
An Open Platform for Mixed-Criticality
Real-time Ethernet

Gonzalo Carvajal
Department of Electrical Engineering

Universidad de Concepcion
Concepcion, Chile

Email: gcarvaja@udec.cl

Sebastian Fischmeister
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, ON, Canada

Email: sfischme@uwaterloo.ca

Abstract—For more than one decade, researchers have consid-
ered Ethernet as a natural replacement to legacy fieldbuses in
modern distributed applications. However, Ethernet components
require special modifications and hardware support to provide
strict timing guarantees. In general, the high-cost of deploy-
ing hardware components limits the experimental validation of
proposed solutions in real-world applications. Despite the vast
literature, only a few solutions report real implementations, and
they are all closed to the research community, hindering further
development for constantly evolving applications.

This paper introduces Atacama, an on-going effort on deploying
the first hardware-accelerated and open-source framework for
mixed-criticality communication on multi-hop networks. Special-
ized modules exploit the principles of traditional fieldbus systems
to coordinate communication tasks on real-time stations, and can
be easily integrated to and coexist with Commercial Off The Shelf
(COTS) devices operating with best-effort traffic. Experimental
characterization of implemented prototypes report minimal jitter
on 1Gbps links, and show that real-time guarantees are resilient
to injected best-effort traffic. The framework is available as an
open-source project, enabling researchers to verify the results,
explore, test, and deploy new networking solutions for modern
distributed systems in real-world scenarios.

I. INTRODUCTION

Modern distributed real-time applications are constantly
growing in the number and complexity of interconnected
elements, and then the networking technologies become a
key component in systems such as aircrafts, automobiles, and
medical devices, among others. Apart from offering high band-
width, modern networks must also support mixed-criticality
communication, providing hard latency guarantees for time-
sensitive applications, while still communicating background
traffic from best-effort applications [1]–[4].

Low-cost, high-speed, and ubiquitous components make
switched Ethernet an attractive networking technology for
modern real-time systems. However, standard Ethernet defines
a competitive approach to media access aiming to maximize
the average throughput, and is unable to provide the strict
latency guarantees required in hard real-time applications [5].
Therefore, industry and academia started to explore mecha-
nisms to provide latency guarantees for real-time applications
on top of Ethernet [6], [7], which are commonly referred as
Real-Time Ethernet (RTE). In general, RTE solutions propose

integrating coordination mechanisms in COTS devices to
prevent competition between stations.

In practice, tight coordination at high-speed is only possible
through hardware implementations. The high cost associated
to implement custom devices hinders the experimental valida-
tion of the proposed mechanisms in real-world applications.
Nowadays, despite the vast amount of related literature, only
a few solutions report experimental validation, and all of them
are closed and then unavailable for researchers.

This work introduces Atacama, the first open-source
hardware-based RTE framework with support for multi-hop
networks. Atacama introduces two components to enhance
COTS devices and provide tight latency bounds between
real-time stations connected through multiple switches: (1) a
programmable Application-Specific Instruction-set Processor
(ASIP) executing Time-Division Multiple Access (TDMA)
schedules to coordinate communication tasks between real-
time stations, and (2) a dedicated path in the switches for low
latency and low jitter forwarding of real-time frames. Both
modules seamlessly integrate to COTS architectures, enabling
the coexistence of both real-time and best-effort traffic using
traditional Ethernet infrastructure. Our evaluation of functional
prototypes shows that the system provides guaranteed tight
bounds for real-time frames, even in the presence of best-
effort traffic. To the best of our knowledge, this is the first
RTE solution that allows researchers to verify the results and
build upon, serving as a base for exploring, developing, and
testing new networking solutions for real-time applications [8].

The rest of this paper is organized as follows: Section II
introduces the concepts and functional principles of the ASIP
tailored for real-time communication. Section III describes
the custom path for real-time frames inside the switches.
Section IV summarizes the experimental evaluation of the
prototypes. Finally, Section V concludes the paper.

II. TRAFFIC COORDINATION IN REAL-TIME STATIONS

Atacama uses the Network Code framework [9] to provide
coordinated communication between distributed stations. The
framework has three main elements:

• A domain-specific instruction set to describe dynamic
TDMA schedules.978-3-9815370-0-0/DATE13/ c©2013 EDAA



Real-time Tasks

NC Schedule

PHY

Application 

Layer

Communication 

Layer

Physical

 Layer Communication Medium

B
est E

ffort 

F
ram

es

NC Data 

Buffers
Optional Higher 

Layers

(TCP/UDP/IP)

R
ea

l-t
im

e 

Fra
m

es

MAC Arbiter

RT 

Queues

MAC

BE 

Queues

Non-real-time Tasks

Fig. 1. Layered Model for the Network Code Framework

• A compiler with a verification engine that translates the
programs into verified executable schedules.

• The entity that executes the schedules at run time.
This section summarizes the framework as outlined in [9], and
describes the architecture of the execution entity.

A. Overview of the Network Code Framework

Fig. 1 shows the model defined for a real-time station.
Real-time tasks running in the upper application layer use
the services from the programmable communication layer to
communicate data within strict timing constraints. Both layers
run independently, and they only interact by exchanging data
through shared buffers. Real-time tasks produce and consume
real-time and best-effort data. Real-time data flows through
a custom path (gray blocks in Fig. 1), and their delivery is
guaranteed to happen within bounded time. Best-effort data
use traditional higher layers and have no delivery guarantee.

Tasks access real-time data by reading/writing predefined
buffers at specific times. Predefined schedules implement
anisochronous communication rounds, which coordinate the
exchange of real-time data using a Reference-Broadcast Syn-
chronization (RBS) scheme [10]. Transmitters receive exclu-
sive access to the medium during specific time slots. On the
other end, interested receivers perform the matching operations
to extract the application data from incoming frames, and store
it into a local data buffer. To ensure conflict-free operation,
the schedules must consider a worst-case scenario for the
propagation and processing of real-time frames.

Similar to legacy fieldbus systems, Network Code follows
a broadcast communication scheme. It also assumes that
communication tasks follow well-defined temporal patterns,
and all requirements and data structures are known in advance.
Under these conditions, the user can apply static verification
and analysis [9] to detect potential conflicts before they occur
at run time. This is an important property for safety-critical
systems requiring evidence-based certification.

B. Network Code ASIP

Fig. 2 shows the general architecture of the Network Code
ASIP (NC-ASIP). The design is based on early concepts

presented in [11], and have three sections: the memory space,
the Ethernet core, and the Network Code Core (NCC).

The memory space and Ethernet core provide the interfaces
to the application and the physical layer, respectively. The
former contains the data buffers, and the PROG block that
holds the programmed schedule. The latter contains the
Medium Access Controller (MAC) logic and arbitrates the
access to the ports between best-effort and real-time frames.

The NCC implements the main functionality. It features
a superscalar architecture, implementing each instruction as
an independent finite state machine. The controller fetches
and parses the instructions from the PROG block, checking
dependencies between consecutive instructions, and trigger-
ing concurrent execution whenever it is possible [11]. Each
instruction performs a fixed number of steps, making the
execution time of a program predictable at design time.

The following paragraphs present a functional description
of the instruction blocks in the NCC, which provide control
of data flow, timing, and execution flow.

1) Data Flow Control: Transmission of real-time data
is driven by create-send sequences. The create instruction
moves data from a data buffer to the send buffer. The send
instruction encapsulates the data into an Ethernet frame using
a special identifier (NC-DATA Type) in the EthType field. For
reception, incoming real-time frames automatically trigger the
autoreceiver block, which extracts the application data from
NC-DATA frames, and stores it in the receive buffer. The data
stays in the receive buffer until either a receive instruction
moves it to a local application buffer, or a new arriving NC-
DATA frame replaces it.

2) Timing Control: The instruction future(L, dl) starts a
countdown timer with initial value dl. The halt() instruction
stalls the program execution waiting for the expiration of this
timer, and then resumes execution of the program at label L.

The sync(mode, dl) block operates in two modes. In master
mode, it emits a synchronization frame tagged as NC-SYNC
Type. In slave mode, the block stalls the execution of the next
instructions until either the arrival of a synchronization frame,
or the expiration of a countdown timer with initial value dl.

3) Execution Flow Control: The branch(guard, L) instruc-
tion enables the implementation of dynamic schedules that
make on-the-fly decisions based on guards. Guards check
for specific conditions based on values of buffers, execution
history, flags, etc. If the evaluated guard returns TRUE, the
schedule will continue execution at the specified label L;
otherwise, the schedule will continue with the next instruction.
For example, the system can stop transmitting data when a
certain variable lies below a predefined threshold.

III. DEDICATED REAL-TIME PATH IN THE SWITCHES

This section introduces the dedicated path enabling low-
latency and low-jitter forwarding of real-time frames in multi-
hop topologies. The gray modules in Fig. 3 implement a
queue-free path for coordinated frames inside the switch. The
path resembles a traditional bus topology used in legacy field-
bus systems, which naturally spans across multiple switches.



branch()

Controller

future()

receive()

autoreceiver

Send BufferReceive BufferNetwork 

Code Core

RT-Rx buffer

Sync()

halt()

Status/Guards

MAC

Physical Transceiver (PHY)

Ethernet Core

Real-Time Tasks

BE frame
BE 

frame

32

32 32

8

slave

mast

Rx-MAC

arbiter

8

RT-Tx buffer

8

Tx-MAC 

arbiter

8RT frame

send()

32 32

PROG Data buffers

create()

Memory

Space

Fig. 2. Architecture of the Network Code ASIP

COTS Switching Fabric

MAC

PHY

BE-Rx

buffer

Classif.

Real-Time Path

Send Programmable 

connections

RT-Rx

buffer

MAC

PHY

BE-Tx

buffer

Tx-arbit.

RT-Tx

buffer

MAC

PHY

BE-Tx

buffer

Tx-arbit.

RT-Tx

buffer

Fig. 3. Enhanced Ethernet Switch

A. Classifying and Forwarding Real-time Frames

Each input port includes a classifier to separate real-time
from best-effort frames. The switch parses and stores incoming
real-time frames (tagged as NC-DATA or NC-SYNC type) in
the corresponding RT-Rx buffer. As soon as the RT-Rx buffer
asserts its non-empty flag, the send block starts moving the
frame to the dedicated RT-Tx buffer in all the other ports
(cut-through forwarding). Considering the broadcast nature
and coordination of real-time frames generated from the NC-
ASIPs, the dedicated path avoids any address processing and
queuing mechanisms to handle contention. This is an essential
characteristic to reduce the jitter inside the switch.

Best-effort frames follow the traditional path through the
COTS switching fabric. The Tx-arbiter module gives strict
priority access to the output ports to real-time frames. When-
ever one of the RT-Tx buffers has data to transmit, the arbiter
automatically gives it access to the output ports, potentially
interrupting ongoing best-effort transmissions. Once emptying
the real-time buffer, the arbiter gives access to the output port
back to the best-effort buffer. As a result, stations using COTS
components communicate transparently, but their effective
bandwidth will be reduced according to the amount of real-

time traffic flowing through the network. Because real-time
transactions are defined in advance, it is possible to estimate
the available bandwidth for best-effort traffic beforehand.

IV. EXPERIMENTAL RESULTS

Using the NetFPGA platform [12], we implemented an
evaluation kit containing four independent instances of the
NC-ASIP described in Section II-B, and a prototype for a four-
port enhanced switch that integrates the custom path to the
COTS reference switch design available for the NetFPGA [12].
Both devices are able to operate at line rate over 1Gbps links.

This section summarizes experimental results for achieved
predictability and robustness of timing behavior using the
implemented prototypes.

A. End-to-End Latency

We define the end-to-end latency (EEL) as the time span for
moving a byte of application data from a buffer in the origin
to the receive buffer in the destination. In Atacama, the EEL
between real-time stations with NS switches in the path is:

EEL = TxASIP + RxASIP +NSSw + (NS + 1)L (1)

where
• TxASIP: defined for create-send sequences. Time span

since triggering of the create block until the first byte
of application data leaves the MAC.

• Sw: switch forwarding time since the first byte of data
arrives to the MAC in the input port until it leaves the
MAC in the output port.

• RxASIP: time span since the first byte of data reaches the
MAC in the destination until stored in the receive buffer.

• L: effects of PHYs and cables linking two devices. Time
span since the first byte of data leaves the MAC in the
origin port until it reaches the MAC in the other end.

Using the Xilinx’s Chipscope tool, we characterized the
worst-case for each term in (1) as the highest observed value in
a set of 100 samples for each case (we omit the details due to
limited space). We observed that, in each case, the difference
between the highest and lowest value in the set was 16 [ns],
which we attribute to the drift between the different clock
domains in the devices and the sampling clock. The latency
on the physical links must be characterized according to the
specific configuration. For this experiment, we considered
two Broadcom BCM5464SR PHYs linked with 7.62m CAT6
cables. Using the observed values, we model the EEL for a
variable of length vl (in 32-bits words) in Atacama as:

EEL(NS , vl) = 1.272 + 1.576NS + 0.032vl[µs] (2)

To verify the model, we measured the latency between two in-
stances in the NC-ASIP platform exchanging real-time frames
with three switches in the path. We additionally connected
three ports of an IXIA traffic generator injecting broadcast
best-effort frames at 800Mbps each. Table I compares the
highest observed latency from a set of 100 samples for each



TABLE I
WORST-CASE END-TO-END LATENCY

vl [words] model [µs] observed [µs] error
20 6.64 6.608 0.48 %
35 7.12 7.088 0.45 %
70 8.24 8.224 0.20 %

case to the worst-case value obtained from (2). As we see,
even under the highly saturated scenario for best-effort traffic,
the derived model provides a tight and effective upper-bound
for the latency of real-time frames.

B. Robustness Against Co-existing Best-effort Traffic

To illustrate the robustness of the real-time guarantees, we
used an IXIA traffic generator to collect long-term statistics
over controlled streams of Ethernet frames. One port of the
generator emits two periodical reference streams of times-
tamped frames. One stream generates frames of configurable
length tagged as NC-DATA, with a gap of 100µs between
consecutive frames. The other stream is similar, but the
frames are tagged as best-effort type. These streams propagate
through three switches to a second port in the generator which
collects the instantaneous propagation latency for each frame
class. Two additional ports in the generator broadcast best-
effort frames of 1,000B at a rate of 470Mbps each. This
configuration generates an aggregated bandwidth close to over-
utilization, and allows us to stress the effects of jitter in the
latency of the different classes.

Fig. 4 shows the observed latency versus the transmission
rate on the timestamped streams. Latency measurements are
only valid when there are no lost frames between the trans-
mitter and receiver. The markers show the average latency
over a sample set of 107 frames for each type. The ends
of the bars represent the minimum and maximum value on
each set. On the one hand, we see that the latency and
jitter of the reference best-effort stream increases with the
transmission rate. When the timestamped best-effort stream
raises over 50Mbps, the total traffic in the network exceeds
the capacity of the links, and the reference best-effort stream
starts reporting dropped frames. On the other hand, the real-
time path provides a bounded latency and no losses for real-
time frames, independent of the best-effort traffic flowing
through the network. The cut-through forwarding implemented
in the real-time path also reduces the propagation latency
in relation to the traditional store-and-forward used in most
COTS switches.

V. CONCLUSIONS

This work introduced Atacama, the first open-source
hardware-accelerated RTE framework with support for mixed-
criticality traffic in multi-hop topologies. The framework fea-
tures an ASIP that coordinates communication tasks in real-
time stations using a TDMA approach, and dual-pathways
in switches to provide hard latency guarantees for real-
time frames even with coexisting best-effort traffic. Using
implemented prototypes, we derived a model that provides

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

Tx rate on reference streams [Mbps]

L
a
te

n
c
y
 [

µ
s
]

 

 

BE frames

RT frames

Fig. 4. Robustness of Real-time Latency

a tight upper-bound for the communication latency between
distributed real-time stations, only limited by physical char-
acteristics such as the drift between different clock domains
and uncertainty in the physical links. The experiments showed
that latency guarantees are robust to the injection of best-effort
traffic. Atacama is the first experimental framework openly
available, allowing researchers to validate the results, build
upon, and evaluate their solutions in real-world applications.

ACKNOWLEDGMENT

This was partially supported was supported in part by
programs MECESUP and CONICYT from the Chilean gov-
ernment, and projects NSERC DG 357121-2008, ORF-RE03-
045, ORF-RE04-036, ORF-RE04-039, APCPJ 386797-09,
CFI 20314 and CMC, ISOP IS09-06-037, and the correspond-
ing industrial partners associated.

REFERENCES

[1] R. Maier, “Event-Triggered Communication on Top of Time-Triggered
Architecture,” in Proc. of the 21st Digital Avionics Systems Conference,
vol. 2, 2002, pp. 13C5–1 – 13C5–9.

[2] H. Kopetz, “Event-Triggered versus Time-Triggered Real-Time Sys-
tems,” in Operating Systems of the 90s and Beyond, 1991, pp. 87–101.

[3] R. Zurawski, The Industrial Information Technology Handbook. CRC
Press, 2005.

[4] M. Lukasiewycz, S. Chakraborty, and P. Milbredt, “FlexRay Switch
Scheduling: A Networking Concept for Electric Vehicles,” in Design,
Automation Test in Europe (DATE), 2011, pp. 1 –6.

[5] R. Seifert and J. Edwards, The All-New Switch Book: The Complete
Guide to LAN Switching Technology, 2nd ed. Wiley Publishing, 2008.

[6] J.-D. Decotignie, “The Many Faces of Industrial Ethernet,” IEEE Indus-
trial Electronics Magazine, vol. 3, no. 1, pp. 8 –19, march 2009.

[7] M. Felser, “Real-Time Ethernet - Industry Prospective,” Proceedings of
the IEEE, vol. 93, no. 6, pp. 1118–1129, Jun. 2005.

[8] “Embedded Software Group, University of Waterloo,”
http://esg.uwaterloo.ca.

[9] S. Fischmeister, O. Sokolsky, and I. Lee, “A Verifiable Language
for Programming Communication Schedules,” IEEE Trans. Comput.,
vol. 56, no. 11, pp. 1505–1519, nov 2007.

[10] J. Elson, L. Girod, and D. Estrin, “Fine-grained Network Time Synchro-
nization Using Reference Broadcasts,” SIGOPS Oper. Syst. Rev., vol. 36,
no. SI, pp. 147–163, Dec. 2002.

[11] S. Fischmeister, R. Trausmuth, and I. Lee, “Hardware Acceleration
for Conditional State-Based Communication Scheduling on Real-Time
Ethernet,” IEEE Trans. Ind. Informat., vol. 5, no. 3, pp. 325–337, aug
2009.

[12] “Official NetFPGA project webpage,” http://www.netfpga.org.


