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Abstract. Anomaly detection algorithms that operate without human
intervention are needed when dealing with large time series data coming
from poorly understood processes. At the same time, common techniques
expect the user to provide precise information about the data generating
process or to manually tune various parameters.

We present SIM-AD: a semi-supervised approach to detecting anoma-
lies in univariate time series data that operates without any user-defined
parameters. The approach involves converting time series using our pro-
posed Sojourn Time Representation and then applying modal clustering-
based anomaly detection on the converted data. We evaluate SIM-AD
on three publicly available time series datasets from different domains
and compare its accuracy to the PAV and RRA anomaly detection algo-
rithms. We conclude that SIM-AD outperforms the evaluated approaches
with respect to accuracy on trendless time series data.
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1 Introduction

Time series data arise when any data generating process is observed over time.
These data are used in diverse fields of research, such as intrusion detection
for cyber-security, medical surveillance, economic forecasting, fault detection in
safety-critical systems, and many others. One of the main tasks performed on
time series data is anomaly detection (AD). Anomalies appear when the un-
derlying process deviates from its normal behavior. For this reason, anomalies
can help analysts better understand the data generating process or safely steer
it towards nominal operation. As Aggarwal points out in [5], virtually all AD
algorithms train a model of the normal patterns in the data and then compute
anomaly scores for new observations based on the deviation from these patterns.

With the ever-growing rate of data generation, data mining (DM) and ma-
chine learning (ML) tasks need to be performed with minimal human interven-
tion, and anomaly detection is no exception [37]. This task usually requires a
combination of expertise in the target application domain as well as in ML and
DM algorithms. Experts are rare, and their work is costly. Companies thus need
AD tools that do not require manual parameter tweaking and that can work
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on raw, unprocessed data without jeopardizing accuracy of the results. Conse-
quently, the demand for parameterless solutions has recently given rise to the
field of automated ML (AutoML) [24].

There exist numerous algorithms for anomaly detection in time series data,;
for example, the surveys in [12] and [20] point to dozens of AD approaches aiming
at time series data. Indeed, different application domains typically have their
own AD problem formulations that require dedicated techniques. An anomaly
detection problem can be described with a set of largely independent facets,
some of which we list below. The underlined facets define the anomaly detection
problem that we address in this paper:

— time series: univariate/multivariate

— anomaly detection type: unsupervised /semi-supervised /supervised
— parameters: none/training/anomaly detection

— anomaly type: subsequence/whole time series

— anomaly score: binary/numeric

— anomaly detection mode: online/offline

This way, we are interested in online anomaly detection in univariate time
series data. Moreover, we expect at least one time series capturing normal (i.e.,
non-anomalous) system behavior to be available for training: this scenario is of-
ten referred to as semi-supervised anomaly detection in the literature [12,13,32].
Also, we want to detect anomalous subsequences and have binary yes/no anomaly
scores for subsequences in the target time series. Finally, we want both the train-
ing and anomaly detection stages to be completely parameterless.

One of the application domains that can benefit from our problem formula-
tion is safety-critical embedded systems used in automotive, avionics, medical
device, and other mission-critical industries. Anomaly detection in such contexts
is a crucial task since a system malfunction can cause catastrophic damages or
worse put human lives in danger. As an example, consider an embedded system
running a water treatment plant [18]. The hardware setup consists of various
sensors and actuators, each generating a stream of univariate time series data.
A malfunctioning system component can incur damage to the facility (e.g., by
causing a tank overflow) or contaminate treated water *. It is possible to collect
data during normal system operation and train a system model on these data.
However, the large amount of generated data makes any manual pre-processing
or visual analysis of the data complicated or not feasible. Therefore, a param-
eterless training on unprocessed data is much preferable. Another requirement
is to detect anomalies in an online mode allowing preventative measures to be
taken immediately. Finally, it is equally important to detect momentary and
slowly-evolving malfunctions, both of which can be captured by anomalous sub-
sequences in a time series data stream. Chapter 7 in [12] provides other examples
of application domains where our problem formulation is relevant.

In this paper, we propose a solution to the anomaly detection problem de-
fined above: the SIM-AD approach. Since our goal is to make anomaly detec-
tion parameterless, we have to assume that all the knowledge about the normal

! https://www.theregister.co.uk/2016/03/24/water_utility_hacked
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operation of the target system is captured in a single or multiple time series
available for training. In data mining, one obtains knowledge about a system
by mining data patterns [21]. Therefore, we focus on mining patterns from time
series data generated by the target system during normal operation and then
look for the mined patterns in the new data that may capture anomalous sys-
tem behavior. With SIM-AD, we represent a time series pattern as a typical
number of timesteps that the time series spends (or sojourns) in a value range.
To facilitate using SIM-AD, we have developed a web application available at
https://sim-ad.herokuapp.com/.

The rest of the paper is organized as follows. In Sections 2 and 3, we provide
an overview of SIM-AD and review the related work. In Sections 4 and 5, we
present the main components of SIM-AD, including our new time series repre-
sentation and the SIM algorithm. We then compare the accuracy of SIM-AD
with the RRA and PAV anomaly detectors in Section 6.

2 Terminology and overview

A univariate time series T of length IV is a sequence of N measurements, or
observations, of some variable collected chronologically: T' = (t1,t2,...,tn). Ob-
servations are usually made at regular time intervals. A subsequence s of a time
series T is a contiguous sampling of observations %;, ..., ;1. of length m < N,
where ¢ is an arbitrary position, such that 1 <: < N —m + 1.

With SIM-AD, we view a time series T as a sequence of temporal states. A
state can be one of two types. A motif-state is a state that the system visits
multiple times; it corresponds to a time series pattern, or a motif [31], i.e., a
subsequence of T that looks similar to one or more other subsequences of T.
A nonmotif-state, on the other hand, is visited only once; it corresponds to a
subsequence of T' that does not look similar to any other subsequence of T'. De-
tection of motif-states corresponds to the problem of motif discovery, which is an
active area of research in the data mining community [40]. Unfortunately, mining
motifs of all possible lengths in raw time series poses a scalability problem [17].
A common approach to tackle this problem involves transforming the original
time series T' into some representation that has fewer data points than T [7].
SIM-AD uses a new time series representation which we call Sojourn Time Rep-
resentation (STR). An STR of a time series T is a sequence of sojourn times.
A sojourn time (ST) represents the number of timesteps that T' sojourns in one
of two contiguous and non-overlapping value ranges called Bin 1 and Bin 2 (see
Fig. 1). With SIM-AD, we assume that the first and last observations of a motif
of a time series T correspond to consecutive intersection points between T and
the line separating Bin 1 and Bin 2. By making this assumption, we can map a
motif or a nonmotif of a time series T to an ST in the STR of T. However, the
same motif in 7' may correspond to slightly different STs in the STR of T' due
to random fluctuations in real-world time series data. Moreover, having a group
of STs corresponding to the same motif in 7" and given a new ST, we would
like to be able to decide whether the new ST belongs to that group; this way,
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Fig. 1: Overview of SIM-AD (the shown time series are excerpts from the Power
dataset introduced in Section 6.1)

we could conclude whether a subsequence of some time series T” corresponds
to one of the states of T. We propose the Sojourn Interval Miner (SIM) algo-
rithm that addresses the two problems mentioned above by clustering STs and
finding outlier limits around the clusters. SIM mines sojourn intervals from the
STR of a time series T'. A sojourn interval (SI) is a pair of integers defining the
outlier limits around a cluster of STs. Conceptually, an SI plays the role of an
STR-equivalent of a time series state. Finally, given a set of SIs and a test time
series T’, SIM-AD detects anomalies in T” by finding subsequences of T" whose
STs fall outside of SIs mined from the training time series 7.

Fig. 1 presents an overview of the training and anomaly detection stages of
SIM-AD on a pair of excerpts from the Power time series introduced in Sec-
tion 6.1. During the training stage (Fig. 1a), SIM-AD first computes the STR
of the training time series T' using Bin 1 and Bin 2. It then clusters STs from
each bin independently, obtaining three clusters: two (blue and yellow) for STs
from Bin 1 and one (orange) for the STs from Bin 2. This way, SIM-AD repre-
sents T' as a sequence of three motif-states. For example, a subsequence between
timesteps 237 and 295 belongs to one motif-state while a subsequence between
timesteps 428 and 680 belongs to another motif-state. Next, SIM-AD mines an
ST for each cluster of STs in T'. For example, SI3 = [13,59] denotes a range of
lengths of subsequences in a test time series falling into Bin 2 that will map
to the motif-state represented by the orange STs extracted from the training
time series T'. Finally, SIM-AD extracts STs from the test time series 77 and
finds a single ST whose value of 443 falls outside of SIs mined from T' (Fig. 1b).
Therefore, SIM-AD reports the corresponding subsequence of 7" (highlighted in
red) as an anomaly.
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3 Related work

Practical importance and challenging nature of anomaly detection have led to
extensive scientific research, with numerous approaches being proposed and em-
ployed in industrial settings [13,32,5]. One of the causes of the proliferation of
AD methods is the variability in data types and data sources. As we mentioned
in Section 2, SIM-AD uses discrete sojourn times to model time series data. This
way, SIM-AD converts the problem of anomaly detection in time series data into
the problem of anomaly detection in non-temporal data. Therefore, we review
the related work in anomaly detection for both types of data. Also, we only
discuss works whose problem formulation has the largest overlap with ours.

It is common to see the terms anomaly, outlier, novelty, or discord used
interchangeably in anomaly detection literature. In this work, we distinguish
anomalies from outliers as in [32]: outlier subsequences contaminate normal time
series data, and the goal is to cope with their presence during the training stage.
We abstain from using the term discord since it was introduced in the context
of unsupervised anomaly detection [26]. Finally, we do not make any distinction
between anomalies and novelties.

3.1 Anomaly detection in time series data

Regression-based anomaly detection techniques, such as Long Short-Term Mem-
ory (LSTM) networks [23,19], use a window of w consecutive observations t;,
tit1, - .- titw—1 to predict the values of the subsequent n observations t;4.,, - . .,
titwin—1. They then declare observations whose predicted value significantly
deviates from the true value as anomalies. These methods require substantial
user involvement in preprocessing raw data and tuning various parameters.

Discord mining algorithms, e.g., RRA [36], address the problem of unsuper-
vised anomaly detection in univariate time series data. The term discord denotes
the most unusual subsequence within a time series. Early discord mining algo-
rithms [26] require the user to specify the length of discords. Later works allow
for mining variable-length discords [36,41] but still require the user to choose the
time series discretization parameters. This way, discord mining algorithms have
good accuracy when the approximate length of motifs is chosen correctly [37].
Moreover, these algorithms output a ranked list of discords, and the user must
choose a threshold on the length of this list to distinguish discords from normal
subsequences.

Similarly to SIM-AD, segmentation-based anomaly detectors, e.g., PAV [14]
and Gecko [35], segment a time series and consider each segment as a state.
They then either learn a Finite State Automaton (FSA) of the mined states [35]
or simply memorize the frequency of each state [14] and then detect anomalies
as segments that do not match any state in the learned FSA or that appear
infrequently. Unlike SIM-AD, the Gecko algorithm requires a database of similar
time series for training [12] and takes the minimum length of a segment as a
parameter.
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Another relevant anomaly detection technique uses Numenta’s Hierarchical
Temporal Memory (HTM) [6]. This method addresses the problem of online and
unsupervised anomaly detection in univariate time series data streams. Based on
our understanding of the HTM theory, and confirmed by Numenta’s engineers 2,

this technique assumes that the first timestamps of motif occurrences are known.

3.2 Anomaly detection in non-temporal data

Statistical anomaly detection techniques fit a mathematical model to the given
data instances and then apply an inference test to determine whether a new
instance belongs to this model. Instances that have a low probability to be
generated from the learned model are declared as anomalies [13]. Parametric ap-
proaches assume that normal data are generated from a parametric distribution
fully defined by parameters 6 [32]. These parameters are then estimated from the
training data. Nonparametric approaches, e.g., the ones based on Kernel Den-
sity Estimation (KDE) [38] (also called parzen window estimation), do not make
assumptions about the distribution from which data are sampled. However, they
require a threshold on probability density that separates normal instances from
the anomalous ones [15].

Nearest neighbor (NN) techniques detect anomalies by considering distances
between data instances. The distances are used either directly, by assigning
anomaly scores to instances based on the distance to their kth nearest neigh-
bor [33], or indirectly, by computing local densities of data instances and then
declaring instances with smaller densities as anomalies [10]. In both cases, NN
approaches require the user to specify the size of the local neighborhood.

Semi-supervised clustering techniques group normal data instances into clus-
ters and then detect anomalies based on the distances between new data in-
stances and the clusters. Some approaches adopt distance-based clustering that
requires the number of clusters [16] or a similarity threshold [22]. Moreover,
distance-based clustering assumes that clusters have a particular shape [28]. In
contrast, density-based clustering does not require the number of clusters nor
does it make assumptions about the shape of clusters [28]. However, this type of
clustering requires the user to choose a smoothing factor. In DBSCAN-like clus-
tering [11], the smoothing factor is expressed as the minimum cluster size, while
in modal clustering [30] it is the kernel bandwidth that is used to compute the
KDE of the data. An advantage of modal clustering is that the kernel bandwidth
can be estimated automatically using, for example, the Improved Sheather-Jones
plug-in rule [8]. We look closer at modal clustering in Section 5.1. Regardless of
the underlying algorithm, clustering-based anomaly detection techniques need
an anomaly threshold to determine whether a new data instance belongs to some
cluster or constitutes an anomaly.

? https://discourse.numenta.org/t/3141
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4 Sojourn Time Representation (STR)

Transforming a time series T' into a representation having fewer data points than
T is often a prerequisite for scalable motif discovery. At the same time, we want
to reduce the size of T" without requiring any parameters. Common time series
representations, e.g., PLR [25] and SAX [29], require the user to set at least one
parameter, such as the length of a sliding window. This motivated us to propose
Sojourn Time Representation (STR): a new type of time series representation,
similar to the clipped representation [34], that we construct from a time series
in a parameterless way.

An STR of a time series T is the run-length encoding of a sequence Ty, where
T, is the result of discretization of T' into two bins, Bin 1 and Bin 2. Although
the number of bins can be considered as a hard-coded parameter, we justify
using two discretization bins in Section 6.5. We define Bin 1 and Bin 2 using
non-overlapping intervals [v1,vs) and [vg,v3] correspondingly, where vy is the
minimum value in T', v3 is the maximum value in T, and v, is the median value
among the unique values in 7. This way, Ty = (d1,da,...,dn), where d; = 1
if t; € [v1,v9) and d; = 2 if t; € [vg,v3], for Vi = 1,2,..., N. Next, we apply
run-length encoding to Ty. As a result, we obtain a sequence of tuples (r,b),
where r refers to the run length, that is, the number of consecutive elements in
T, having the same value, and b refers to the bin number. We call this run-length
encoding of Ty the Sojourn Time Representation of T, STR(T'). Also, we refer
to the run lengths in STR(T') as the sojourn times of T with respect to Bin 1
and Bin 2. As an example, the first few elements of the STR of the time series
shown in Fig. 1a are ((39,2), (56,1), (41,2), (56,1), (39,2), ...).

5 Sojourn Interval Miner (SIM)

The SIM algorithm lies at the core of SIM-AD and consists of two steps briefly
mentioned in Section 2: clustering sojourn times and mining sojourn intervals
given an STR of a time series T. The general problem addressed by SIM is the
following: given a set of integers J (i.e., sojourn times extracted from training
data) and a new integer j’ (i.e., a sojourn time extracted from test data), find
whether ;' is anomalous with respect to all j € J.

5.1 Parameterless modal clustering of sojourn times

In Section 3.2, we explained why modal clustering is the most relevant approach
to clustering outlier-contaminated univariate data: it is possible to make it pa-
rameterless without assuming that data are sampled from some exponential fam-
ily. We next consider modal clustering in detail and then show how we use it for
anomaly detection.

In modal clustering, clusters correspond to densely-populated regions of the
sample space [30]. A probability density function (PDF) is estimated from a
given data sample using a nonparametric technique and then clusters are formed



8 O. Iegorov and S. Fischmeister

around the modes in the estimated PDF (hence the name modal clustering). The
most popular nonparametric approach to density estimation is Kernel Density
Estimation (KDE) [8,38]. In KDE, an estimate f of the true PDF f at a point
x is computed by placing a kernel function K, usually a Gaussian of particular
variance h, on each observation X; (¢ € 1,...,n) and then summing up the
values of all kernels at point x:

) = nlh;K(hX) m

Each mode in the estimated PDF f then defines a cluster, and observations are
assigned to clusters based on the distance to their nearest mode.

Note that the variance of Gaussian kernels, h, commonly called the band-
width, is a parameter that must be estimated separately or chosen manually.
Its value greatly influences the number and location of modes in f [38]. There
exist various methods to estimate h from a data sample, the most popular being
the rule-of-thumb and plug-in estimators. These methods find a value of h that
maximizes the estimation accuracy of f , usually based on the asymptotic mean
integrated squared error (AMISE). Computing the AMISE requires approximat-
ing the functionals of the unknown density f. Most of the bandwidth estimation
methods approximate the functionals of f assuming that f is normal, which is
usually not the case. One exception is the Improved Sheather-Jones (ISJ) plug-in
rule [8]. This method does not use the normal reference rule and thus is com-
pletely data-driven. ISJ was shown to accurately estimate densities of unimodal
and multimodal distributions from samples of various sizes. Moreover, the nu-
merical procedure used in ISJ is fast when implemented using the Discrete Cosine
Transform [8]. We, therefore, use the ISJ method to automatically estimate the
bandwidth A from Equation 1. Interestingly, the literature on modal clustering
does not focus on the problem of estimating h [30], leaving it to be set manually
or using a rule-of-thumb approach which is known to significantly oversmooth
multimodal densities. Instead, these works consider multivariate data and focus
on finding the modes of f in multidimensional spaces, which is a non-trivial task.

Gaussian KDE is known to be sensitive to outliers, resulting in the appear-
ance of “spurious” modes in f centered at outlier data instances [9,8]. This be-
havior is undesirable when the goal is to minimize the AMISE of f with respect
to the true density f. Therefore, various methods have been proposed to make
KDE more robust to outliers by smoothing out the tails of f [8]. We, however,
use this peculiarity of the Gaussian KDE as a feature. It allows to get more
accurate clustering results by assigning outliers to their own, distinct clusters
instead of “stretching out” the existing clusters to accommodate the outliers.

5.2 Mining sojourn intervals

Once we grouped the STs from a set J into a set of clusters C, how can we
decide whether a new ST j' ¢ J is anomalous with respect to J? We provide
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an answer to this question using the property of the Gaussian kernel density
estimator mentioned above: if an ST j' is an anomaly, then the KDE of {J U j'}
will have a mode centered at j'. Indeed, the convex shape of the Gaussian kernel
guarantees that the KDE of {J U j'} will have a “bump” around j’ when the
distance from j' to the closest cluster ¢ € C' is sufficiently large given the kernel
bandwidth A estimated from J.

When we perform online anomaly detection with SIM-AD, we must analyze
STs of the incoming time series T” in real-time. We avoid computing the KDE of
{JUj'} for each ST j' from T" by finding sojourn intervals (SIs) around clusters
C during the training stage. Given a cluster ¢ € C, we apply a binary search
to find the closest ST g, such that the KDE of {c U g} has a bump on g, using
the bandwidth h estimated from normal STs J. We perform this search on both
sides of the cluster ¢ and define an SI using the found pair of outlier STs g; and
g2. This allows us to detect anomalies by simply comparing the values of the
incoming STs to the SIs and reporting the subsequences of 7" that correspond
to STs that fall outside of the Sls.

6 Experiments

We compare the accuracy of SIM-AD, PAV, and RRA anomaly detectors on three
publicly-available time series datasets previously used in the anomaly detection
literature. We evaluate the accuracy of the detectors with a pair of F-scores.

6.1 Datasets

Power The dataset contains 35,040 measurements of power consumption of a
Dutch research facility during the entire year of 1997 [4]. The measurements
capture the aggregate power consumption during fifteen-minute time intervals.
The dataset was used for anomaly detection in [26,36,39]. There are 44 normal
and 8 anomalous weeks in the dataset. Fig. 2 shows power consumption during a
normal week and an anomalous week. During a normal week, we can observe five
consecutive peaks and valleys corresponding to the consumption on workdays,
while the longer valleys are observed on weekends when relatively little power
was consumed.

1500 1500

1000 1000

Consumption (kW)

25/08 26/08 27/08 28/08 29/08 30/08 31/08 01/09 28/04 29/04 30/04 01/05 02/05 03/05 04/05 05/05
Timestamp (day/month) Timestamp (day/month)

Fig.2: A normal week (left) and an anomalous week (right) in the Power dataset
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Fig. 3: Three normal heartbeats (left) and an anomalous heartbeat (right) in the
ECG dataset

ECG The electrocardiogram (ECG) dataset from the MIT-BIH Arrhythmia
Database [1] was previously used for anomaly detection in [26,36,39]. The dataset
contains 21,600 measurements of electrical potential between two points on the
body surface of a patient during 55 heartbeats. Individual heartbeats have a sim-
ilar shape, but their duration varies slightly. There are three anomalous heart-
beats in the dataset reported by a cardiologist [26]. Fig. 3 shows examples of
three normal consecutive heartbeats and an anomalous heartbeat.

LIT101 Finally, we consider time series data generated by the LIT101 sensor
of the Secure Water Treatment (SWaT) testbed [3] (version 0). Datasets from
this testbed were used for anomaly detection in [19,27]. SWaT is a scaled down
version of a real-world industrial water treatment plant [18] producing five gal-
lons/minute of double-filtered water. It consists of 51 sensors and actuators that
control its six-stage filtration process. The LIT101 sensor measures the raw water
tank level (in millimeters). The data collected from the testbed comprise eleven
days of continuous operation. The researchers who had built the SWaT testbed
ran it normally during the first seven days and then launched attacks on differ-
ent components during the remaining four days. This way, the LIT101 dataset
consists of a normal time series with 496,800 measurements and an attack time
series with 449,919 measurements. A total of 36 attacks were launched during
the last four days of SWaT operation. Only five attacks targeted the LIT101
sensor. Fig. 4 shows a part of the normal LIT101 time series, where the raw
water tank was filled and emptied seven times, as well as two anomalous parts
during the attacks on the LIT101 sensor. Some of the other 31 attacks also af-
fected the LIT101 measurements. Moreover, the time series sometimes contains

900

Water level (mm)
3
8

425000 430000 435000 440000 445000 4000 000 115000 117500 120000 122500
Observation number Observation number Observation number

Fig. 4: Normal (left) and two anomalous (center and right) subsequences from
the LIT101 dataset
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unusual subsequences before or after the launched attack. We manually annotate
these unusual parts but do not mark them as anomalies. This way, if an anomaly
detector reports one of these parts of the attack time series as an anomaly, we
ignore it and do not consider it as a true positive or as a false positive.

6.2 Algorithms

To the best of our knowledge, the Pattern Anomaly Value (PAV) and Rare
Rule Anomaly (RRA) anomaly detectors are the only existing algorithms that
support parameterless AD in time series data. However, unlike SIM-AD, both of
them aim at unsupervised AD and both approaches require the user to choose
a threshold on the number of reported anomalies. We next explain how we use
these detectors in our experiments.

RRA is a discord-mining algorithm [36]. Its implementation is freely available
as part of the GrammarViz 3.0 tool [37,2]. RRA mines variable-length discords
and requires setting three SAX-discretization parameters: sliding window size w,
PAA word size p, and alphabet size a. We set these parameters using the semi-
automated method from [37]. This method requires choosing a parameter learn-
ing interval, that is, a training subsequence that captures the normal behavior of
the generative process. The user must also set the ranges of acceptable parame-
ter values. The authors of RRA propose setting the range for p from 2 to 50, for
a from 2 to 15, and for w from 10 to the doubled length of time series motifs. We
followed these guidelines and set the upper value of the range for w to 500. We
also configured RRA to use the Re-Pair grammar inference algorithm, EXACT
numerocity reduction strategy, and set the normalization threshold to 0.01.

PAV mines linear patterns in univariate time series data. If observations are
equally spaced in time (which is true for our experimental data), then a linear
pattern is simply the value difference between consecutive observations. PAV re-
ports the n linear patterns with the smallest number of occurrences as anomalies,
where n is a user-specified threshold.

6.3 Accuracy metrics

We evaluate the accuracy of anomaly detectors using a pair of F-scores, where
F-score = 2-P-R/(P + R), P is the precision, and R is the recall. The first
F-score measures the classification accuracy while the second one measures the
coverage accuracy of a detector. We next explain why two F-scores are necessary
and how we calculate precision and recall in both cases.

The classification F-score (F-class) measures how well the detected intervals
classify the anomalous parts of a time series. The detected intervals that overlap
at least one anomalous interval are true positives. This way, we compute preci-
sion as P = TP/D, and recall as R = TP/A, where TP is the number of true
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positives, D is the number of detected intervals, and A is the number of anoma-
lous intervals. F-class, however, does not take into account the lengths of the
detected intervals. Indeed, a detector which reports an interval that covers the
entire time series will have a perfect F-class = 1, since this interval necessarily
overlaps all anomalous intervals.

The coverage F-score (F-cover) measures how well the detected intervals
cover the anomalous intervals. In this case, a true positive is a timestamp of
an anomalous interval covered by one or more detected intervals. We thus have
precision P = TP/C and recall R = TP/A, where TP is the number of true
positives, C is the number of timestamps in all detected intervals, and A is the
number of timestamps in all anomalous intervals. F-cover alone, however, does
not say how many anomalies were detected. Indeed, a detector that reports an
interval that fully covers a long anomalous interval but leaves shorter anomalies
uncovered will still have a large F-cover. Therefore, we need both F-scores to
evaluate the accuracy of an anomaly detector.

6.4 Results

We report the accuracies of the SIM-AD, RRA, and PAV anomaly detectors
applied on the three datasets presented in Section 6.1. For each dataset, we
show classification and coverage F-scores of the detectors on two plots. The
X-axis on these plots indicates the number of top discords for RRA and the
number of smallest unique frequencies of linear patterns for PAV that the user
chooses as an anomaly threshold. SIM-AD has constant F-class and F-cover since
its number of detected anomalies does not depend on any threshold.

As a preliminary step, we split the Power and ECG datasets into a training set
and a test set, such that the training set does not include any labeled anomalies.
The LIT101 dataset comes already partitioned into such two sets. We use the
entire training set as a parameter learning interval for the RRA detector and
run the PAV detector only on the test set.

Power SIM-AD dominates other detectors both in classification and in coverage
accuracies (Fig. 5a). RRA performs much worse on the Power dataset than it
has been reported in [36]. In fact, the parameter learning method returns clearly
not optimal values of w = 10, p = 2, a = 7 when the entire training set is used as
the parameter learning interval. Finally, the anomalies reported by PAV appear
to be random. Indeed, PAV aims at detecting point anomalies [12] (i.e., unusual
spikes/dips in observed values), while the anomalies in the Power time series are
of collective type [12] (i.e., unusual sequences of observed values).

ECG Both RRA and PAV detectors show better classification F-score than
SIM-AD for some values of the threshold. For the RRA detector, the parameter
learning method returns a very low value for w, and the top discords do not
match the ones reported in [36], where the learning interval was chosen manually.
SIM-AD detects only one out of three anomalies and does not report any false
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Fig.5: Accuracy results for the SIM-AD, RRA, and PAV anomaly detectors

positives. The inferior classification F-score of SIM-AD on this dataset is due to
a “noisy” trailing subsequence in the ECG time series where the value range of
the heartbeats changes drastically. Incidentally, removing the noisy subsequence
from the training set allows SIM-AD to achieve a perfect F-class of 1. Although
having an inferior F-class, SIM-AD covers the anomalous intervals in this dataset
much better than the other two detectors, as shown by the F-cover plot in Fig. 5b.

LIT101 SIM-AD outperforms both the RRA and PAV detectors on this dataset.
Our approach detects all five anomalies and a single short false positive (Fig. 5c).
In the case of the RRA detector, none of the top 24 discords overlap anomalous
subsequences in the attack LIT101 dataset. Similarly to the Power dataset, the
parameter selection method learned a very small window length w = 10, and the
detector failed to combine observations from short windows into longer patterns.
Although PAV correctly detects all five anomalies starting from the threshold
of 1, it also returns numerous false positives that bring its F-scores down.

6.5 Discussion

Experimental results show that SIM-AD outperforms both the RRA and PAV
anomaly detectors on two out of three considered time series datasets. We can
explain the inferior accuracy of SIM-AD on the ECG dataset by the presence of a
trend towards the end of the training time series. Indeed, SIM-AD assumes that
a motif’s occurrences are not shifted in the value range. Notice that without
additional knowledge about a system, our approach has no way of knowing
whether two subsequences mapped to different sojourn intervals correspond to
the same, although shifted in value, motif. We can summarize this limitation in
the following way: SIM-AD performs poorly on time series data having a trend.
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In future work, we will address this limitation by automatically fitting the line
that defines discretization bins to the time series trend.

Another limitation of SIM-AD concerns time series motifs that map to a se-
quence of sojourn intervals. As an example, consider the weekly motif in the
Power dataset (see Fig. 1). The motif consists of a sequence of peaks and
valleys corresponding to a sequence of sojourn intervals mined by SIM-AD:
(SIs, SIy, SIs, SIy, SIs, SIy, SIs, SIy, SIs, SI). The current version of our approach
does not mine such composite motifs, and we leave this task as future work.

Why did we choose to use two discretization bins to compute the STR of a
time series? Notice that identical subsequences will have identical STRs, hence,
will be represented with the same set of SlIs. If similar subsequences have small
variations in them, their STRs will be different, but their set(s) of SIs are likely
to be the same. Indeed, the more occurrences a motif has in a time series, the
more STs it produces, the more robust to variations the mined SIs become. It is
possible, however, that SIM-AD maps structurally-different subsequences that
spend similar amounts of time in Bin 1 and Bin 2 to the same set of Sls. If
one of these subsequences corresponds to an instance of a motif while the other
one does not, the anomaly detection stage of SIM-AD will incorrectly report
both subsequences as instances of the same motif, i.e., it will produce a false
negative. We plan to address this issue in the future work by recursively mining
fine-grained structure of subsequences mapped to the same set of Sls.

The computational complexity of the training stage of SIM-AD includes the
time needed to (a) construct an STR of the training time series; (b) find the
optimal bandwidth of the KDE kernel; (¢) compute the KDE of the sojourn
times. The first step has linear complexity with respect to the length of the
training time series, while the other two operations depend on the length of the
STR and have efficient implementations that use Discrete Cosine Transform [8]
and Fast Fourier Transform [38]. Indeed, training each of the considered time
series datasets took SIM-AD less than a second on a single core of an Intel Core
i5-6200U CPU. The anomaly detection stage of SIM-AD needs to run only two
relational operators on each incoming observation. Therefore, it is possible to
perform anomaly detection on data streams in real-time.

7 Conclusion

In this paper, we addressed the problem of parameterless anomaly detection in
univariate time series data. To this end, we proposed and evaluated SIM-AD: a
semi-supervised anomaly detection approach that does not require any param-
eters. At the core of SIM-AD lies a modal clustering-based anomaly detection
approach that uses kernel density estimation and the Improved Sheather-Jones
plug-in bandwidth estimator. We showed that SIM-AD outperforms the relevant
anomaly detection algorithms on trendless time series data. In future work, we
plan to address the three limitations of SIM-AD mentioned in Section 6.5.
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