem thus is that running the benchmark suite at
each commit is too costly, but skipping it complicates perfor-
mance detection. This paper describes and evaluates a system
that predicts if a code commit will affect the performance of
a benchmark in the benchmark suite; in this way developers
can determine the performance impact of their commit without
performance testing the entire benchmark suite.

Our approach is light-weight, general, and effective. It is
light-weight because it does not require expensive white-box

program analyses, and does not require executing the entire
benchmark suite when a performance change is predicted
to occur. It is general because it works for arbitrary sys-
tems written in arbitrary programming languages. Finally, to
demonstrate its effectiveness, we implemented our approach in
a tool, Perphecy, and used it to predict change in performance
on real open-source applications.

Through extensive evaluation, we found that Perphecy re-
duces the number of benchmarks that must be run at a code
commit by up to 83%. Thus, Perphecy enables developers
to catch performance changes early by enabling them to run
performance tests more frequently than only at significant
milestones.

The remainder of this paper is structured as follows: Sec-
tion II introduces the background and related work, Section III
presents our approach and its implementation in Perphecy,
Section IV experimentally evaluates our ideas, Section V
discusses threats to validity, and Section VII concludes.

II. BACKGROUND AND RELATED WORK

This section provides the context for our contributions,
introducing regression benchmarking, continuous integration
systems, regression test selection, and performance bug detec-
tion in the field.

a) Regression Benchmarking: Detecting performance re-
gressions is expensive for two main reasons. (1) Unlike func-
tional regressions, performance regressions tend to manifest
themselves especially in long-running code and for large input
sizes. (2) The non-determinism prevalent in modern systems
severely complicates the reliable detection of performance re-
gression [3], and further drives up the regression benchmarking
cost. While frameworks exist that reduce the complication of
benchmarking, they do not reduce the cost. BEEN [4] is a
general infrastructure for automated regression benchmarking
in a heterogeneous distributed environment. BEEN compiles
software and benchmarks, takes care of deployment, runs
benchmarks, and collects, evaluates, and visualizes results.
DataMill [5] extends these ideas into a community-based
infrastructure for reliable performance evaluation. It allows
varying several environmental factors known to affect perfor-
mance [6], which enables the production of robust, reliable,
and reproducible results.



Many larger-scale systems projects implement their own
performance regression testing infrastructures. For example,
the Jikes RVM [7] project used to run performance bench-
marks every 12 hours, checking out the most recent version
of their VM, building it, and running a suite of benchmarks
including DaCapo [8]. They visualized the resulting evolution
of benchmark performance on a public web page [9]. The Jikes
RVM project did not run performance benchmarks after every
commit. On days without commits, this constituted a waste
of resources. On days with many commits, it meant a loss of
coverage.

Mozilla’s Talos performance regression detection sys-
tem [10] runs performance tests “every time a change is
pushed to the Firefox source repository” [11], and detects
a performance regression if the performance changed signifi-
cantly from before and after that push. They provide an online
visualization of all the collected performance test results [12].
Talos uses performance tests, not necessarily full-fledged
benchmarks. Running such tests can cost much less time than
running complete representative workloads; however, testing in
this manner also means that developers have to write a specific
performance test for every relevant aspect of the application,
and that they may not detect performance issues that only
manifest themselves in realistic situations with large inputs.

The Linux Kernel Performance project [13] runs and re-
views performance regression tests on a weekly basis, and for
each major kernel release [14]. They reformat the disk, reboot
the system, and run a warm-up load before each benchmark
run. To minimize measurement variation, they use long bench-
mark running times and multiple repetitions, which drives up
the cost. Despite the significant size of their test suite, they find
that their tests only cover a portion of performance regressions,
and they call for volunteers to contribute additional resources
to enable more extensive benchmarking.

b) Continuous Integration Systems: Continuous integra-
tion systems perform fully automated builds and regression
tests of a software. Traditional systems focus on correctness
tests, which either are run at regular intervals or are triggered
by individual commits. Systems like Jenkins [15] provide
plug-ins to also support performance testing and reporting
of performance numbers. Continuous integration is now also
offered as cloud-based services, such as drone.io [16], Travis
CI [17], or Coveralls [18]. Our approach could be particularly
helpful in such scenarios by significantly reducing perfor-
mance testing costs.

c) Regression Test Selection: Our approach is a form of
regression test selection [19]. However, traditional regression
test selection techniques focus on correctness tests, not on
performance regressions.

For example, Ekstazi [20] uses run-time analysis to deter-
mine the dependencies of each test in a suite at file resolution,
i.e., which files contain code reachable by each test, and which
files are opened during each test (e.g., plaintext configuration
files). If a file changes and a test depends on that file,
(file changes are checked through checksum comparisons),
then Ekstazi marks that test for execution. In experimental

evaluation, Ekstazi has more than halved test suite execution
times. While this approach is effective for correctness tests, it
ignores that most changes to code will cause no performance
change at all, and thus we believe that Perphecy is better suited
for performance test selection.

One exception among regression test selection approaches
is “performance risk analysis” (PRA), which is close in
spirit to our work. Huang et al. [21] motivate their approach
by showing that performance regressions are prevalent in
commonly-used software, that performance tests can run for
hours or days, and that common software projects evolve
rapidly (e.g., Chrome and Linux with over 100 commits each
day), making it almost impractical to run the complete suite of
performance tests for every commit. They present a “white-
box” approach to performance regression test selection that
requires a static analysis to determine the “expensiveness”
and the “frequency” of the code affected by a commit. Their
analysis requires inter-procedural control and data dependence
information that can be difficult to determine with adequate
precision. This is especially problematic for modern languages
where programs are dominated by heap data and polymorphic
calls. They present PerfScope, an implementation of PRA
on top of LLVM. Their evaluation of PerfScope on a set of
large projects shows that by testing 14-22% of the commits,
developers will catch 87-95% of the performance regressions.

To address the imprecision of PRA for programs written
in dynamic languages, Sandoval Alcocer et al. [22] propose
“horizontal profiling”. They profile a prior version of the
application to determine precise execution counts for each
code block. They present LITO, an implementation of that
approach for Pharo, a Smalltalk-like dynamic language. Their
evaluation of LITO on a set of 17 Pharo programs, ranging in
size between 9 and 404 classes, shows that by profiling 17%
of the commits, developers will catch 83% of the performance
regressions (where regression is defined as at least 5% increase
in execution counts).

Perphecy addresses the regression test selection problem in
a different way. We use a generic approach to gather dynamic
information about prior application versions, and combine this
with static information about the current and prior version. We
then train an application-specific prediction model that uses
the available information to predict which performance tests
to run for a given commit. Our approach is light-weight and
language-independent, and it can automatically learn accurate
prediction models for arbitrary applications.

d) Performance Bug Detection in the Field: End user
applications also can collect performance data in the field, send
that data back to the developers, allowing them to determine
performance issues in the environments in which they are
actually used [23], [24], [25]. Open-source developers like
the Mozilla Foundation even provide publicly accessible dash-
boards showing the aggregate performance data as measured in
deployed instances of their applications (e.g., for Firefox [26]).

The advantage of such approaches is that performance is
measured where it actually matters, in the users’ context. The
disadvantage is that performance problems are only detected



after they have affected a user. While we are not aware
of any such systems, one could envision approaches to run
performance tests in the deployed applications. These could
detect performance issues, in the users’ contexts, before the
users encounter them. In such a system, our approach could
possibly be extended to predict which tests to run in which
contexts.

III. PERPHECY

We now present our approach to performance regression test
selection and its implementation in the form of Perphecy. Our
approach has three key parts: (A) Perphecy collects static data
for new commits and collects dynamic data from benchmark
runs; (B) Perphecy derives performance change indicators
from that data, and (C) Perphecy uses these indicators to
predict whether or not a new commit will impact performance
for each benchmark in the benchmark suite.
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Fig. 1: Static and dynamic data collected by Perphecy.

When a developer commits code to the software repository,
Perphecy collects static data without running any benchmark
against the new commit. Whenever developers run one or more
benchmarks (e.g., because Perphecy predicted a performance
change or because of a periodic milestone) Perphecy collects
dynamic data from those benchmarks. Perphecy uses both
static and dynamic data to predict if a performance change
might occur for a benchmark. For a new commit, au, and
benchmark b, Perphecy (i) finds the closest ancestor to au
(call it ai) for which ai has dynamic data for b; (ii) plugs the
static data for the au and static and dynamic data for ai into
our indicators; and finally (iii) uses the instantiated indicators
to predict whether or not au may change the performance of
b.

Figure 1 provides an example. The repository contains two
prior commits, represented by labeled rectangles (a1 and a2),
and we use three benchmarks, represented by circles (b1,
b2, and b3) for performance regression testing. Perphecy has
dynamic data from four prior benchmark runs, represented by
the filled-in black boxes with rounded corners (a1 with b2 and
b3, as well as a2 with b1 and b2). Missing dynamic data is
represented by dashed boxes with rounded corners (a1 with

b1, as well as a2 with b3). When a new commit, au comes in,
Perphecy has to predict for which of the three benchmarks the
new commit au may cause a performance change. To predict
whether the performance of benchmark b1 will change (and
thus whether one should run au with b1), Perphecy uses static
data (represented by the filled-in black squares to the left of
the commits) from au, and static and dynamic data from the
closest ancestor commit a2. Perphecy uses the same data to
predict whether the performance of benchmark b2 will change.
However, to predict whether the performance of benchmark
b3 will change, there is no dynamic data available for a2’s
performance on b3. Thus, in addition to the static data from au,
Perphecy uses static and dynamic data from the older commit
a1, because a1 is the closest ancestor for which dynamic data
for b3 is available.

The rest of this section describes how Perphecy derives a
predictor.

A. Collecting Data

As developers commit code to the software repository, Per-
phecy collects and stores data for use in predictions. Because
predicting which benchmark’s performance will change is on
the critical path of a commit, Perphecy uses only cheaply
obtained static data to make the prediction. Perphecy obtains
static data by analyzing the compiled code (the binary) of
the program. Using the binary, Perphecy trivially ignores non-
semantic changes to the application (such as comments).

Whenever a benchmark is run to determine performance
changes, due to a prediction or a milestone, Perphecy collects,
from a separate background run, dynamic data to use in future
predictions. Specifically, Perphecy runs a benchmark only once
against a commit and this run is off the critical path of
making a decision. Perphecy uses readily obtained dynamic
data that can be obtained via multiple means: indeed we have
experimented with both Pin [27] and Perf [28] for collecting
this data. Using either Pin or Perf, Perphecy collects only
the number of times each function is called, and how many
instructions are executed in each function.

We decided against collecting more complex dynamic data
such as full call graphs or instruction-level traces because (i)
we did not want our dynamic runs to be expensive (even
though they run off the critical path) and (ii) we did not want
to reduce the applicability of Perphecy by requiring language
or environment specific tools.

We evaluate Perphecy on four projects (Section IV-2).
Perphecy uses Pin for Git, glibc and HotSpot, and Perf for
MongoDB. We use different methods for different projects
because some benchmarks crashed with either Pin or Perf.
Fortunately, because Perphecy uses simple dynamic data, we
can readily substitute tools for collecting the dynamic data.

B. Indicators

Perphecy “boils down” the collected data into indicators.
This process reduces data for commits (e.g., a list of reached
functions for each benchmark) to a Boolean value related to



Indicator template Description Rationale Source Data
Del Func � X True if the number of deleted functions (i.e., functions

in ai that are not in au) is greater or equal to X
Deleted functions indicate refactoring, which can lead
to overall performance changes

static

New Func � X True if the number of new functions (i.e., functions in
au that are not in ai) is greater than or equal to X

New functions indicate new functionality or refactor-
ing, which can lead to overall performance changes

static

Reached Del Func � X True if the number of deleted functions, which are
called by b, is greater than or equal to X

Deleted functions indicate refactoring, and when
reached in execution can lead to overall performance
changes

static + dynamic

Top Chg by Call �X% True if one of the X% most called functions changed
from ai to au

Performance-affecting changes in a function are mul-
tiplied by the number of times that function is called

static + dynamic

Top >X% by Call Chg by �10% True if one of the X% most called functions changed
by at least 10% of its static instructions from ai to
au

Performance-affecting changes in a function are mul-
tiplied by the number of times that function is called
and the magnitude of the change

static + dynamic

Top Chg by Instr � X% True if one of the X% longest running functions (by
total dynamic instructions) changed from ai to au

Changes in the longest-running functions are more
likely to correlate with overall performance changes

static + dynamic

Top Chg Len � X% True if any function’s static instruction length changed
by at least X%

Large changes to functions are more likely to affect
performance than small ones

static

Top Reached Chg Len � X% True if any function, which is called by b, has its static
instruction length changed by at least X%

Same as above, with the addition that the function is
called by b

static + dynamic

TABLE I: Indicator template definitions for Pin profile data, where au is the new commit which only has static data and ai
is an older commit which has both static and dynamic data (where dynamic data was computed for a specific benchmark b).

the difference between a new commit and an ancestor commit
(e.g., how many reachable functions have changed).

Table I lists the indicator templates for Pin profiling data,
the rationale for why they would correlate with performance
changes, and if they are derived from static data alone or from
a mix of static and dynamic data. An indicator is a concrete
instantiation of an indicator template using a specific threshold
value for its parameter X . We use analogous indicators for
data from Perf. Note that while Perphecy as a strategy is not
language or environment dependent, indicators may be (e.g.,
ranking changed functions by call count is only possible in
languages that compile to binary functions, and for which a
profiler is available).

Each indicator converts a complex signal into a Boolean. For
example, the number of deleted functions between commits
can range from zero to the number of functions in the old com-
mit (i.e., all were deleted). The “Del Func” indicator reduces
this value to a Boolean by using a threshold X . In particular,
“Del Func > X” is true if the number of deleted functions
between the two commits is greater than X , otherwise it is
false. To obtain a predictor for an application we must (i)
learn the threshold value X for each indicator template to
generate an indicator; and (ii) combine the indicators into a
Boolean expression to form a predictor.

C. Evaluating indicators

We evaluate indicators using two metrics: hit rate and
dismiss rate. Let H be the set of (au, ai, b) tuples such that
the performance of benchmark b is different between commits
au and ai. We call these tuples hits. H is the ground truth. Hp

is the set of (au, ai, b) tuples for which an indicator returns
true; thus, Hp is a prediction. An indicator’s hit rate is defined
as follows:

a) Indicator Hit Rate: jHp\ Hj=jHj

Intuitively, the hit rate is a value between 0.0 and 1.0 that
indicates the fraction of performance changes the indicator
correctly predicted.1 An indicator that simply returns a true

1This is equivalent to the recall metric in pattern recognition.

value independent of input will, by definition, have a perfect
hit rate of 1.0. We say that an indicator covers a hit if it
correctly predicts the hit.

Let D be the set of (au, ai, b) tuples with no measurable
performance change. We call these tuples misses. D is the
ground truth. Let Dp be the set of (au, ai, b) tuples for which
an indicator indicates false (i.e., no performance change for
benchmark b). Dp is the prediction. Dismiss rate, is defined
as:

b) Indicator Dismiss Rate: jDp \ Dj=jDj

The dismiss rate is a value between 0.0 and 1.0 that indi-
cates the fraction of benchmarks that the indicator correctly
dismissed. An indicator that always returns false will have
a perfect dismiss rate of 1.0. An optimal indicator will have
both a hit rate and a dismiss rate of 1.0; however, such an
indicator will be difficult to create for any software project.
An effective indicator will have high hit and dismiss rates.

Figure 2a shows the hit rate (dashed lines) and dismiss
rate (solid lines) of these indicator templates for the HotSpot
program; we evaluate each indicator template with a range
of values for the threshold X . For example, an X of 10 for
the “Del Func” indicator gives the hit and dismiss rates when
the threshold for the number of deleted functions is ten. As
expected, as thresholds increase the indicator becomes more
selective and thus the hit rate decreases, while the dismiss rate
increases. We see that some indicators are more effective at
prediction than others.

The best individual indicator for HotSpot, “Top Chg by
Instr” with its threshold set at 65, has a 1.0 hit rate (i.e., its
value is true for all commit pairs with performance changes),
and a dismiss rate of 0.57 (i.e., only 43% of commits would
be unnecessarily sent for benchmarking by this indicator).
“Top Reached Chg Len”, a less effective indicator individually,
has an immediate drop-off in hits as the threshold increases.
Nevertheless, this indicator is not without merit, because up
to a 15% threshold, the dismiss rate is high (> 75%) and,
although the hit rate is low (< 25%). As we will see in
Section III-D, by combining indicators with separate strengths,
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Fig. 2: Indicator performance at various thresholds for HotSpot and Git.

we can derive a predictor with high aggregate hit and dismiss
rates.

Figure 2b shows the hit and dismiss rates of the same indi-
cators for Git. The metrics for each indicator differ from the
HotSpot results, which suggests that different software projects
will require different thresholds for different indicators. Also
“Reached Del Func” is effectively useless for Git because it
has a hit rate of 0.0 as soon as its threshold increases over
zero.

D. Making Predictions

From Figures 2a and 2b, we know that different indicators
have different strengths and that the same indicator performs
differently for different programs. The weakness of any indi-
vidual indicator is not surprising, because the indicators are
individually trivial. Thus, Perphecy combines indicators to
construct more complex predictors and learns thresholds that
are specific to each program and each benchmark.

Pair Dels Adds �b Del Func� 5 Del Func� 10 _
New Func� 9

P1 5 9 T T F _ T = T
P2 5 3 F T F _ F = F
P3 10 1 T T T _ F = T

Hit 1.0 1.0
Dismiss 0.0 1.0

TABLE II: Combining indicators to construct predictors.

For example (Table II), consider three commit pairs, P1,
P2, and P3, and the new commit in each of these pairs

deletes (adds) 5 (9), 5 (3), and 10 (1) functions respectively.
Furthermore assume that for a given benchmark b there is a
performance difference �b in P1 and P3, but not in P2. If we
use the “Del Func” indicator template only, a threshold of 5
gives us the good hit rate (of 1.0), but it yields a poor dismiss
rate (of 0.0), because it incorrectly predicts a performance
change for P2. Analogously, if we use just the “New Func”
indicator template, we have to either sacrifice the hit rate or the
dismiss rate. By using the disjunction of both indicators with
thresholds of 10 (for “Del Func”) and 9 (for “New Func”), we
get a predictor with perfect hit and dismiss rates.

We can use many off the shelf techniques for by picking
thresholds for our indicator templates to construct indicators.
In this paper, we use a straightforward greedy approach and
show that even this simple approach is effective. We leave
exploring more sophisticated predictors to future work.

To further simplify our approach, we only consider pre-
dictors that are a trivial disjunction of indicators. As with
indicators, we use the hit and dismiss rate metrics to evaluate
our predictors.

While using disjunctions of indicators gives us better pre-
dictors than just using individual indicators, it is easy to
construct examples where the disjunctions are inadequate (e.g.,
if two indicators both have to be true for a prediction).
To handle such cases, we can either support more complex
combinations (e.g., also including conjunctions) or add new
indicators (which effectively give us the conjunctions that
we deem interesting). We have explored some alternatives
and found, at least for the alternatives we considered, that



they offered little benefit in practice. Thus, we consider only
simple predictors (indicators combined with disjunctions) in
this paper, but recognize that there is room for improvement.

Data: H= f(au, ai, b) : hitg;
Data: D= f(au, ai, b) : dismissg;
I= fik : 1 � k � nindg
Result: T= f(ik, tk) : ik 2 I , tk 2 Integerg

1 T= ;;
2 for h 2H do
3 min_price_thresh[h] = null;
4 min_price[h] = 1;
5 min_price_ind[h] = null;
6 for i 2I do
7 thresh_for_hs = maxthresh(h; i);
8 price_for_hs = | allhits(i; thresh_for_hs; D) j;
9 if price_for_hs < min_price[h] then

10 min_price[h] = price_for_hs;
11 min_price_thresh[h] = thresh_for_hs;
12 min_price_ind[h] = i;
13 end
14 end
15 end

/* Invariant: for each hit, the min_price
structures identify the indicator
template and threshold that can cover
the hit at the lowest price */

16 C= H;
17 while C 6= ; do
18 max_min_price = 0;
19 target_ind = null;
20 target_thresh = null;
21 for h 2 C do
22 if min_price[h] > max_min_price then
23 target_thresh = min_price_thresh[h];
24 max_min_price = min_price[h];
25 target_ind = min_price_ind[h];
26 end
27 end
28 T = T [ f(target_ind; target_thresh)g;
29 C = C n fallhits(target_ind; target_thresh; C)g;
30 end
Algorithm 1: Greedy heuristic to pick indicator thresholds.

Algorithm 1 presents our greedy heuristic to pick indicator
thresholds. Our algorithm attempts to come up with a predictor
that covers all the hits in a training set, while maximizing
dismiss rate (minimizing unnecessary benchmarking). This
means that our predictor will likely be conservative. The
training set is made up of two sets of triples. H are triples
that give a pair of commits and a benchmark that performs
differently for the two commits. D are triples that give a pair
of commits and a benchmark that performs the same for the
two commits. In addition to the training set, our algorithm
takes as input a set of indicator templates I . The goal of the
algorithm is to learn thresholds for each indicator template in
I . The output of the algorithm is a set of indicators, T , which
we use for prediction.

We can use our algorithm in two ways: (i) to learn a
predictor for each benchmark, one benchmark at a time; in
this case the H and D are all for the same benchmark; and
(ii) to learn a predictor for a benchmark suite; in this case H

and D will contain tuples for different benchmarks. Even if
we learn a single predictor for the entire benchmark suite, our
predictions are still specific to individual benchmarks, because
the indicators that include dynamic state will be different
for different benchmarks. For example, two benchmarks will
differ in how often they (dynamically) exercise a particular
function and thus their “Top Chg Len by Instr” indicator
will be different even if they use the same threshold. This
is essential in order to minimize benchmarking time, because
it allows executing only small subsets of the benchmark suite
at each commit.

The algorithm uses two auxiliary functions: (i)
maxthresh(h; i) returns the maximum threshold for
the indicator template, i, that still covers the hit, h; and
(ii) allhits(i; t; f(au; ai; b)g) returns the tuples in the set,
f(au; ai; b)g, for which the indicator template, i, evaluates to
true at the given threshold, t.

The first stage of the algorithm (lines 3-14) iterates over
all the hits and finds the indicator that covers the hit at the
lowest price (i.e., it returns true for the fewest tuples in the
dismiss set). It stores this information in the “min_price”
structures. If, for each indicator template we pick the lowest
threshold recorded in the min_price structures, we obtain a
trivial predictor by ORing the indicators together which will
return true for all the hits; however, this predictor will also
return true for some of the dismisses.

The second stage of the algorithm (lines 20-26) greedily
refines the output of the first stage so that the overall predictor
still covers all the hits, but may have an overall lower price
than the trivial predictor suggested above. At each iteration,
this stage finds the hit, h, with the highest price (using the
min_price structures) and adds its indicator to the output. From
stage 1, we know that we cannot do any better for h; thus we
have to pay this price to cover h. By picking the hits with
the highest price first, our algorithm hopes that the associated
indicator may cover not just the current hit, but also other hits,
eliminating the need for other indicators, which may increase
the overall price. The algorithm uses the allhits function to
removes all the hits covered by this indicator. The algorithm
is done when no more hits need to be covered. Alternative
algorithms, which allow conjunctions or miss some hits, could
do better.

This algorithm depends on a non-empty set of hits to operate
correctly. If H= ;, such as for the glibc project (Section IV-2),
the resulting predictor will be trivial: the thresholds for each
of its indicators will be at their maximum possible value, such
that its dismiss rate equals 1.0 over the training set, and no
matter what code change the predictor is used on, it will return
false. It is essential, therefore, that developers ensure their
training sets include as many hits as possible to avoid such
overfitting.

IV. EXPERIMENTS

In this section we study two questions: (1) What is the po-
tential for any performance regression test selection technique?
(2) And how much of that potential can Perphecy realize?



Software Description SLOCs Commits/Day Tests Benchmarks Commits Hits
Git Version control system 312,398 11.78 init, add, commit, diff, clone 5 201 13

glibc C library 1,174,764 4.94 libc-bench suite 6 98 0
HotSpot Java virtual machine 738,720 4.99 DaCapo suite 10 50 10

MongoDB Database management system 1,657,728 10.18 insert, insert then select 2 80 27

TABLE III: Software projects used in experiments.

We study those questions using the repositories of the four
open-source projects in Table III: git, a popular version control
system; glibc, a runtime library used by most applications
on Linux; HotSpot, the dominant Java virtual machine; and
MongoDB, a database used in many modern web applications.
We selected those projects for their widespread use, high
degree of complexity, and extensive development history. For
each project, we selected a continuous sequence of commits
going back in time from when we started our experimentation.
In total, we checked out and built 429 commits. For each
project, we then determined a benchmark suite.

Table III shows the name and description for each software
project. The SLOCs column shows the number of source lines
of code for the oldest commit investigated2. The Commits/Day
column shows the average number of daily commits for the
year 2013. The Tests column shows the the benchmark sets we
executed on each of them. The Benchmarks column shows the
number of individual benchmarks in each set3. The Commits
column shows the number of commits compiled. Finally, the
Hits column shows the number of (au, ai, b) tuples, where
au is a direct child of ai, and where there is a performance
change.

1) General Potential: To evaluate the general potential
for performance regression test selection, we determine what
fraction of commits and benchmarks do not encounter a
statistically significant change in performance. This fraction
represents the potential for reducing wasted work, because
running those benchmarks on those commits will find no
performance change.

For our experimental methodology, we compiled all the
commits for all of the software projects and then executed
each benchmark on each commit at least five times. Executing
a benchmark multiple times allows us to estimate variance
and then perform a t-test with � = 0:05 to determine if
there was a difference in performance4. The metric for each
benchmark was its total execution time for all cases except
DaCapo, which reports its own metric. Two machines executed
all experiments, each with a four-core 3.60GHz Core i7-3820
CPU, one with 24GB of RAM and the other with 32GB of
RAM. To ensure independence between samples, we rebooted
the machines after each run of a benchmark and a commit, and

2Lines of code were counted using the SLOCCount tool.
3Although the DaCapo 9.12 suite contains 14 benchmarks, we were not

able to include four of the benchmarks (eclipse, h2, tradebeans and tradesoap),
because they did not run on all of the commits; that is, the benchmarks exposed
some bugs. Therefore, we only used 10 of the DaCapo benchmarks in our
experiments.

4Normality of the data was ascertained graphically. Bonferroni correction
was not performed, since each commit’s performance data was used only once
per commit graph edge (i.e., twice in most cases).

randomized the order in which we executed the benchmarks
and commits. These experiments took over five weeks to run
and generated gigabytes of decompiled binaries and trace data.

The first notable result is that the number of significant
performance changes, shown in the “Hits” column of Table III,
is low. In the case of the HotSpot dataset, we found only 10
out of 570 (au, ai, b) tuples5 to have a performance change.
This means that the opportunity to reduce wasted work for
HotSpot is large: 98.2%. Unfortunately, this also means that
missing a single performance change would represent missing
10% of all significant changes.

For glibc we did not find a single commit that incurred a
performance change on any of its benchmarks. In the 285 in-
dividual (au, ai, b) tuples we investigated, only two reachable
binary functions ever changed, __init_cpu_features
and _IO_file_open, and neither code change caused a
significant performance effect on the benchmarks. Because
glibc is by far the oldest software project investigated here
— its initial release was in 1987 — it is to be expected that
its user-facing, performance-sensitive functions (i.e., the ones
exercised by our benchmark suite) will not change frequently;
however, having no hits poses a challenge to our prediction
strategy.

In conclusion, the rarity of performance changes supports
Algorithm 1 bias to cover all hits in the training set.

2) Effectiveness of Perphecy: After having established the
general potential for performance regression test selection, we
can evaluate to what degree Perphecy realizes that potential.
Our evaluation addresses the following questions: (a) How
effective is Perphecy in an idealized scenario where we train
and evaluate on the same commits and benchmarks? (b) How
effective is Perphecy in regression test selection? (c) What is
the effect of the training set size on predictor performance?
(d) Is it possible to use a predictor trained on one project to
predict for another project? (e) What is the effect of using
dynamic information from older commits? (f) What is the
effect of training the predictor using synthetic training sets
of non-adjacent commit pairs?

a) Effectiveness in an idealized scenario: When Per-
phecy trains and evaluates on the full set of commits and
benchmarks, we get a sense for how well our approach works
in the ideal case. This provides a baseline for what we can
possible achieve using our algorithm.

5How we came up with 570 tuples for HotSpot requires some explaining.
Although Table III identifies 50 commits for HotSpot, there are 57 parent-child
commit pairs due to merges in the commit history. Therefore, we evaluated
570 tuples by comparing the results of 10 benchmarks on 57 parent-child
commit pairs.



Full K-fold/Individual K-fold/All
Software Hit Dismiss Hit Dismiss Hit Dismiss
HotSpot 1.0 0.89 0.40 0.88 0.70 0.47

Git 1.0 0.83 0.77 0.84 0.85 0.83
MongoDB 1.0 0.46 0.74 0.46 1.0 0.46

glibc n/a 1.00 n/a 1.00 n/a 1.00

TABLE IV: Effectiveness.

The “Full” columns Table IV show the average hit and
dismiss rates achieved by the algorithm when applied to each
benchmark. For HotSpot, Git and MongoDB, the hit rate is
1.0 by construction (because the predictors cover all hits). The
dismiss rate column shows that, for HotSpot and Git, the al-
gorithm is able to dismiss more than 83% of the performance-
neutral commits, while the predictor for MongoDB has a
comparatively low dismiss rate of 46%. Because the glibc
training set contains no hits, the resulting trivial predictor has
a 1.0 dismiss rate.

b) Realistic Effectiveness: We now measure the ef-
fectiveness of Perphecy in actually predicting performance
changes by using k-fold cross-validation [29] with k = 10.
k-fold cross-validation trains on 90% of the commits and
evaluates on the remaining 10%; it repeats this 10 times, each
time for a different 10%.

We use two different strategies: (1) training a separate pre-
dictor for each benchmark (the “K-fold/Individual” columns),
and (2) training a common predictor across all benchmarks
(the “K-fold/All” columns). The second case learns a single
set of thresholds for all benchmarks; as discussed in Section III
the prediction is still specific to each benchmark because
the predictor also considers dynamic data which vary across
benchmarks.

When we have a separate predictor for each benchmark (the
“K-fold/Individual” columns), the predictor’s hit rates range
from 0.4 to 0.77, and dismiss rates range between 0.46 and
0.88. When we have a common predictor across all the bench-
marks (the “K-fold/All” columns), the predictor’s hit rates
improve, ranging from 0.70 to 1.0, and dismiss rates stay about
the same, ranging from 0.46 to 0.83. Although appearing to be
counter intuitive, the common predictor has a higher hit rate
than a per-benchmark predictor, because the per-benchmark
predictor over fits the indicators to individual benchmarks. In
contrast, a common predictor must find a threshold for each
indicator that results in a hit for all the benchmarks, thereby
the threshold computed by maxthreshold in Algorithm 1
is lower than the threshold computed for each benchmark
individually. From the graphs in Figure 2a and 2b, we know
that the hit rate diminishes with higher thresholds; therefore,
the per-benchmark predictors have lower hit rates than the
common benchmark predictors.

c) Training Set Size: To determine the size of training
set needed to generate a good predictor, we use k-fold cross-
validation once again. In particular, we use the common
predictor across all the benchmarks. Because the size of the
training set grows as the value of k grows, we can investigate
the effect of the training set size on the quality of the
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Fig. 3: Predictor hit and dismiss rates by size of training
dataset.

predictors. Figure 3 shows smoothed curves for the hit and
dismiss rates for each project by k, where 2 � k � 10. The
shaded area surrounding each line represents the confidence
interval, because we partitioned the commits multiple times
into different training sets. When k = 2, the training sets are
50% of the data, and predictions are made for the other 50%,
and when k = 10, the training sets are 90% of the data and
predictions are made for the remaining 10%. The figure shows
that, as the training set grows, there is a marked improvement
on the hit rate, accompanied by a minor decrease in the dismiss
rate. Note that the y-axis ranges from 0.45 to 0.85. In the case
of Git, the improvement to the hit rate levels off at k = 6, or
approximately 171 commits in the training set.

d) Cross-Project Prediction: To evaluate if a single
predictor can be used effectively for all software projects,
we test the transferability of predictors between the projects
(MongoDB is excluded, because its indicators are derived from
Perf instead of Pin, and glibc is excluded, because its data set
not containing any hits). A predictor trained on Git data and
used for HotSpot results in a hit rate of 1.0 and a dismiss rate
of 0.34, which means that lots of wasted work will be done. A
predictor trained on HotSpot and used for Git results in a 0.0
hit rate and a dismiss rate of 0.88, which covers none of the
hits but does little wasted work. These results show that using
a Perphecy predictor trained on one software project to make
predictions about another is ineffective at best. More generally,
these results also show that a one-size-fits-all approach such as
the one presented by Huang et al. [21] will miss opportunities
to skip benchmarks, and that it is essential to learn each
particular applications’ and benchmarks’ dynamic properties



in order to make the most effective predictions possible.
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Fig. 4: Predictor hit and dismiss rates by distance between a
two commits, for Git.

e) Distance to Last Known Commit: As development
continues, if the predictor indicates that none of the incoming
code changes will incur a performance change, developers
may make multiple subsequent commits without Perphecy
collecting dynamic data. In such a scenario, the last commit
with known performance has a continuously growing distance
from the newest commit with unknown performance. To
determine the effect of this distance on predictor performance,
Figure 4 shows the hit and dismiss rates of a predictor trained
on the 25% oldest (by time stamp) commits of the Git dataset,
making a series of predictions (au, ai, b) where au is the
newest commit in the training set, to each ai in the 75%
of commits not in the training step. A hop is the distance
between au and ai counting ai and intervening commits. The
figure shows that there is a direct correlation between hops
and dismiss rate. Between one and three hops, all commits
are correctly dismissed (hit and dismiss rates equal 1.0), but
after that the dismiss rate decreases nearly monotonically with
hops until reaching 0.16 at 15 hops. This happens because
the longer the distance between ai and au, the larger the
difference between the resulting binaries (all changes in the
intervening commits are accumulated), and the more indicators
will have their thresholds surpassed. No such effect is observed
for hit rate, which varies between 0.5 and 1.0 with no pattern
relating to hops. This result suggests that there is a natural
effect limiting the length of a string of commits for which the
predictor will return false. This effect is desirable because it
bounds the number of hops a missed performance change will
go unnoticed. In the scenario shown in Figure 4, the predictor
starts returning true as soon as four hops from ai, which
would have “reset” the latest known commit.

f) Synthetic Training Sets: Because there is no restriction
on the relationship between commits involved in a prediction,
we can generate “synthetic commits” to achieve a larger
training set. We test this by exhaustively combining commit

Software Hit Dism.
Git 1.00 0.08

HotSpot 0.99 0.03
glibc 1.00 0.29

TABLE V: K-fold cross validation for synthetic training sets.

pairs: from v commits, we create
�
v

2

�
commit pairs, greatly

expanding the inputs to the predictor generation algorithm.
Table V presents the results for k-fold cross validation (k =
10) on this exhaustive set of commit pairs for Git, HotSpot
and glibc. The data shows that the predictors trained on
such synthetic training inputs have nearly optimal hit rates;
however, dismiss rates are low, less than 0.3. Because these
artificial training sets include even the most distant commit
pairs (in all metrics of distance: hops, commit date, and code
delta size), the frequency and nature of hits they contain is
different from what occurs in regular development. As the hit
set grows, the threshold selection algorithm can only make
the predictor more conservative, which suggests developers
should limit the size of their training set once their dismiss rate
levels off (as in Figure 4) or starts decreasing. Interestingly, the
artificially generated training set for glibc included 398 hits in
14,259 prediction tuples, allowing a non-trivial predictor to be
derived. The generation of synthetic commits is, therefore, a
viable option for augmenting training sets with an insufficient
amount of hits.

g) Summary: This section showed that, for Git, Perphecy
can predict as much as 85% of the performance-changing
commits, while avoiding executing 83% of benchmarks. In
the case of HotSpot, which complicates analysis by generating
dynamic binary code during run-time, the predictor detects
70% of performance-changing commits, and dismisses nearly
half of performance-neutral code changes. These predictors are
based on inexpensive language and architecture independent
static analysis of binary code, and lightweight profiling of
benchmarking runs, that collects nothing but (1) the number of
times each function is called, and (2) how many instructions
are executed in each function. In the case of Git, for example,
all processing operations needed to make a prediction executed
in under 350ms. The predictor for MongoDB, which used
a different set of indicators based on hardware performance
counters, detected 100% of performance-affecting changes,
while dismissing 46% of performance neutral changes, sug-
gesting that these indicators are effective in conservative
predictors.

As indicated by the experimental data, Perphecy is not a
substitute for running all the benchmarks against the latest
commit at periodic intervals, for example, nightly or even
weekly, because Perphecy does not have a perfect hit rate.
Nevertheless, the hit and dismiss rates are good enough to
use Perphecy at check-in time of a new commit to quickly
decide what performance tests should be run. Any performance
regressions Perphecy misses will be caught at the next periodic
interval of running all benchmarks against the latest commit.



V. THREATS TO VALIDITY

This study reports data for (i) four open-source projects;
and (ii) a set of indicator templates. Thus, the main threat
to validity is: how does our approach generalize to other
projects or to different indicators. We intentionally picked
projects that are actively developed, complex, and widely used.
We picked only four projects due to the cost of analyzing
each project; we spent more than a month of CPU time to
analyze our four projects. While we have some evidence that
the approach generalizes across at least these projects and
across two methods of collecting dynamic data, more work
is needed before we can be confident that our approach is
broadly applicable.

VI. DISCUSSION

Perphecy presents the first exploration using easily-obtained
static and dynamic data for reducing the cost of performance
benchmarking. It opens up many avenues for future research.

First, we explore only simple indicators and even simpler
predictors. While we show that these predictors work well for
four open-source applications, we do see there is clear room
for improvement. We believe that exploring more powerful
indicators, allowing conjunctions in predictors, and applying
machine learning algorithms to learn predictors could give us
more effective and robust predictors.

Second, programming languages that compile code dynam-
ically or load code dynamically could present new challenges
for our approach. For such languages, there is often not a
single (or even a set of) binaries that contains the entire code of
an application. This produces challenges for traditional static
analyses.

VII. CONCLUSION

Because performance can make or break a software project,
developers must detect performance regressions immediately.
To avoid the overhead and turnaround time involved in
checking for performance changes in every benchmark in a
benchmark suite on every commit, we present Perphecy, a
lightweight, general, and effective strategy to predict which
commits will cause performance changes on which bench-
marks. Although Perphecy is not a substitute for running all
the benchmarks against the latest commit at periodic intervals,
for example, nightly or even weekly, we have shown, by ap-
plying our approach to four widely used performance-sensitive
software projects, that Perphecy can save as much as 83% of
benchmarking time while still detecting 85% of performance-
affecting code changes, which allows performance regression
tests to be run at check in time.
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