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Abstract

Program analysis tools are essential for understanding programs,
analyzing performance, and optimizing code. Some of these tools
use code instrumentation to extract information at runtime. The
instrumentation process can alter program behavior such as tim-
ing behavior and memory consumption. Time-sensitive programs,
however, must meet specific timing constraints and thus require that
the instrumentation process, for instance, bounds the timing over-
head. Time-aware instrumentation techniques try to honor the tim-
ing constraints of such programs. All previous techniques, however,
support only static source-code instrumentation methods. Hence,
they become impractical beyond microcontroller code for instru-
menting large programs along with all their library dependencies.

In this work, we propose DIME, a time-aware dynamic binary
instrumentation technique that adds an adjustable bound on the tim-
ing overhead to the program under analysis. We implement DIME
using the dynamic instrumentation framework, Pin. Quantitative
evaluation of the three implementation alternatives shows an aver-
age reduction of the instrumentation overhead by 12, 7, and 3 folds
compared to native Pin. Instrumenting the VLC media player and
a laser beam stabilization experiment demonstrate the practicality
and scalability of DIME.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging — Tracing

General Terms Experimentation, Performance

Keywords Instrumentation, Tracing, Profiling

1. Introduction

Program analysis tools are critical for understanding program be-
havior. Software developers need such tools to analyze their pro-
grams and identify performance bottlenecks [33]. Profiling is one
approach for program analysis. Examples of program profiling in-
clude time and space profiling, collecting runtime statistics on in-
struction and function usage, and function call tracing. Profilers in-
strument programs to collect the required profiling information.
Since real-time software is time-sensitive and needs to obey
timing constraints, real-time systems require specialized program
analysis tools. Instrumentation naturally causes perturbation to the
program under analysis. This perturbation might result in viola-

tions of timing constraints. Software-based instrumentation meth-
ods [17, 22] insert code in the original program to enable trac-
ing/monitoring, which results in modifying the program’s tim-
ing behavior. Hardware-based tracing methods [23, 30] are also
known for causing significant perturbation to the program being
traced [26]. Furthermore, hardware-based tracing methods collect
low-level data and, hence, require higher-level support to provide
traces at a higher-level of abstraction [24, 25]. Dynamic instru-
mentation approaches [6, 21, 29] modify the program during its
execution causing large runtime overheads. Consequently, recent
work [11, 16] focuses on time-aware instrumentation techniques
that honor a program’s timing constraints.

Time-aware instrumentation extracts information from a pro-
gram without violating its timing constraints. Fischmeister et
al. [11] introduced time-aware instrumentation by statically in-
strumenting a program’s source code only at code locations that
preserve the program’s worst-case execution time (WCET). Kashif
et al. [16] use program transformation techniques to increase the
effectiveness of time-aware instrumentation. They achieve this by
creating locations in the program where instrumentation can be
inserted while having minimal effect on the program’s worst-case
behavior. In [15], Kashif et al. propose INSTEP; a static instru-
mentation framework for preserving extra-functional properties.
INSTEP uses the input program and a user-specified instrumen-
tation intent to derive a partial program. Then it solves an opti-
mization problem based on cost models and constraints to generate
the instrumented program. Other works propose frameworks for
optimizing other program aspects such as code size and energy
consumption [20, 27].

To our knowledge, current approaches for time-aware instru-
mentation solely rely on static and source-code instrumentation
techniques. Previous works require WCET analysis of the input
program to guide the placement of instrumentation code. Their in-
strumentation frameworks modify the source code prior to execu-
tion. They also need WCET analysis after program instrumenta-
tion to guarantee that timing constraints are met. While these ap-
proaches are sound and effective, the need for running WCET anal-
ysis pre- and post-instrumentation reduces the applicability to only
hard real-time applications where WCET analysis is common. Fur-
thermore, the previous frameworks also operate on the source code
of input programs. Hence, the developer has to include the source
code of all library dependencies of the program that he wants to in-
strument. Moreover, statically analyzing these library dependencies
is impractical. Consider, for instance, the VLC media player [3]
v2.0.5 which has approximately 600 000 lines of code and uses
libraries with more than three million lines of code. Statically ana-
lyzing the source code of a multi-threaded program like VLC along
with its library dependencies becomes simply impractical.

In this paper, we propose DIME, a time-aware dynamic binary
instrumentation (DBI) technique as an extension to Pin [21]. The
idea is to enable dynamic instrumentation of program binaries



while still bounding the overhead of the instrumentation process.
DIME, as a tool for instrumenting soft real-time applications, is
practical, scalable, and supports multi-threaded applications. The
contributions of this work are as follows.

1. Introduce the concept of time-aware DBI by employing rate-
based resource allocation methods.

2. Present three implementations of DIME using Pin [21].

3. Quantitatively demonstrate the areas of applicability of the dif-
ferent approaches.

4. Demonstrate the general applicability and scalability of DIME
on two case studies.

2. Background

This section overviews some necessary background information.

2.1 Binary Instrumentation

Instrumentation of binary executables can happen either statically
before the program runs or dynamically during program execution.
It is mandatory to maintain the program original behavior after in-
strumentation so, for example, references and pointers to displaced
instructions must be updated appropriately. Static binary instru-
mentation tools include EEL [19], ATOM [33], and Morph [38].
Static instrumentation methods are based on static analysis and can-
not react to changes in application behavior at run time. DBI, as
opposed to static binary instrumentation, does not require any pre-
processing of the program under analysis. This makes DBI more
practical and usable by developers for profiling and tracing pur-
poses. More importantly, DBI can instrument any program while
static methods are limited to code they can analyze, and, for exam-
ple, cannot instrument dynamically generated code.

Multiple tools exist that support dynamic binary instrumenta-
tion. DBI tools that use code transformation during program exe-
cution include Dyninst [8] and Vulcan [10]. Most of these instru-
mentation tools suffer from transparency issues, i.e., they modify
native behavior of the program under analysis [7]. Other DBI tools
have software code caches and dynamically compile binaries such
as Pin [21], DynamoRIO [6], and Valgrind [29]. We choose Pin as
the underlying DBI framework to implement DIME because Pin is
easily extensible and has lower overhead compared to other tools.
This is discussed in detail in the following sections.

2.2 DBI Using Pin

Pin is a DBI framework developed by Intel [21]. Pin provides
a cross-platform API for building program-analysis tools, and it
offers the following features:

e Ease-of-use: Pin’s user model allows inserting calls to instru-
mentation code at arbitrary locations in the executable using a
simple but rich C/C++ API. Using Pin, a developer can ana-
lyze a program at the instruction level with minimal knowledge
about the underlying instruction set.

Portability: Although Pin allows extraction of architecture-
specific information, its API is architecture-independent.

Transparency: A program instrumented by Pin maintains the
same instruction and data addresses, and the same register and
memory values compared to uninstrumented execution. Thus,
Pin extracts information that correctly describes the program’s
original behavior.

Efficiency: Pin uses a just-in-time (JIT) compiler to insert and
optimize instrumentation code. It utilizes a set of dynamic
instrumentation and optimization techniques; such as code
caching, trace linking, register reallocation, inlining, liveness
analysis, and instruction scheduling.

e Robustness: Since Pin discovers the code in runtime, it can han-
dle statically unknown indirect-jump targets, dynamically gen-
erated code, dynamically loaded libraries. Also, it can analyze
mixed code and data, and variable-length instructions.

To build an analysis tool using Pin, the developer should cre-
ate a pintool which basically consists of two types of routines. The
analysis routine contains the code to be inserted in the program dur-
ing execution, whereas the instrumentation routine decides where
to insert the analysis-routine calls. Pin injects to the program exe-
cutable and uses a JIT compiler to translate the executable, instru-
ment it, and retain control of it. The unit of compilation is the trace:
a straight-line code sequence that ends in an unconditional control
transfer, a predefined number of conditional control transfers, or a
predefined number of instructions. When the program starts exe-
cution, Pin compiles the first trace and generates a modified one.
The generated trace is almost identical to the original, but it en-
ables Pin to regain control. Pin transfers control to the generated
trace, then Pin regains control when a branch exits the trace. After-
wards, Pin compiles the new trace and continues execution. When-
ever the JIT compiler fetches some code to compile it, the pintool
is allowed to instrument the code before compilation. Pin saves the
compiled code and its instrumentation in a code cache in case it
gets re-executed [21, 31, 34].

Pin supports different granularities for the instrumentation
routine; image, trace, routine, and instruction granularity. The
instrumentation-routine granularity defines when Pin should ex-
ecute the instrumentation routine. For example, in instruction
granularity, Pin instruments the program a single instruction at
a time. Similarly, Pin offers multiple analysis-routine granularities
i.e., where to insert the analysis-routine call. The instrumentation-
routine and the analysis-routine granularities can be different. For
instance, a pintool can support trace granularity for the instru-
mentation routine using the TRACE_AddInstrumentFunction() APIL
That means the pintool can access the basic blocks and the instruc-
tions inside the trace using BBL_InsertCall() and INS_InsertCall(),
respectively. Note that a pintool can have multiple instrumentation
and analysis routines.

2.3 DBI Overhead

Most of Pin’s overhead originates from the execution of the instru-
mentation code (in the analysis routines). Such overhead varies ac-
cording to the invocation frequency of the analysis routines and
their complexity. On the other hand, dynamic compilation and in-
sertion of instrumentation code (by the instrumentation routine)
represent a minor source of the overhead [21].

The following numbers show the slow-down factors of the
SPEC2006 benchmark running on top of Pin on a Windows 32-
bit platform as reported by Devor in [9]:

o Instruction-counting tool (inscount): 2.45 and 1.56 for SPECint
and SPECfp, respectively.

® Memory-tracing tool (memtrace): 4.74 for SPECint and 3.26 for
SPECfp.

e Memory-tracing tool using Pin-buffering API (membuffer):
4.64 and 3.2 for SPECint and SPECfp, respectively.

The instruction-counting tool counts the executed instructions of
every executed basic-block. The memory-tracing tool collects the
address trace of instructions that access memory. Additionally, Luk
et al. report in [21] that the application slow down due to dynamic
instrumentation by Pin [21], DynamoRIO [6], and Valgrind [29] are
2.5, 5.1, and 8.3 times, respectively. These numbers are reported
for a light-weight tool counting basic-block using an IA32 Linux
platform running the SPECint benchmark.

Multiple factors can affect the overhead of DBI frameworks
such as the complexity of the analysis tool, the application’s com-



plexity, and the length of the application’s execution time. For ex-
ample, Intel internally uses a heavy-weight Pin analysis tool that
performs sophisticated memory analysis on Intel’s production ap-
plications to analyze memory reference behavior. As stated by the
authors in [34], this tool incurs average slow down of 38 and max-
imum slow down of approximately 110 for SPECint. Also, Val-
grind’s memcheck tool introduces average overhead of 22.2 and
maximum overhead of 57.9 for SPEC2000 benchmark [29]. Mem-
check is a complicated analysis tool that detects uses of undefined
values.

We implement DIME extensions for supporting time-aware in-
strumentation in Pin. As mentioned before, Pin is easily extensible
for the creation of program analysis tool. Moreover, Pin has lower
overhead compared to other similar tools which is an essential fea-
ture to achieve time-aware instrumentation.

2.4 Time-aware Instrumentation

Time-aware instrumentation [11, 15, 16] is a mechanism for instru-
menting programs while preserving functional correctness and tim-
ing constraints. The main idea is instrumenting a program at code
locations that do not modify the program’s WCET (or some other
timing constraint) and at the same time preserves the program’s
original behavior. Instrumentation of a program using time-aware
instrumentation techniques shifts the program’s execution time pro-
file towards its deadline. The authors in [16] applied code transfor-
mation techniques to the program under analysis to increase in-
strumentation coverage. The idea involves creating and duplicating
basic blocks in a program to increase the locations at which in-
strumentation code can be inserted while preserving timing con-
straints. The authors in [15] develop an instrumentation frame-
work, INSTEDP, for preserving multiple competing extra-functional
properties. INSTEP uses cost models and constraints of the extra-
functional properties together with the user’s instrumentation in-
tent to transform the input program into an instrumented program
that honors the specified constraints. All previous work on time-
aware instrumentation is based on static source-code instrumenta-
tion techniques. In this work, we also focus on time-aware instru-
mentation but using dynamic binary instrumentation methods.

2.5 Rate-based Resource Allocation

A rate-based system allows a specific task to run according to
a previously defined rate, for example, “x milliseconds per sec-
ond” [14]. The system has a capacity (i.e., a budget) for the task to
execute in each time period (7"). Once the budget is consumed, the
task is suspended until the next time period (1) starts.

Rate-based resource allocation models are flexible in managing
tasks that have unknown execution times, varying execution times,
or varying executing rates. These models guarantee full resource
utilization and overload-avoidance in a resource-constrained sys-
tem. They also enable direct mapping of timing and importance
constraints into priority values.

3. Overview of DIME

DIME is a dynamic time-aware binary instrumentation tool. It en-
sures that the instrumentation process respects, as much as possi-
ble, the timing properties of the program. DIME achieves this using
rate-based resource allocation by limiting the instrumentation time
to a predefined budget B per time period 7'. The instrumentation
budget B is specified during the system design process. Instrumen-
tation code executes for a total of ¢;, s time units in every time pe-
riod 7T'. Optimally, the total instrumentation time ¢;, per period T'
should not exceed the instrumentation budget B. If the instrumen-
tation consumes the given budget before the end of the time period
T, the framework will disable instrumentation. At the beginning
of the next period 7, the budget resets to B time units and the in-

strumentation is re-enabled. This process repeats until the program
terminates.
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Figure 1: State-machine for DIME’s operation.
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Figure 1 describes the operation of DIME. There are two states
of operation: DBI-enabled and DBI-disabled. In the first state,
DIME can insert instrumentation code and extract information
from the program during its execution. Furthermore, DIME has to
measure the time consumed by the executed instrumentation code
tins. In the second state, the framework prohibits code insertion
and, thus, program instrumentation. DIME switches between the
two states: DBI-enabled and DBI-disabled according to the con-
sumption of the instrumentation budget. Let ¢,.4 be the running
time of the program since the start of execution. DIME will switch
from DBI-enabled to DBI-disabled when the instrumentation con-
sumes all its budget (¢i;s > B) and a new period 7" has not yet
started (tprog mod T # 0). At the beginning of every time period
T, ie., (tprog mod T = 0), DIME will reset the instrumentation
time, tins = 0. It would also switch states from DBI-disabled to
DBI-enabled if the instrumentation was disabled.

DBI Budget Reset,
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DBI Re-enabled

@

o
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Figure 2: Rate-based DBI.

Figure 2 further illustrates the rate-based DBI approach. The
X-axis represents the program’s execution time ¢,,,4 and the Y-
axis shows the remaining instrumentation budget (B — t;ns). The
program launches in the DBI-enabled state where the framework
has full instrumentation budget. In the first time period [0, T") of the
program’s execution, instrumentation code executes and reduces
the available budget. Once the instrumentation has fully consumed
the budget, the framework will switch to the DBI-disabled state
and will prohibit instrumentation. At time 7', the budget is reset
and the framework returns back to the DBI-enabled state. The
negative value in the second time period [T, 2T") is an overshoot.
An overshoot will occur, if, for instance, the remaining budget
equals two time units, but the last instrumentation (before switching
to DBI-disabled state) takes three time units. In the third time
period [27,3T), the total budget consumption is less than the
budget B, so the framework remains in the DBI-enabled state.



4. Implementation Using Pin

This section describes the implementation of DIME. We men-
tioned, in Section 2.3, that instrumentation routines and dynamic
compilation have a small overhead compared to the execution of the
instrumentation code in the analysis routines [21]. This means that
the main source of DBI overhead using Pin is the analysis routines.
Hence, our objective is bounding the overhead of the analysis-
routine execution to the pre-specified budget. The total instrumen-
tation time t;5, in this case, is approximately the total execution
time of the instrumentation code inside the analysis routine. The
time-aware extensions can be applied to any pintool, i.e., a pin-
tool created by a developer for any instrumentation objective can
be modified to support time-aware DBI.

void analysis(...){
2 time_start = get_time();
// Execute instrumentation code

time_end = get_time();

6 budget_var —= time_end — time_start;

}
8 ...

void instrumentation(...){
10 //Do budget checking
12 // Switch state accordingly
14 //Insert analysis calls based on state
16}

18 void sig_handler(...){
budget_var = B;
0 }

Listing 1: Handling of instrumentation budget in DIME.

Listing 1 shows a pseudocode that abstractly describes the han-
dling of the instrumentation budget in DIME. A variable budget_var
initially holds the maximum allowable instrumentation budget (per
period T'), B. A signal sig is scheduled to fire every 7" time units.
In the sig signal-handler routine, the instrumentation budget is re-
set i.e., budget_var is reset to B. The function get_time() is re-
sponsible for reading the current timestamp using precise timers
such as the time stamp counter (TSC) or the high precision event
timer (HPET). Section 5 discusses the exact implementation of
get_time(). DIME measures the instrumentation time by subtracting
the timestamps at the beginning and end of the analysis routine. It
then subtracts the instrumentation time from budget_var. The instru-
mentation routine performs a budget check to determine the state
(DBI-enabled or DBI-disabled). If instrumentation budget is avail-
able, then the instrumentation routine will insert a call to the analy-
sis routine, otherwise it does not. The instrumentation routine usu-
ally inserts calls to the analysis routine(s) based on the instrumenta-
tion objective. Consider, for instance, a pintool that prints memory
addresses of data a program reads or writes. The instrumentation
routine then checks for the type of instructions. If the instruction
reads or writes to memory, then the instrumentation routine will in-
sert a call to the analysis routine and will instruct Pin to pass the
memory reference’s effective address to the analysis-routine call.

The instrumentation routine in DIME performs the following
operations:

1. Checking for instrumentation budget
2. Inserting calls to the analysis routine

3. Processing before and/or after inserting analysis routine calls

Note that budget checking is the only difference between the in-
strumentation routine in DIME and that in the original DBI (un-
modified pintools). Optimally, the instrumentation routine should
be able to:

1. Incur minimal overhead in the DBI-disabled state

2. Honor the instrumentation budget, i.e., disable instrumentation
once budget_var reaches zero

3. Guarantee full utilization of the budget, i.e., re-enable instru-
mentation once the signal fires

Checking for budget at each instrumentation point in the DBI-
enabled state enables strictly honoring the instrumentation budget.
Budget checking at each instrumentation point in the DBI-disabled
state allows a quick transition to the DBI-enabled state, i.e., allows
instrumentation to start from the beginning of period 7" and, hence,
full utilization of the budget. Continuous budget checking on the
other hand adds runtime overhead. Reducing the frequency of bud-
get Checking by performing it at a higher granularity (not at each
instrumentation point) in the DBI-disabled state, will reduce the
budget checking overhead in that state at the expense of budget uti-
lization. Checking for budget at a higher level in both states, will
reduce the overall budget checking overhead, but will cause over-
shoots beyond the instrumentation budget to often occur as a result
of loosely honoring the budget. These tradeoffs will be highlighted
in the discussion of the different implementation alternatives.

There are three different implementations for the instrumenta-
tion routine in DIME: Trace Version, Trace Version Conditional,
and Trace Conditional. From an implementation point of view,
the way DIME performs budget checking is the main difference
amongst the three implementations.

4.1 Trace Version

Trace Version checks for budget at each instrumentation points and
makes use of Pin’s trace versioning APIs to enable and disable in-
strumentation. Pin’s trace versioning APIs allow dynamic switch-
ing between multiple types (versions) of instrumentation at run-
time. We mentioned earlier that a trace in Pin is defined as a se-
quence of program instructions that has a single entry point and
may have multiple exit points. If Pin detects a jump to an instruc-
tion in the middle of a trace, it will create a new trace beginning at
the target instruction. When Pin switches versions, it creates a new
trace starting from the next instruction to be executed.

Trace Version inserts analysis calls to check for budget and
switch instrumentation versions (if necessary) at each instrumenta-
tion point. In Trace Version, every trace is assigned a version ID, ei-
ther V_INSTRUMENT, which represents the DBI-enabled state, or
V_BASE for the DBI-disabled state. Listing 2 shows a pseudocode
outline of the Trace Version implementation that favors readability
over optimality. Pin calls the instrumentation routine at every new
trace. First, budget checking is performed by inlining an extra anal-
ysis routine (budget_check() routine). The budget_check() routine
consists of one code statement: return (budget_var > 0). Note that
Pin is capable of inlining short routines that have no control flow.
If the current trace version is V_.BASE, the instrumentation routine
will check if it needs to switch the version to V_INSTRUMENT
and vice versa. The instrumentation routine performs this check
by inserting a dynamic check using Pin’s API InsertVersionCase().
This API will set the trace version to V_ INSTRUMENT if the in-
serted call to budget_check() returns true, and will set it to V_.BASE
otherwise. Finally, the switch case will insert a call to the analysis
routine only if the current version is V.INSTRUMENT.

DIME achieves low overhead by using Pin’s InsertVersionCase()
API. When the instrumentation routine calls the API InsertVersion-
Case() and switches versions, Pin creates a new trace starting from
the currently-executing instruction. In the Trace Version implemen-



tation, DIME continuously calls InsertVersionCase(), forcing Pin to
continuously check for the trace version. These checks can be in-
serted at every instruction, at the start of every basic block, etc.
according to the instrumentation objective. Thus, the low over-
head trace version API enables DIME to always check for avail-
able budget at each instrumentation point. This enables immedi-
ate transitions to both DBI-enabled and DBI-disabled states. This
way it guarantees full utilization of the budget by switching to
V_INSTRUMENT from V_BASE once budget is available for in-
strumentation. This also causes a high budget checking frequency.

void instrumentation(...){
InsertCall(budget_check);

S

if (version == V_BASE) {
4 //check switching to V_INSTRUMENT
InsertVersionCase(1,V_INSTRUMENT);
6
else if(version == V_INSTRUMENT){
8 //check switching to V_BASE

InsertVersionCase (0,V_BASE);

switch (version) {

12 case V_BASE:
break; //Do Nothing
14 case V_INSTRUMENT:
16 InsertCall(analysis);
18 break ;
}
20 }

Listing 2: Instrumentation routine of Trace Version.

4.2 Trace Version Conditional

Trace Version Conditional has a similar implementation to Trace
Version but with a reduced frequency of budget checking in the
DBI-disabled state. This means a lower budget checking overhead
and at the same time a delayed transition to the DBI-enabled state.
A delayed transition to the DBI-enabled state means a delay in
enabling instrumentation which reduces the budget utilization. The
Trace Version Conditional implementation of DIME also makes
use of Pin’s trace versioning APIs.

Trace Version Conditional checks for a budget reset in the in-
strumentation routine to switch to the DBI-enabled state instead
of performing analysis-routine calls to check for budget at each
instrumentation point. Listing 3 outlines the implementation of
Trace Version Conditional. A boolean variable budget_reset is in-
troduced that is initially set to false. This variable will be set to
true when the signal sig fires every period 7'. The instrumentation
version is initially V.IINSTRUMENT and will switch to V_.BASE
when the instrumentation budget runs out during the period 7'. In
V_INSTRUMENT, budget checking happens at each instrumenta-
tion point as in Trace Version. In the version V_BASE, the instru-
mentation routine does not insert a check for switching versions
until the budget is reset and variable budget_reset is set to true.
This modified condition prevents the instrumentation routine from
calling InsertVersionCase() in the DBI-disabled state. To illustrate,
DIME checks the budget in the DBI-enabled state at the instruction
level. However, when the state changes to DBI-disabled, the bud-
get checking will only happen when the instrumentation routine
gets called, i.e., at the trace level. This reduces the budget checking
overhead compared to Trace Version which performs budget checks
more often.

Trace Version Conditional reduces the budget checking over-
head at the expense of budget utilization. Remember that inserting

calls to InsertVersionCase() makes Pin check for the trace version
and create a new trace. Consider the scenario when one call to In-
sertVersionCase() switches the version from V_INSTRUMENT to
V_BASE. This causes the creation of a new trace. When DIME
calls the instrumentation routine for the new trace and budget_reset
is false, DIME will not insert version checks or analysis-routine
calls. Hence, the trace will run to completion without any ver-
sion switches even if the budget gets reset. When Pin creates
a new trace and budget_reset is true, the instrumentation routine
will insert a version check that will trigger switching versions to
V_INSTRUMENT. In other words, Trace Version Conditional has
lower budget utilization compared to Trace Version because it post-
pones using the instrumentation budget till the start of a new trace.

void instrumentation(...){

2 if (version == V_BASE &&
budget_reset == true) {
4 budget_reset = false;
//check switching to V_INSTRUMENT
6 InsertVersionCase (1l ,V_INSTRUMENT);
8 else if(version == V_INSTRUMENT){
InsertCall(budget_check);
10 //check switching to V_BASE
InsertVersionCase(0,V_BASE);
12 }
4}

16 void sig_handler(...){
budget_var = B;
18 budget_reset = true;

}

Listing 3: Implementation of Trace Version Conditional.

4.3 Trace Conditional

The Trace Conditional implementation aims to reduce the budget
checking overhead associated with trace versioning. It avoids call-
ing analysis routines for either budget checking or version switch-
ing. It, however, suffers from a delayed switching between the DBI-
enabled and DBI-disabled states. This causes DIME to overshoot
frequently beyond the instrumentation budget.

void instrumentation(...){

2 if (budget_var > 0){
4 InsertCall(analysis);
6 }

}

Listing 4: Instrumentation routine of Trace Conditional.

Trace Conditional performs all its budget checking in the in-
strumentation routine without any analysis-routine calls. Listing 4
presents the implementation for Trace Conditional. The instrumen-
tation routine checks the available budget using a simple if state-
ment at the beginning of every trace. So, in both states, DBI-
enabled and DBI-disabled, budget checking occurs at the trace
level. This decreases the overhead of the instrumentation routine
of Trace Version Conditional. It also reduces the overhead of anal-
ysis calls for the purposes of checking budget and switching in-
strumentation versions. Trace Conditional achieves this, however,
at the expense of budget utilization because switching to the DBI-
enabled state only occurs at the beginning of a new trace (similar to



Trace Version Conditional). Trace Conditional also loosely honors
the instrumentation budget compared to Trace Version and Trace
Version Conditional. The is because switching to the DBI-disabled
state only occurs at the beginning of a new trace.

4.4 Qualitative Comparison

Table 1 provides a qualitative comparison of the different imple-
mentations of DIME. The Trace Version and Trace Version Condi-
tional implementations are based on Pin’s trace versioning APIs.
This enables them to switch between versions based on analysis-
routine calls for budget checking. Trace Conditional works differ-
ently as it performs budget checks in the instrumentation routine.
Trace Version checks for budget before each analysis-routine call.
Hence, it immediately switches to the DBI-disabled state after a
budget check returns false (no budget available) before an instru-
mentation point. It also immediately switches to the DBI-enabled
state and executes an instrumentation point when a budget check
returns true. This enables Trace Version to fully utilize the budget
and strictly honor the instrumentation budget but with a high budget
checking overhead (relative to Trace Version Conditional and Trace
Conditional). Trace Version Conditional delays the switching to the
DBI-enabled state until the beginning of a new trace. This results in
a lower utilization of the budget, strictly honoring the budget, and
less budget checking overhead. Trace Conditional delays switch-
ing to both states but does not perform any analysis calls for budget
checking. Hence, it has a low budget utilization, does not strictly
respect the budget, and has the least budget checking overhead.

5. Performance Evaluation

The qualitative evaluation of Section 4.4 is insufficient to decide
when to use each of the three implementations. For example, a de-
layed switch to the DBI-disabled state can cause overshoots beyond
the instrumentation budget until a new trace starts. The severity of
the overshoots compared to the budget checking overhead depends
on factors like the complexity of the analysis routine. Therefore,
it is important to consider these factors to be able to decide on a
suitable implementation of DIME to use for a specific instrumenta-
tion objective. We now empirically investigate the different imple-
mentations in terms of execution overhead, and later in Section 6
discuss the instrumentation coverage and applicability domains.

5.1 Experimental Setup

We experiment with the SPEC2006 C benchmark suite [13] which
consists of integer and floating point benchmarks. SPEC2006 is a
common benchmark for evaluating performance of dynamic instru-
mentation tools [6, 21, 29]. We run the benchmarks on an Ubuntu
12.04 operating system patched with a real-time kernel v3.2.0-23
which converts Linux into a fully preemptible kernel. We compile
the benchmarks using gcc v4.6.3 and use pintools from the Pin kit
v2.12-56759. The experimentation includes four platforms:

e An embedded target hosting a dual-Core Intel 1.66 GHz pro-
cessors with 2 MB of cache, 2 GB of RAM, and digital 1Os.

e An embedded target hosting a single-core VIA NAS7040 board
with a C7-D 1.8 GHz processor and 128 KB of cache, 2 GB of
RAM, and digital IOs .

e Two standard workstation hosting a quad-core i7-2600 3.4 GHz
Intel processors with 8 MB of cache, and 16 GB of RAM.

We implement the function get_time() as an inlined assembly in-
struction that queries the processor cycles from the Intel proces-
sor’s Time Stamp Counter (TSC). We inhibit task migration be-
tween cores and lock core speed’s to operate at their maximum fre-
quency to obtain accurate results from the TSC. The experiments
run with a real-time scheduling policy and priority. Memory lock-
ing and stack-prefaulting prevent page faults and stack faults from

introducing non-deterministic behavior. Note that these modifica-
tions are for the purpose of obtaining accurate results for perfor-
mance evaluation and are not required for the correct operation of
DIME as Section 6 demonstrates.

To evaluate the performance of DIME, we use four pintools
from the Pin 2.12 Kkit; dcache, inscount, regmix, and topopcode.
dcache is a data-cache simulator that outputs the number of data-
cache load hits and misses, and store hits and misses. We consider
the instrumentation routine a light-weight one, since it just checks
for the instruction type and accordingly inserts a call to one of the
analysis routines. The tool contains seven analysis routines which
are heavy-weight, since the routines contain nested function calls
and may also contain a loop to retrieve data-cache information. At
the end of the program execution, the tool writes the output to a
file. inscount is a simple instruction counting tool that has a light-
weight instrumentation routine and a light-weight analysis routine.
The instrumentation routine only inserts a call to the analysis rou-
tine which increments an instruction counter. regmix is a register
profiler that prints the used registers along with the number of read-
accesses and write-accesses of each. regmix has a light-weight anal-
ysis routine that only increments a counter, whereas, its instrumen-
tation routine is heavy weight. The instrumentation routine extracts
register information, at instrumentation time, through two calls to
a function containing nested loops. The tool writes the output to a
file at the end of the program’s execution. topopcode is a profiler
that prints the opcode of the executing instructions at runtime. The
instrumentation routine is a heavy-weight one that calls two func-
tions before analysis-routine insertion. Also, the analysis routine
is heavy-weight since it is responsible for extracting information
and printing the output at runtime. Originally, the instrumentation-
routine granularity of all these tools is at the trace level, except for
dcache which operates at the level of instructions. To implement a
DIME version of dcache, we changed the granularity of dcache to
operate on traces by looping over the instructions of the trace basic
blocks. For the four tools, we used a budget B of 0.1 seconds per
time period 7" of one second.

We empirically evaluate the performance of DIME using the
following metrics:

e Slow down factor of the dynamically instrumented pro-
gram: The slow down factor is the ratio of the execution time
of the instrumented benchmark running on top of Pin to the
execution time of the natively running benchmark. This metric
highlights the overhead reduction of DIME compared to native
Pin execution. It also compares the overhead of the three DIME
implementations according to the nature of the instrumentation
objective. Moreover, it guides the choice of which DIME im-
plementation to use for a specific instrumentation objective.

Overshoots: Recall that an overshoot will occur when instru-
mentation time exceeds the budget; i.e., (B — tins < 0). The
frequency of the overshoots as well as their severity measure
how strictly each of the DIME implementations honors the bud-
get. This metric varies according to the instrumentation objec-
tive and affects the overhead. It again helps in making an in-
formed decision of the DIME implementation to use for a cer-
tain instrumentation objective.

5.2 Experimental Results

DIME, on average, outperforms native Pin in terms of overhead
in the heavy-weight analysis-routine tools: dcache and topopcode.
Figures 3a and 3d show the slow-down factors of Pin and DIME im-
plementations with dcache and topopcode tools, respectively. The
average slow down of native Pin with dcache is 24.3x, and with
topopcode is 29.6x. Trace Version and Trace Version Conditional
achieve an overage slow down of 2.8x and 1.5x, respectively, with
dcache. They also have an average slow down of 2.3x and 1.3x with



Table 1: Qualitative comparison of the different DIME implementations.

Trace Version

Trace Version Conditional

Trace Conditional

Analysis-routine call for budget checking Yes in both states Only in DBI-enabled state No
Switch to DBI-disabled state Immediate Immediate Delayed till start of new trace
Switch to DBI-enabled state Immediate Delayed till start of new trace Delayed till start of new trace
Budget utilization Full Waits till start of new trace Waits till start of new trace
Honoring the budget Strict Strict Loose
Budget checking frequency High Medium Low
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Figure 3: Slow-down factors of native Pin and the three implementations of DIME.

topopcode, respectively. This reflects the higher budget checking
overhead of Trace Version over Trace Version Conditional. Trace
Conditional has a slow down of 9.2x with dcache and 5x with
topopcode. This is due to the frequent overshoots of Trace Con-
ditional beyond the instrumentation budget.

Trace Version Conditional has a low average slowdown of 1.1x
for light-weight analysis-routine tools, while Trace Conditional is
unsuitable for usage with such tools. With inscount, native Pin in-
curs a slow down of 2.3x, while Trace Version and Trace Version
Conditional maintain an average slow down of 1.9x and 1.1x, re-
spectively, as shown in Figure 3b. Figure 3c presents the slow
down with regmix, which are 2.2x, 2.2x, and 1.1x for native Pin,
Trace Version, and Trace Version Conditional, respectively. A light-
weight analysis routine implies that the tool incurs minimal over-
head with native Pin because analysis routines are the main source
of overhead [21]. In such case, the overhead of DIME for checking
budget and switching states is noticeable even if the instrumenta-
tion routine is heavy-weight (e.g. regmix). The reason is that DIME
only bounds the execution time of the instrumentation code in the
analysis routines. Also, frequent execution of a light-weight anal-
ysis routine, which might not consume the instrumentation bud-
get, increases the budget checking overhead. The results for Trace

Conditional, in Figures 3b and 3c, reveal the performance degra-
dation caused by the overhead of the overshoots in the light-weight
analysis-routine tools. Trace Conditional has an average slow down
of 4.2x with inscount and 3.8x with regmix. On average, the slow
down of Trace Version Conditional is lower than that of Trace Ver-
sion, since Trace Version Conditional has a lower budget-checking
overhead (as discussed in Section 4.4). Additionally, both Trace
Version and Trace Version Conditional incur lower slow down in
average compared to Trace Conditional.

Trace Version and Trace Version Conditional have a very low
overshoot value (order of microseconds) compared to Trace Condi-
tional. Figure 4 shows the overshoot magnitude for the three imple-
mentations of DIME over the execution time of the mcf benchmark
while instrumenting it using the DIME version of the dcache pin-
tool. Although Trace Conditional has the lowest budget-checking
overhead, its loose budget-respect results in high values of over-
shoots as shown in Figure 4c. Occurrence of high-valued over-
shoots depends on the structure of the program since Trace Condi-
tional will not switch to DBI-disabled till the start of the next pro-
gram trace. Figures 4a and 4b present the values of overshoots for
Trace Version and Trace Version Conditional, respectively. The val-
ues for the most frequent overshoots lie below 2 usec for both Trace
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Figure 4: Overshoots of the three implementations of DIME with the mcf benchmark and dcache tool.

Version and Trace Version Conditional. This confirms that the two
implementations strictly respect the budget since both switch to the
DBI-disabled state once the budget is fully consumed.

Summary: DIME can achieve an average slow down as low as
1.25x using Trace Version Conditional which always maintains a
lower slow down compared to Pin. Both Trace Version and Trace
Version Conditional maintain low magnitude overshoots but with
a higher budget checking overhead for Trace Version. Trace Con-
ditional has a high average slow down compared to the other im-
plementations due to high magnitude overshoots. This makes Trace
Conditional suitable for instrumentations with heavy-weight anal-
ysis routine that require achieving a high raw instrumentation cov-
erage. Raw instrumentation coverage is the amount of information
that DIME extracts as a ratio of the coverage of native Pin. Both
Trace Version and Trace Version Conditional strictly respect the in-
strumentation budget. Trace Version Conditional is well-suited for
applications that require very low instrumentation overhead. Trace
Version has a higher raw instrumentation coverage compared to
Trace Version Conditional but with a relatively higher overhead.

6. Case Studies

This section presents two case studies that demonstrate the applica-
bility and scalability of DIME. The underlying idea relies on obser-
vations made in other work, that partial traces are useful in many
applications as full traces contain many redundancies [28].

6.1 VLC Media Player

This case study demonstrates that instrumenting a soft real-time ap-
plication such as a media player while playing a video requires a
time-aware instrumentation approach. VLC is a free portable open-
source media player developed by the VideoLan organization [3].
For this case study, we use the latest version of the VLC media
player, v2.0.5. As mentioned in Section 1, VLC v2.0.5 has approx-
imately 600000 lines of code and uses libraries with more than
three million lines of code. Our goal is extracting VLC’s call con-
text tree while VLC plays a high definition, 29.97 fps, 720x480,
1 Mbps bitrate video. The calling context helps in understanding
programs, analyzing performance, and applying runtime optimiza-
tions [32]. We use the DebugTrace pintool, that is available as part
of Pin’s v2.12 kit, to extract VLC’s call trace. We build a tool
that extracts the call context trees from the call trace generated
by the unmodified pintool and from the partial traces generated by
DIME [32]. The time period 7' is set to one second throughout this
case study. Table 2 shows the results of the case study.

Only DIME implementations permit extracting the call context
tree while maintaining a continuous video playback. The video
playback while instrumenting VLC using Pin and DIME were

Table 2: Results for the VLC case study.

TV. TV-Cond. Tr.-Cond.

1 Max budget w.o. pauses 14% 38% 22%
2 CC coverage in one run 93.2% 92.8% 83.4%
90.2% 90.9% 75.0%

3 Runs for 98% of CC tree 4 4 5
4 Runs for 99% of CC tree 5 5 6
5 Raw coverage at min. budget 23.6% 17.6% 62.8%

recorded and are available for viewing'. The original video has
599 blocks that VLC decodes for viewing frames. VLC, using the
unmodified pintool, decodes only 75 blocks which translates into
an unwatchable video and errors messages for dropping frames.

All DIME implementations can recover 99% of the full call con-
text tree with only few re-runs. Trace Version and Trace Version
Conditional extract 90% of the call context tree in one run. Ta-
ble 2 at row 1 shows the maximum instrumentation budget for each
implementation that allows a continuous video playback without
dropping frames. It also shows the coverage obtained by each im-
plementation as a percentage of the nodes and edges of the full call
context tree. Although Trace Version runs with the least budget, it
obtains the highest coverage compared to the other implementa-
tions. Fully utilizing the budget, in this case, translates into more
coverage of the call context tree. In general, DIME achieves a very
good coverage while maintaining a continuous video playback.

When comparing the DIME implementations against each other
with the minimal necessary budget, Trace Conditional extracts the
most information. After getting the maximum instrumentation bud-
get for each implementation that allows continuous video playback.
The minimal necessary budget is the minimum of all these maxima.
Table 2 at row 5 shows the raw instrumentation coverage of each
implementation at the minimal budget (14%). At the minimal bud-
get, Trace Conditional extracts the most raw information, followed
by Trace Version, then Trace Version Conditional. This is because
Trace Conditional loosely obeys the budget and Trace Version Con-
ditional has a delayed switch to the DBI-enabled state.

6.2 Laser Beam Stabilization

DIME is also useful for instrumenting control applications. The
second case study is a laser beam stabilization (LBS) experiment
developed by Quanser [2]. Laser beam stabilization is an important
technology currently used in manufacturing equipment, surveil-
lance, aircraft targeting, etc. The experiment consists of a stationary

! “https://uwaterloo.ca/embedded-software-group/projects/time-aware-
instrumentation”



Table 3: Results for the LBS case study.

Average Displac. Stability Memory

Displac.  Variance Budget Pattern

(mm) (mm) (%) (%)

Orig. LBS 0.022 0.0002 N/A N/A
Native Pin 2.988 0.487 N/A 100
TV. 0.509 0.881 0.3% <1%
TV-Cond. 0.588 0.531 0.6% <1%
Trace-Cond. 0.129 0.183 9.0% 78.1%

laser beam source pointing at a moving mirror. The reflected beam
is detected by a high-resolution position sensing detector which
measures the relative displacement of the beam from the nominal
position. The mirror is free to oscillate along one axis. These oscil-
lations power a motor driving an eccentric load. The turning of the
motor plus an introduced disturbance voltage induce the undesired
vibrations in the laser beam position. A feedback control system
with a 1 KHz sampling rate stabilizes the laser beam position. In-
strumenting such a time-sensitive application requires a time-aware
instrumentation technique.

In this case study, we attempt to extract a memory access pat-
tern from the LBS experiment. A memory access pattern contains
the following for each accessed memory location: the effective ad-
dress of the memory location, address of the instruction accessing
memory, whether the memory access is a read or write, the data
read/written, and the thread id. This information is useful in de-
tecting memory-management problems and is used by numerous
memory analysis tools such as QNX memory analyzer [1] and Val-
grind [29]. We use the DebugTrace pintool, that is available as part
of Pin’s v2.12 kit, to extract the memory trace.

Only our DIME implementations can stabilize the laser beam
while instrumenting. We repeated the LBS experiment 10 times for
each instrumentation type. Each experiment runs for approximately
10 seconds. We collect the displacement (of the beam from the
nominal position) data as measured by the position sensing detec-
tor. The unmodified pintool fails to stabilize the laser beam which
has a jittery response all over the detector. The instability of the
unmodified version of the pintool is visible from the average dis-
placement shown in Table 3 in the first column. The average dis-
placement from the actual target is about 3mm, while the original
unmodified software is about 0.02mm.

Trace Conditional is the only implementation of DIME that
extracts most of the memory access pattern while allowing sta-
bilization of the laser beam. Table 3 shows the maximum budget
for each implementation of DIME that allowed stabilization of the
laser beam. Trace Conditional extracts information with the high-
est budget compared to the other implementations while maintain-
ing the lowest displacement. This demonstrates that for this type of
application, the overhead of budget checking causes more perfor-
mance degradation compared to the overhead of overshoots. Trace
Conditional achieves the best coverage for the memory access pat-
tern while the other implementations are unsuited for instrumenting
the LBS experiment. We think that the reason is the LBS program
structure which has a very low number of branches and has succes-
sive bursts of memory accesses. This creates long instruction traces
in Pin. This allows Trace Conditional to instrument all memory ac-
cess instructions in a long trace in one call of the instrumentation
routine (if enough budget is available) without checking for budget
between memory accesses. The analysis routine calls for budget
checking and version switching between memory accesses in Trace
Version and Trace Version Conditional causes a degradation in the
response time of the controller. This shows that program structure
can be a factor in choosing a suitable implementation of DIME for
instrumentation. Assessing the effect of the program structure on
the different implementations of DIME is part of our future work.

7. Discussion

This section discusses some current limitations of DIME.

Instrumentation Parameters and Program Structure: In this
work, we assessed the effect of the instrumentation and analysis-
routine complexity on DIME. The results show that program struc-
ture as well affects the performance of DIME and consequently
affects the choice of DIME’s implementation to use. Varying the in-
strumentation period 7" can also have an effect on the performance
of DIME and choice of implementation. Assessing the effect of
changing these factors is part of our future work. The results, how-
ever, demonstrate the applicability of DIME for different programs
at the default instrumentation period of one second.

Pin Specific: DIME is based on Pin which mainly targets IA-32
and Intel64 architectures. Pin supports multiple operations systems
such as Windows, Linux, OSX, and Android. Intel architectures
running any of these operations systems is a common platform for
soft real-time applications such as the case studies presented in this
work. Note also that Pin is a popular and well-supported instru-
mentation tool with over 300 000 downloads and 700 citations [9].
Otherwise, time-aware DBI using rate-based resource allocation is
a concept that can be integrated into other DBI frameworks.

8. Related Work

Naik and Palsberg [27] present a framework for code-size-aware
compilation. They formulate register allocation as an Integer Linear
Programming (ILP) problem. Lee et al. [20] introduce a framework
to balance the tradeoffs between code size, execution time, and
energy consumption when developing an embedded system. These
frameworks are compile-time techniques for balancing tradeoffs
and optimizing certain code properties.

Wallace and Hazelwood [36] introduce SuperPin; a parallelized
version of Pin to reduce the overhead of DBI. SuperPin executes
an uninstrumented version of the application, and then forks off
multiple instrumented slices of code regions. Each slice runs in
parallel to the application in a separate processor core. Moseley
et al [25] use a probe-based application monitor to fork a shadow
process that is to be instrumented and profiled. The forked process
runs in parallel to the original with certain restrictions to prevent
interference with the execution of the original process. Other works
as well parallelize the program profiling and analysis process by
utilizing multicore systems [37, 39]. DIME can be extended to
utilize these parallelization techniques.

Upton et al. [35] reduce the data-collection overhead of system
profiling. They implement a buffering system for Pin to efficiently
collect chunks of data and process the full chunk at once. The
buffering system optimizes the generated code for buffer writing,
and reduces the cost of full-buffer detection. Kumar et al. [18] opti-
mize the instrumentation code to decrease the DBI overhead. They
reduce the cost of instrumentation probes that intercept program
execution, in addition to the number of instrumentation points, and
the cost of each point. These instrumentation approaches ignore the
program’s temporal constraints. They, however, can complement
DIME to achieve better performance and instrumentation coverage.

Arnold and Ryder [4] introduced a framework for reducing the
cost of instrumented code. They use code-duplications combined
with counter-based sampling to switch between instrumented and
non-instrumented code. Checking code is inserted at method entries
and backedges. This approach does not take into account the execu-
tion time of the instrumentation code. Although event-based sam-
pling is an effective way of instrumenting events according to their
frequency of occurrence, overhead bursts can have a negative effect
the performance of time-sensitive applications [5]. Other sampling-
based techniques have been proposed for performance optimiza-
tions [12]. These techniques either apply optimizations specific to



the instrumentation objective or use compiler-specific information
to perform optimizations. Again, these can be used to complement
DIME which is a generic approach to time-aware instrumentation.

9. Conclusion

Most of the existing instrumentation tools do not consider tim-
ing properties of applications. Current time-aware instrumentation
tools are both static and source-code tools that require WCET anal-
ysis before and after instrumentation. This makes them impracti-
cal for instrumenting library dependencies and makes them more
suited for hard real-time applications where WCET analysis is
commonly employed. In this work, we introduce DIME; a time-
aware dynamic binary instrumentation tool. DIME has three im-
plementations as extensions to Pin. These implementations differ
in their budget checking overhead, strictness of respecting budget,
overshoots beyond the budget, and instrumentation coverage. The
performance evaluation of DIME shows an average reduction in
overhead by 12, 7, and 3 folds compared to native Pin. Two case
studies demonstrate the applicability and scalability of DIME to
media-playing software and control applications. They also show
that the coverage obtained by the different implementations vary
according to the instrumentation objective and program structure.
Our future work includes assessing the effect of the program struc-
ture on the performance of DIME as well as investigating the effect
of varying the instrumentation budget and period.
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