
Fast and Energy-Efficient Digital Filters for Signal
Conditioning in Low-Power Microcontrollers

Carlos Moreno
Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

cmoreno@uwaterloo.ca

Sebastian Fischmeister
Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

sfischme@uwaterloo.ca

ABSTRACT
Embedded systems often use digital filtering after analog-
to-digital conversion when signal conditioning is required.
However, digital filters are computationally demanding, mak-
ing them unsuitable for low-power microcontrollers.

In this paper, we propose a fast and energy-efficient digi-
tal filtering technique based on look-up tables. The novelty
in our technique is the use of multiple small LUTs, with a
novel way to combine them to reduce the quantization error.
As an additional novelty element, we propose a new input-
centric efficient implementation, specific to LUT-based soft-
ware filters. Experimental results confirm the technique’s
remarkable potential for speed as well as its energy efficiency.

1 Introduction
Embedded systems applications such as control and moni-
toring may benefit from signal conditioning to remove un-
wanted components. To this end, digital filters may be used
after capturing analog signals into a discrete-time quantized
form (a digital signal) [9]. A typical application is signal
smoothing—removing fast-changing components of the sig-
nal, usually corresponding to noise, while maintaining the
underlying information in the signal [7].

The Savitzky-Golay method [10] formulates this smooth-
ing technique in terms of polynomial approximation in the
least-square sense; the digital signal processing (DSP) com-
munity formulates the technique in terms of Fourier (spec-
tral) analysis and processing of signals. For the case of fi-
nite impulse response (FIR) filters (which is the focus in this
work), there is no difference in the implementation between
Savitzky-Golay filters and FIR filters in the DSP sense.

FIR filters require a multiply-and-accumulate structure
involving real values, making them computationally demand-
ing and thus unsuitable for software implementation on low-
power microcontrollers (MCUs). Since the signals are in
general sequences of integer values, the use of look-up tables
(LUTs) can reduce the computational requirements by re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’17, June 18-22, 2017, Austin, TX, USA
c⃝ 2017 ACM. ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062245

placing multiplications by a real value with a LUT access.
However, the size of this LUT grows exponentially with the
bitlength of the signal samples; for example, for a 16-bit dig-
ital signal, these LUTs would have 216 elements of 16 bits
each, requiring 128 kbytes per LUT.

This basic idea of replacing each multiplication by a LUT
access has been used for simple cases such as data of 8-bit or
less (LUT with 256 elements or less), mostly for hardware
applications [8]. Distributed arithmetic has also been pro-
posed [11], making use of LUTs. However, this technique is
unsuitable for software implementations (in low-power pro-
cessors) and is typically used in hardware implementations,
as it relies on parallelism to achieve high performance.

Our Contributions
In this paper, we propose a fast and energy-efficient digi-
tal filter software implementation technique based on LUTs.
The technique is practical and suitable for low-power mi-
crocontrollers. The novelty in our technique is the use of
multiple small LUTs; in particular, a novel way to use these
multiple LUTs to reduce the quantization error in the re-
sult. Moreover, our technique can be used for either signed
or unsigned data and coefficients. As an additional novelty
element, we propose a new input-centric efficient implemen-
tation strategy, specific to LUT-based filtering in software.

We include experimental data confirming the remarkable
potential for speed of this technique. We also include en-
ergy consumption measurements that confirm the energy-
efficiency of our technique.

Organization of the Paper
The remainder of the paper proceeds as follows: Section 2
describes FIR digital filters and related assumptions for this
work. Our proposed technique is presented in Section 3; Sec-
tion 4 describes our input-centric implementation strategy.
Experimental results are shown in Section 5, including a
case-study in Section 6, and Section 7 concludes the paper.

2 Background – Digital Filters
Let x(n) be a discrete-time signal, where n ∈ Z is the time
index, and let h(n) be a digital filter defined as the sequence
of filter coefficients, corresponding to the filter’s impulse re-
sponse. In the most general case, h is an infinite sequence.
However, in this work we focus on FIR filters, for which h is
a finite-length sequence. Furthermore, in practical embed-
ded systems applications, h(n) = 0 ∀ n < 0, since values at
negative indices correspond to a system responding before

the input has been applied. Let y(n) be the output signal
(the result of applying the filter h to the signal x), and let
L be the length of the filter. Then:

y(n) =

L−1∑
k=0

h(k)x(n− k) (1)

In embedded systems applications, x(n) and y(n) are typ-
ically represented as integer values. However, in most cases
the values of h(n) are real values. Thus, implementation of
Equation (1) in principle requires floating-point operations,1

making the task computationally demanding and unsuitable
for implementations on low-power MCUs.

Assumptions
This work relies on the following assumptions, which are rea-
sonable in the context of signal conditioning for embedded
applications:

• Filters are known at compile-time: for a given
filter, the set of coefficients h(n) is fixed.

• Coefficients’ magnitude: Without loss of general-
ity, we will assume that for all the filter coefficients,
|h(n) | < 1—we can always scale the coefficients and
apply the inverse scaling factor to the final result. More-
over, for practical signal conditioning applications, as-
suming amplification or attenuation of the signal is not
required, it must hold that

∑
k h(k) = 1. Though this

does not strictly imply that |h(n) | < 1 for each n, this
is virtually always the case.

3 Our Proposed Technique
Our proposed technique is centered around the idea of re-
placing multiplications by a real value with LUT accesses.
Since the filter coefficients are fixed, in the most basic form
of the technique we define one LUT for each distinct coeffi-
cient; the value of x(n) is used as subscript and the output
is the precomputed value of the subscript multiplied by the
coefficient.

With this mechanism, we trade storage space—an
increasingly accessible commodity even in low-power
MCUs— for reduced computations. Thus, we also trade
space for energy consumption, since reduced computations
translate into reduced energy consumption.

The novelty in our proposed technique is to extend the
principle to larger bit-widths such as 12-bit or 16-bit with-
out having to resort to larger LUTs (8 kbytes or 128 kbytes,
respectively), and in a way that minimizes the quantization
error. This is achieved through several novel ways of split-
ting the operation through multiple small LUTs. Though [6]
suggests the basic idea of splitting the operations through
multiple LUT accesses to reduce the size of the LUT, they do
so with a single LUT by splitting the operand into blocks of
contiguous bits. This approach has the disadvantage that it
disregards the issue of quantization error, making their idea
and implementation unsuitable for practical applications.

The next sections show the details of our proposed tech-
niques for the various relevant scenarios.

1 Fixed-point arithmetic can also be used, but it is still too
computationally demanding for low-power MCUs.

3.1 Split-LUT Multiplication – Unsigned Val-
ues

Let us consider the general case of an N -bit input value x.
We first consider the unsigned case (0 ⩽ x < 2N). This
value can be written in terms of two N/2-bit values, xL and
xH . For notational convenience, we define

B ≜ 2
N
2 (2)

Thus,

x = B xH + xL (3)

Multiplication by a fixed value a (with 0 < a < 1; we will
consider the case a < 0 in Section 3.3) results in the N -bit
value ax as shown below:

ax = B axH + axL (4)

Since xH and xL are both N/2-bit values, then axH and
axL can be obtained through LUT-based multiplication with

a 2N/2 elements LUT. Since a < 1, then the LUT elements
are N/2-bit values. In this case, recombining these two val-
ues to obtain the result as per Equation (4) is essentially
a free operation, as it simply means concatenating the two
N/2-bit values to form the N -bit result.

Reducing the Quantization Error
The above describes the underlying idea in its most basic
form, which is not practical given the large quantization
error it exhibits. Let âxH and âxL be the approximated
values that result from using the LUT (which contains the
precomputed results rounded to the nearest integer). Then:

| âxH − axH | < 0.5 (5)

| âxL − axL | < 0.5 (6)

Since âx = B | âxH |+ | âxL |, the error in the final result
is

| âx− ax | < B | âxH − axH | + | âxL − axL | (7)

From Equations (5) and (6), we obtain

| âx− ax | <
B

2
+ 0.5 (8)

As an example, for N = 16 bits, the error could be as
large as 128.5.

To address this issue, we use two independent LUTs—a
Low LUT and a High LUT: instead of computing the high
part of the result, B axH , as the N/2-bit output of the LUT
shifted N/2 positions to the left, we setup a LUT for the
N -bit value of B axH . Notice that the size of this additional

LUT is still 2N/2 elements, since xH (an N/2-bit value) is
used as its input. With this, we limit the overall error in the
result to ±1, since B axH is computed through a LUT and
thus its maximum error magnitude is 0.5:

| âx− ax | <
∣∣∣ B̂ axH −B axH

∣∣∣+ | âxL − axL | < 1 (9)

The space requirements are small compared to a straight-
forward single-LUT implementation: for 16-bit results, we
require 256 + 2×256 = 768 bytes, instead of the 128 kbytes
that a LUT for 16-bit inputs and outputs would require.

3.2 Split-LUT Multiplication – Signed Values
Signed values introduce a difficulty in that a value −x (with
0 < x ⩽ 2N−1, where N is the number of bits) is represented
by the unsignedN -bit value x′ = 2N−x. The decomposition
of x′ into two components x′

H
and x′

L
of N/2 bits each is

not consistent with the decomposition of x into xH and xL .

The key observation is that we can perform arithmetic
with the unsigned value x′ to obtain ax′ (in this scenario as
well, we first consider the case a > 0) and adjust the result
to obtain the signed representation of −ax:

ax′ = a(2N − x) = a2N − ax = 2N − ax+ (a− 1)2N

⇒ 2N − ax = ax′ + (1− a)2N (10)

The term 2N − ax represents the negative value −ax,
which corresponds to the result. Since (1 − a)2N ≡ −a2N

in modulo 2N arithmetic, it suffices to subtract a2N from
the result using unsigned integer arithmetic of N bits. For
example, in the case of 16-bit values in C, this happens au-
tomatically if we convert to uint16_t to enable modulo 216

arithmetic. a2N can be precomputed and conditionally sub-
tracted from the result for negative input values. This ad-
justment can be made part of the N -bit LUT (the one used
for xH) by conditionally subtracting during construction of
the LUT, thus avoiding conditional statements at run time.

3.3 Split-LUT Multiplication – Negative Co-
efficients

Negative values of a introduce an additional difficulty. For
a non-negative input value x = B xH + xL , we have:

ax = − | a |x = − | a |B xH − | a |xL (11)

Precomputing the N -bit value − | a |B xH is not a prob-
lem: we just obtain the actual value of this expression and
add 2N to obtain the signed representation of that negative
value. However, the term − | a |xL is a problem if we want
to use a LUT with N/2-bit elements: representation of neg-
ative values at N/2 bits is not directly compatible and would
require a conditional sign extension at run time.

The key observation in this case is that the multiplica-
tion procedure may be different for the cases where
a < 0: the LUT corresponding to the low part of the in-
put value outputs the (non-negative) value of | a |xL , and
the result is obtained as the difference between the two
LUTs (HighLUT−LowLUT). We observe that the choice
(adding the outputs of the two LUTs for a > 0 vs. subtract-
ing when a < 0) is coded in the operation before compiling
the program, since the value of a is known; at run time, no
conditional statements are required.

Negative input values are not a problem, as they are han-
dled in the exact same manner as they are handled with
a > 0: the value −x is represented as x′ = 2N −x; we com-
pute the term ax′ through the LUT, considering that a < 0,
and apply the same adjustment of conditionally subtracting
a2N for negative input values.

In all cases, we can reduce the rounding error by setting
up LUTs of a size larger than the operand size that include
a scaling factor. For example, 12-bit operations can be
implemented with a scaling factor of 24 = 16 such that the
result is a 16-bit value. The error will be within ±1 for
the 16-bit value, and “disappears” (for most output sam-

ples) when scaling back down to 12-bits—an inexpensive
operation, since we only have to right-shift.

3.4 Higher Number of Look-Up Tables
Splitting into two LUTs is perhaps the more reasonable
design, given the typical operand sizes used in low-power
microcontroller applications: additional LUTs involve addi-
tional computations, which sacrifices both speed and energy
efficiency. Moreover, with three LUTs the error can be up
to ±1.5, instead of ±1 with two LUTs.

However, the principles outlined for two LUTs are easily
extended to three or more LUTs. For example, with 12-bit
signals, we could have three LUTs with 4-bit inputs; if xL ,
xM , xH denote the low, middle, and high 4-bit chunks of
the operand (respectively), then the low LUT would have
4-bit elements and outputs the value of axL , the middle
LUT, with 8-bit elements, outputs the value of 16 ·axM , and
the high LUT would have 12-bit elements with the value
of 256 · axH including adjustments to account for signed
operands and negative coefficients, as described in the pre-
vious sections. This configuration requires only 64 bytes,
instead of 192 bytes for a dual LUT with 6-bit inputs.

Though the experimental evaluation and the case-study
focus on dual LUT setups, the distributed source code and
demos [4] include an example of 12-bit input values imple-
mented as three LUTs with 4-bit inputs.

4 Input-centric vs. Output-centric Computa-
tions

Equation (1) derives from the linear time-invariance (LTI)
of the system: the output is a superposition of impulse re-
sponses, h, weighted and positioned according to each input
sample, as illustrated in Figure 1.

Figure 1: Superposition of Impulse Responses.

This view of the digital filter’s behavior can lead to a
substantially more efficient implementation when using our
LUT-based approach. The straightforward approach of us-
ing Equation (1) to compute output samples when needed
requires accessing values from different LUTs; this involves
re-loading addresses for each input sample.

Instead of setting up a separate LUT for each distinct co-
efficient value, we can store complete sequences of weighted
impulse responses: the sequence 1 ·h(0), 1 ·h(1), 1 ·h(2) · · · 1 ·
h(L− 1) is stored in contiguous memory locations; followed
by the sequence 2 · h(0), 2 · h(1) · · · 2 · h(L − 1), and so on,
until 255 ·h(0), 255 ·h(1) · · · 255 ·h(L−1). In a sense, we can
view this as a single LUT where each element is a weighted

impulse response and the subscript is the value of the input
(representing the weighting for the impulse response).2

The computational advantage is that with virtually all
architectures and ISAs, we can efficiently access all the el-
ements of h in sequence. Thus, we make the processing
input-centric: instead of computing each output as a linear
combination of the past L input samples, we process each
input sample by superposing the weighted impulse response
to the future L output samples. At time index k, after
processing input sample x(k), the value of y(k) is already
the correct result, since future input samples no longer have
an effect on that output sample. The output can be ef-
ficiently represented by a circular buffer with length given
by the smallest 2m : 2m ⩾ L. Thus, instead of computing
each output sample as follows (example in C-like pseudocode
with 16-bit data),

y[n] = LUT_h0_high[high(x[n])] + LUT_h0_low[low(x[n])]
+ LUT_h1_high[high(x[n-1])] + LUT_h1_low[low(x[n-1])]
+ LUT_h2_high[high(x[n-2])] + LUT_h2_low[low(x[n-2])]
+ ...

we process each input sample by doing the following:

uint16_t * out = &y[n];
uint16_t * h_high = &LUT_h_high[L * high(x[n])];
uint8_t * h_low = &LUT_h_low[L * low(x[n])];

*out += *h_high++;
*out++ += *h_low++;
*out += *h_high++;
*out++ += *h_low++;
.... (repeated L times)

For the negative coefficients, the += operator is replaced by
a -= operator for the h_low pointer. The above (pseudo)code
assumes that future values of y have been initialized to zero.
It also assumes a linear output array—a circular buffer
would not allow the simple *out++ expression, though it can
still be coded efficiently. As an example, in AVR 8-bit assem-
bly code [2], using the avr-gcc tool chain, we can implement
each operation (each of the L pairs above) as follows, with
an output circular buffer of size 16 (32 bytes):

; Output buffer declared in the main program (in C) as:
; uint16_t y[16] __attribute__((aligned(256)));

; Based on received parameters:
; Load X (registers r27:r26) with the value of h_low
; Load Y (registers r29:r28) with the value of h_high
; Load Z (registers r31:r30) with the value of out

ld r24, Z
ldd r25, Z+1
ld r18, Y+
ld r19, Y+
add r24, r18
adc r25, r19
ld r18, X+
sub r24, r18
sbc r25, __zero_reg__
st Z+, r24
st Z+, r25
andi r30, 0x1F ; output buffer is 256-byte aligned

2 To simplify the explanation, we describe the scheme with
a single LUT; in practice, the layout would apply to both
low and high LUTs.

The above assumes that aligning to 256-byte multiples
does not sacrifice storage. If this was not the case and
storage space was critical, we could always align to 32-byte
multiples, avoid the auto-increment of Z and code the incre-
ment as:

r30 ← (r30 & 0xE0) | ((r30 + 1) & 0x1F)

FIR filters are often designed with a symmetric impulse
response, since this produces filters with linear phase char-
acteristics [9]. In these cases, the input-centric method can
benefit from further space savings by storing only half the
impulse response; when processing an input sample, the
pointer to the output signal is incremented L times, whereas
the pointers to the LUTs are incremented until reaching the
symmetry point of the impulse response, and from that point
they reverse direction, being decremented to traverse the im-
pulse response samples back to the beginning, resulting in a
symmetric sequence of values corresponding to the complete
impulse response. Notice that this maintains the computa-
tional and energy efficiency while offering savings in storage.

5 Experimental Results
Our experimental setup was designed to demonstrate the
two main advantages of our proposed technique; namely,
execution speed and energy efficiency.

5.1 Execution Speed
For this evaluation, we implemented what we believe is a
dramatic demonstration, even if it is not an application that
one would do in practice: we implemented CD-quality audio
filtering on an 8-bit MCU—an AVR Atxmega 128A1U run-
ning at 32MHz [3]. That is, we were able to process stereo
audio data (2× 16-bits at 44100 samples per second—88200
filtering operations per second) in real-time; with the most
efficient implementation, this took about 73% of the avail-
able CPU time. We implemented an 11-tap (L = 11) low-
pass filter with a 40 dB attenuation for the stop-band. Ta-
ble 1 shows the execution times to process one second of
audio. Since execution takes a fixed amount of clock cycles,
(it has no conditional statements or any input data depen-
dencies), and the resolution in the pin-toggling measurement
is in the order of one clock period (1/32µs), we do not report
confidence intervals or accuracy figures.

Implementation Execution Time (ms)

Existing Approaches:

Non-LUT Floating-point 8858.2

Non-LUT Integer Arithmetic 1536.1

This Work:

Standard (output-centric) LUT 926.76

Input-centric – C 1130.6

Input-centric – ASM 730.85

Table 1: Execution Time to Process One Second of
Audio.

By inspecting the assembly code generated by the com-
piler (avr-gcc), we observed several inefficiencies for the
input-centric implementation; especially in the way the cir-
cular buffer was handled. For this reason, we implemented

the assembler version, as briefly sketched in Section 4. This
was not the case for the standard LUT implementation: the
compiler-generated code was efficient, which is the reason
why it is faster than the input-centric C implementation.
Moreover, as we did not find any important opportunities
for optimization, we did not include an assembler implemen-
tation for the standard LUT technique in our experimental
evaluation.

The integer arithmetic implementation replaces the mul-
tiplications by a coefficient a < 1 with an integer multiplica-
tion by 216 a; the intermediate results are all done in 32-bit
arithmetic, and the final result is scaled back to the [0, 216)
range.

We emphasize the aspect that in practice one would choose
a specialized architecture for processing audio data; how-
ever, being able to filter audio data with a low-power MCU
is quite remarkable—digital filters for real-time audio data
are usually left not only to processors with far more com-
puting power and faster clock speeds, but typically for spe-
cialized DSP architectures. For embedded systems applica-
tions, often with 12-bit data and sampling rate no more than
a few kilohertz, the results allow us to conclude that signal
conditioning through digital filtering can be done with low
computational cost.

In terms of comparing our technique against prior work,
we observe that the non-LUT implementations constitute
the state-of-the-art, since our technique applies in the con-
text of low-power microcontrollers. We do not compare our
technique against implementations on DSP chips or archi-
tectures with advanced hardware-assisted arithmetic. Also,
we do not compare our technique against the straightfor-
ward single-LUT approach; with that technique, processing
16-bit signals would require a prohibitively high amount of
memory for the LUT, making any comparison meaningless.

5.2 Energy Efficiency
We also determined the total amount of energy consumed
by the MCU to perform filtering. To this end, we used a
small current-sensing shunt resistor at the Power-In pin of
the MCU. We fed the voltage difference (proportional to
power consumption) to an analog integrator to determine
the total amount of energy. To integrate the signal at the
analog level, we simply charge a capacitor with a current
proportional to the input and measure the voltage increase
in the capacitor over the interval of execution. This has
the advantage that it does not require sampling the power
consumption signal at an extremely high rate (which would
be necessary if we numerically integrate the digital signal).

Table 2 shows the measurements, along with 99.9% confi-
dence intervals (each experiment consisting of 1000 measure-
ments), for the AVR Atxmega 128A1U running at 32MHz.
These measurements confirm the energy-efficiency of our
technique, as they closely correlate to the execution time
measurements. This is reasonable and should be expected
for a low-power MCU architecture: it means that the op-
erations involved for each of the cases have similar power
consumption, so that energy consumption is roughly pro-
portional to execution time.

We also wanted the results to demonstrate the aspect
that the LUT-based implementation is intrinsically more
energy-efficient—as opposed to this aspect being a con-
sequence of the smaller execution time. To this end, we

Implementation Energy (mJ)

Existing Approaches:

Non-LUT Floating-point 680.19 ± 0.36

Non-LUT Integer Arithmetic 170.17 ± 0.08

This Work:

Standard (output-centric) LUT 101.79 ± 0.06

Input-centric – C 133.43 ± 0.04

Input-centric – ASM 73.68 ± 0.04

Table 2: Energy Consumed to Process One Second
of Audio – AVR MCU.

compared the standard floating-point filter against our C
input-centric implementation using a Raspberry Pi with a
700MHz ARM1176JZF-S [1]. The rationale is that this pro-
cessor has a floating-point unit, and thus the processing
speed of the straightforward implementation is comparable
to that of the LUT-based implementation. Table 3 shows
the measurements for this setup, also with each measure-
ment repeated 1000 times and ± figures indicating 99.9%
confidence intervals.

Implementation Energy (mJ)

Non-LUT Floating-point 28.70 ± 0.1

LUT – Input-centric in C 25.83 ± 0.03

Table 3: Energy Consumed to Process One Second
of Audio – CPU with Hardware Floating-Point Sup-
port.

The values in Table 3 indicate the total board consump-
tion, including hardware peripherals and software overhead.
Though we did not attempt to isolate the (common) back-
ground energy consumption, the lower figure for the LUT
implementation confirms the intuition that accessing values
in memory is bound to exhibit lower power consumption,
compared to having the hardware execute the operations.

6 Case-Study: Cruise Control Application
We implemented the Cruise Control sample application in-
cluded with SCADE 6 [5] on an AVR ATmega2560 running
at 8MHz. SCADE is a model-based design tool that pro-
duces C code that implements the semantics of the (graph-
ical) model.

In the Cruise Control application, the system’s inputs in-
clude accelerator and brake pedals position and the mea-
sured speed of the vehicle. In our implementation, we used
a bench-top voltage source to act as the speed sensor’s out-
put. This signal is sampled by an analog-to-digital con-
verter (ADC) at a frequency of 1 kHz, which corresponds to
the processing period (the frequency of the “periodic tick”).
For the purpose of the demonstration, the speed signal is
assumed to be noisy (e.g., noisy or quantized speed sen-
sor). Thus, we included a low-pass FIR filter for signal
conditioning, using the standard (output-centric) LUT im-
plementation. The output, representing the throttle to be
applied, was sent to a digital-to-analog (DAC) converter,

which allowed us to observe the smoothed transitions, given
the smoothing applied to the input signal.

We coded all the processing in the service routine of the
periodic interrupt; there, we read a sample from the ADC
and feed it to the digital filter, assign the inputs to the
SCADE model, and execute the main evaluation function.
The C code for the processing function is shown below:

void process() // Invoked from periodic interrupt ISR
{

filter_signal (read_adc());
set_inputs(); // sets global variables
Cruise_control_main_function();
set_outputs(); // reads global variables

}

A fragment with the relevant sections of the function fil-

ter_signal is shown below. The filter’s impulse response
is h = {−0.05001,−0.084077,−0.018439,0.143041,0.315074,
0.38882,0.315074,0.143041,−0.018439,−0.084077,−0.05001}.
Notice the difference, LUT high + LUT low for positive fil-
ter coefficients, and LUT high − LUT low for negative co-
efficients:

uint16_t x[256] = {0};
uint16_t y[256] = {0}; // Global variable
uint8_t pos = 0; // Global variable

// uint8_t subscript directly cycles through
// 256-element buffers

#define lo8(x) ((x) & 0xFF)
#define hi8(x) ((x) >> 8)

void filter_signal (uint16_t input)
{

uint8_t k = ++pos;
x[k] = input;

uint16_t out = LUT_m0p05001_high[hi8(x[k])];
out -= LUT_m0p05001_low[lo8(x[k++])];
out += LUT_m0p084077_high[hi8(x[k])];
out -= LUT_m0p084077_low[lo8(x[k++])];
out += LUT_m0p018439_high[hi8(x[k])];
out -= LUT_m0p018439_low[lo8(x[k++])];
out += LUT_0p143041_high[hi8(x[k])];
out += LUT_0p143041_low[lo8(x[k++])];
out += LUT_0p315074_high[hi8(x[k])];
out += LUT_0p315074_low[lo8(x[k++])];
// ... etc.

y[pos] = out;
}

The set_inputs function is shown below:3

void set_inputs()
{

// Assign variables specifying the state of the
// device (on, quick accel, engage, etc.)
accelerator pedal ← 32768; // half-pressed
brake pedal ← 0; // No brakes applied
vehicle speed ← y[pos]; // filtered speed

}

Table 4 shows the CPU usage, with the processing invoked
every millisecond. The figures confirm the computational

3 Due to copyright issues, we only show pseudocode, with
“blinded” variable names.

With Filtering No Filtering

11.0% 5.9%

Table 4: CPU Usage – Cruise Control Application

efficiency of the method, even when implemented as output-
centric in C.

A full demo and source code of the filters is accessible
through a BSD-style license as a public bitbucket.org repos-
itory [4]. This includes standalone C++ programs to gener-
ate the #include files defining the LUTs. Due to copyright
issues, both the paper and the distributed source code omit
the Cruise Control complete implementation.

7 Conclusions
In this paper, we have presented a LUT-based approach
to digital filtering providing a practical, fast, and energy-
efficient mechanism for signal conditioning in MCU appli-
cations. Experimental results demonstrated a remarkable
speed, showing that the technique can provide effective sig-
nal conditioning at low computational cost for typical em-
bedded applications. Experimental results also confirmed
the energy-efficient aspect of our proposed technique.

8 References

[1] ARM Limited. ARM1176JZF-S Technical Reference
Manual, 2004–2009.
http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0301h/DDI0301H arm1176jzfs r0p7 trm.pdf.

[2] Atmel Corp. Atmel AVR 8-bit Instruction Set.
http://www.atmel.com/images/
Atmel-0856-AVR-Instruction-Set-Manual.pdf.

[3] Atmel Corp. Atxmega 128A1U, 2016. http:
//www.atmel.com/devices/ATXMEGA128A1U.aspx.

[4] Carlos Moreno. Source Code and Demo for LUT-based
FIR Digital Filters, 2017. https://bitbucket.org/
cmoreno uw/lut-based-filters-demo-and-source-code.

[5] F.-X. Dormoy. SCADE 6: A Model Based Solution for
Safety Critical Software Development. In European
Congress on Embedded Real Time Software, 2008.

[6] R. Gee. Table Lookup Multiplier with Digital Filter,
1992. US Patent US 5117385 A.

[7] K. George and P. L. Tang. System and Method for
Conditioning Noisy Signals, April 2016. US Patent
EP 2818672 B1.

[8] P. K. Meher. New Approach to Look-Up-Table Design
and Memory-Based Realization of FIR Digital Filter.
IEEE Transactions on Circuits and Systems, 2010.

[9] J. G. Proakis and D. G. Manolakis. Digital Signal
Processing: Principles, Algorithms, and Applications.
Prentice Hall, Fourth edition, 2006.

[10] A. Savitzky and M. J. Golay. Smoothing and
Differentiation of Data by Simplified Least Squares
Procedures. Analytical Chemistry, 1964.

[11] H. Yoo and D. V. Anderson. Hardware-Efficient
Distributed Arithmetic Architecture for High-Order
Digital Filters. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2005.

