
Anomaly Detection Using Inter-Arrival Curves for
Real-time Systems

Mahmoud Salem
University of Waterloo, Canada

m4salem@uwaterloo.ca

Mark Crowley
University of Waterloo, Canada

mcrowley@uwaterloo.ca

Sebastian Fischmeister
University of Waterloo, Canada

sfischme@uwaterloo.ca

Abstract—Real-time embedded systems are a significant class
of applications, poised to grow even further as automated vehicles
and the Internet of Things become a reality. An important
problem for these systems is to detect anomalies during operation.
Anomaly detection is a form of classification, which can be driven
by data collected from the system at execution time.

We propose inter-arrival curves as a novel analytic modelling
technique for discrete event traces. Our approach relates to the
existing technique of arrival curves and expands the technique
to anomaly detection. Inter-arrival curves analyze the behaviour
of events within a trace by providing upper and lower bounds
to their inter-arrival occurrence. We exploit inter-arrival curves
in a classification framework that detects deviations within these
bounds for anomaly detection. Also, we show how inter-arrival
curves act as good features to extract recurrent behaviour that
these systems often exhibit. We demonstrate the feasibility and
viability of the fully implemented approach with an industrial
automotive case study (CAN traces) as well as a deployed
aerospace case study (RTOS kernel traces).

I. INTRODUCTION

The design and implementation of embedded systems are
complex tasks that involve developing heterogeneous sub-
components [1], often these systems must meet specified
customer requirements and standards such as ISO-26262 for
automotive functional safety or DO-178C for airborne sys-
tems. Analysis of event traces may provide an approach
for studying the conformity of embedded systems behaviour
to specified requirements. Such an approach to post-mortem
analysis is well-suited to the study of embedded systems, as
these systems typically generate event traces as part of the
normal system design thus eliminating the need for special
equipment that could affect system behaviour during analysis.

Several challenges face the trace analysis approach. One
challenge is the high computational expense of the analysis of
large amounts of data within an event trace [2]. In addition,
the features extracted should allow for human interpretation to
make it easier to comprehend the system behaviour, because
trace analysis techniques consider the system under scrutiny as
a black box without much knowledge of its complex internals.
Hence, the need for methods to extract features specific to
real-time systems allowing for efficient and effective reasoning
about these systems behaviour.

Since embedded systems are bespoke and often implement
recurrent behaviour, we expect the event traces generated by
these systems to reflect such recurrence. For example, consider
an event trace from a remote temperature measurement device

with the following normal operation scenario: sample the
temperature reading once a second, filter the sensor data, then
send the data over a communication network to a base station.
That device would generate a trace of events that reflect every
stage of this scenario repeatedly, e.g., read sensor, filter data,
send msg, and ack msg. As a result, extracting the recurrent
behaviour from a system trace would provide a black-box
understanding for the system operation. This would enable
reasoning about any deviations from the model due to sensor
failures or loss of communication, for example. Different
classes of applications implement similar recurrent operation
such as control applications, sensor fusion applications, etc.

We introduce inter-arrival curves as a specific form of
arrival curves [3] to model the system behaviour using lower
and upper bounds of inter-arrival occurrences of events within
a trace. The model allows for the analysis of the system be-
haviour with respect to an expected system behaviour. Arrival
curves were introduced as part of Network Calculus, and are
used to provide bounds to data flow in integrated services
networks. Real-time Calculus uses a variant of arrival curves
for performance analysis [4], [5] and analytical modelling
for event streams [6]. Our work is the first to generalize the
concept of arrival curves via using inter-arrival curves to char-
acterize embedded systems for statistical learning. Previous
work has explored monitoring network messages for anomaly
detection applications [7] and studying system correctness
using online runtime monitoring [8], [9].

Problem Statement and Our Approach

Informal problem statement: Given a set of event traces
generated by a well-specified system in a given execution
scenario, check whether a new trace from the same system
originates from the same execution scenario.

The problem statement defines a semi-supervised classi-
fication problem. Our work targets the problem through a
framework whose building blocks are shown in Figure 1.
Using the given training set of event traces, also known as
normal traces, the output of the framework is a decision
whether a test trace is conforming to that training data. The
framework uses inter-arrival curves for extracting high-level
features from the event traces, then builds a training model
using these features to reason about the corresponding features
extracted from the test trace.

T
ra

in
in

g
 P

h
a
s
e

T
e
s
ti

n
g

 P
h

a
s
e

TRACE_EVENT/01,KER_EXIT
MSG_SENDV/11,KER_CALL
SND_MESSAGE,COMM
THREPLY,THREAD
THREADY,THREAD
THRUNNING,THREAD
REC_PULSE,COMM
MSG_SENDV/11,KER_CALL
..................
..................

TRACE_EVENT/01,KER_EXIT
MSG_SENDV/11,KER_CALL
SND_MESSAGE,COMM
THREPLY,THREAD
THREADY,THREAD
THRUNNING,THREAD
REC_PULSE,COMM
MSG_SENDV/11,KER_CALL
..................
..................

TRACE_EVENT/01,KER_EXIT
MSG_SENDV/11,KER_CALL
SND_MESSAGE,COMM
THREPLY,THREAD
THREADY,THREAD
THRUNNING,THREAD
REC_PULSE,COMM
MSG_SENDV/11,KER_CALL
..................
..................

 Testing Trace
 Classification
(Normal/Anomalous)

Training Traces
[1]

Testing Trace
[3]

Events curves per each training trace

Events curves for testing trace

Aggregate events curves of training traces

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

S̄ = 0.49 P roxm i n
m ax
= 0.9 [Cmax]H R = 1 [Cmin]F S = 6

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

0 50 100 150

0
2
0

4
0

6
0

8
0

S̄ = 0.28 P roxm i n
m ax
= 0.86 [Cmax]H R = 5 [Cmin]F S = 10

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

0 50 100 150

0
2
0

4
0

6
0

8
0

S̄ = 0.73 P roxm i n
m ax
= 0.94 [Cmax]H R = 8 [Cmin]F S = 7

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

 Calculate
Inter-Arrival
 Curve

Build
Training
Model

[2]

Two-Stage
Curve

Classifier
[4]

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

S̄ = 0.49 P roxm i n
m ax
= 0.9 [Cmax]H R = 1 [Cmin]F S = 6

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

0 50 100 150

0
2
0

4
0

6
0

8
0

S̄ = 0.28 P roxm i n
m ax
= 0.86 [Cmax]H R = 5 [Cmin]F S = 10

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

0 50 100 150

0
2
0

4
0

6
0

8
0

S̄ = 0.73 P roxm i n
m ax
= 0.94 [Cmax]H R = 8 [Cmin]F S = 7

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

S̄ = 0.49 P roxm i n
m ax
= 0.9 [Cmax]H R = 1 [Cmin]F S = 6

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

0 50 100 150

0
2
0

4
0

6
0

8
0

S̄ = 0.28 P roxm i n
m ax
= 0.86 [Cmax]H R = 5 [Cmin]F S = 10

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

0 50 100 150

0
2
0

4
0

6
0

8
0

S̄ = 0.73 P roxm i n
m ax
= 0.94 [Cmax]H R = 8 [Cmin]F S = 7

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

Window Size∆ (in events)

E
v
en
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

S̄ = 0.49 P roxm i n
m ax
= 0.9 [Cmax]H R = 1 [Cmin]F S = 6

Window Size∆ (in events)

E
v
e
n
t
C
o
u
n
t
C
ε f

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

Window Size∆ (in events)

E
v
e
n
t
C
o
u
n
t
C
ε f

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

0 50 100 150

0
2
0

4
0

6
0

8
0

S̄ = 0.28 P roxm i n
m ax
= 0.86 [Cmax]H R = 5 [Cmin]F S = 10

Window Size∆ (in events)

E
v
e
n
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

Window Size∆ (in events)

E
v
e
n
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

0 50 100 150

0
2
0

4
0

6
0

8
0

S̄ = 0.73 P roxm i n
m ax
= 0.94 [Cmax]H R = 8 [Cmin]F S = 7

Window Size∆ (in events)

E
v
e
n
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

Window Size∆ (in events)

E
v
e
n
t
C
o
u
n
t
C
ε f

0 50 100 150

0
2
0

4
0

6
0

8
0

Fig. 1: Anomaly Detection Framework

Event traces can have various formats that require different
trace analysis techniques to obtain the relevant information
for analysis purposes [10]. Our work applies to event traces
composed of discrete event streams such as streams of function
calls from a call stack or network messages sent over a
communication bus. We use inter-arrival curves to analyze
traces composed of process events streams generated by a real-
time system kernel during execution.

The contributions of this work are as follows:
• Introduce inter-arrival curves as a novel modelling tech-

nique for analysis of event traces.
• Derive higher-level features and quantifiable shape-based

metrics from inter-arrival curves.
• Apply inter-arrival curves to a classification framework

for anomaly detection.
• Validate empirically the suitability of inter-arrival curves

for extracting recurrent behaviour.

II. RELATED WORK

Network Calculus and Real-time Calculus provide the basis
for arrival curves. Network Calculus [3] provides the theory
for requirement specification that applies cumulative functions
in time to describe data flow in the networks domain. Network
Calculus uses arrival curves to provide guarantees to data flows
in integrated services networks by defining bounds on the
number of bits seen in the flow within a defined time interval.

Real-time Calculus [11] introduced a framework to extend
arrival curves to be more widely applicable for performance
analysis and analytical modelling of arbitrary event streams
generated by real-time systems. Real-Time Calculus uses
interval bound cumulative functions, where the functions are
cumulative over time intervals, i.e., f(∆t) instead f(t) in
Network Calculus. Further work on event streams using Real-
Time Calculus aimed to reduce the exhaustiveness of that
analytic approach. [4] uses a coarser-grained approach that ab-
stracts event streams by defining coarse events as a collection
of fine events before proceeding to calculate arrival curves of
RTC. [12] used a different approach which considers events

that occur within a defined time step without considering their
exact occurrence time within that time step. More closely
related to our work, Event Count Curves (ECC) introduced
in [6] describes the occurrence of event types in a structured
event stream in contrast to arrival curves that concerns with the
timing of those occurrences. ECC curves consider an interval
∆ of all event occurrences to define lower and upper bounds
of different observed event counts.

A survey [10] summarized the research on anomaly de-
tection using a sequence of events which can also defined
as ordered series of events. Our work fits into the cate-
gory of sliding window-based anomaly detection techniques.
The main related research work uses hidden markov models
(HMM) [13], rule inference [14] to build finite state automata
(FSA) [15]. Related to the sliding window technique used by
our work, episode mining [16] extracts collections of events
that are partially ordered and occurring relatively close to each
other within a defined window. Episode mining is used for
anomaly detection [17] and software specification [18].

Inter-Arrival Curves vs Arrival Curves
We differentiate our inter-arrival curves from arrival curves

provided in Network Calculus and Real-Time Calculus
through the following key differences:

First, we use cumulative functions f(∆) over sliding win-
dows of ∆ discrete events instead of time intervals. Second,
any sliding window must start by an event of the monitored
type ε. In other words, we only consider the arrival behaviour
of events of type ε after the occurrence of an event of similar
type, i.e., inter-arrival behaviour of events of type ε.

III. INTER-ARRIVAL CURVES FOR EVENT TRACES

In this section, we present the definitions that form the basis
of inter-arrival curves and provide a sample computation for
the curves using a synthetic trace.

Definition 1: (Event) An event e is a tuple of system-defined
values, denoted as e = 〈v1, v2, . . .〉.
An event type, denoted as ε, belongs to a finite set of unique
values generated by a given system.

Note that the value of event e does not include a timestamp,
as inter-arrival curves do not consider the occurrence timing
of the discrete events in contrary to arrival-curves.

Definition 2: (Trace) A trace T̂ is an ordered sequence
of events ei generated by a given system, where i is an
index associated with the event in the sequence. Formally,
T̂ = {e1, e2, . . . , e|T̂ |} where |T̂ | is the number of events in a
trace T̂ , i.e., the length of the trace.

Definition 3: (Trace Mapping Operator) To count the mul-
tiple occurrences of a single event, we map the trace to just
two symbolic events. The operator ↑ maps a trace T̂ from
Definition 2 to a trace T of two symbolic event types ε and ε̄
by replacing every event e in T̂ as follows:

T̂ ↑ ε 7→ T , where e =

{
ε, if e = ε

ε̄, if e 6= ε
,∀e ∈ T̂ (1)

Example 1: Consider the following trace example T̂ =
{aabcaabbcaaabbacccaa}, there exists |T̂ | = 20 events of
event types ε ∈ {a, b, c}.

Given the sample trace from Example 1, the corresponding
mapped trace T for an event type c as a result of applying the
mapping operation T̂ ↑ c is shown in Figure 2.

Fig. 2: Trace Mapping and Inter-Arrival Curve Calculation

Definition 4: (Inter-Arrival Curve) An inter-arrival calcula-
tion for an event type ε denoted by Cf (T,∆) → R applies
a specified function f to the occurrence count C of events
of type ε within sliding windows of lengths ∆ ∈ N>0. The
sliding windows always start with events of symbolic type ε.

We use Definition 4 to define two specific curves of interest
which define the lower and upper bounds on the inter-arrival
behaviour of an event type ε.

Definition 5: (Max/Min Inter-Arrival Curves) A maximum
inter-arrival curve is defined with f = max, where max
provides the maximum counts for occurrences of ε within
the sliding windows described by Definition 4. Similarly, a
minimum inter-arrival curve uses f = min, where min
provides the corresponding minimum counts.

The following formulas show how to obtain a point on the
maximum and minimum curves corresponding to a window
duration ∆:

Cmax(T,∆) = max(C(T,∆)) (2)
Cmin(T,∆) = min(C(T,∆)) (3)

Having the sliding window positioned at ε optimizes the
computation of Cmax and Cmin, because the minimum and
maximum count values will always be the same as the values

obtained when sliding the window through all events ε and ε̄
of a given trace T .

Figure 2 shows an example calculation of Cmax and Cmin for
the mapped trace T using a window duration ∆ of 4 events,
i.e, Cf (T,∆ = 4) for f ∈ {max,min}.

Repeating this procedure on a range of ∆ values yields the
maximum and minimum inter-arrival curves. Figure 3a shows
both Cmax and Cmin curves computed on the full range of
∆ ∈ [1, |T |] for ε = a using the trace T̂ of Example 1.

Note that the origin point of any Cmax or Cmin inter-arrival
curve for an event type ε is always (1, 1), which corresponds
to the existence of at least one instance of that event within
a given trace where the sliding window is positioned as
mentioned in Definition 4.

5 10 15

2
4

6
8

Window Size ∆ (in events)

E
v
e
n
t
C
o
u
n
t
C

f

max-curve Cmax

min-curve Cmin

(a) Min-Max Curves ε = a (b) Steadiness Slope Metric

Fig. 3: Inter-Arrival Curves and Metrics

Definition 6: (Difference Inter-Arrival Curve Cdiff) We de-
fine a third curve of interest, denoted as Cdiff, whose values
represent the difference between Cmax and Cmin at similar
window durations ∆ for a given trace T as follows:

Cdiff(T,∆) = Cmax(T,∆) – Cmin(T,∆) (4)

The Cdiff curve has some points of interest which allow
for describing recurrent behaviours of real-time systems as
we show in Section V. However, for any Cdiff curve we have
Cdiff = 0 at both ∆ = 0 and ∆max = |T |, since Cmax(T, 1) =
Cmin(T, 1) = 1 and Cmax(T, |T |) = Cmin(T, |T |) = C(T, |T |)
respectively. Otherwise, the curve values belong to N≥0, be-
cause Cmax(T,∆) ≥ Cmin(T,∆) for all values of ∆. Formally,

Cdiff =

0, if ∆ = 1

N≥0, if 1 < ∆ < |T |
0, if ∆max = |T |

(5)

In the next section, we introduce a set of single-curve and
multiple-curves metrics to quantify and reason about the shape
of inter-arrival curves. In Section V, we show how these
metrics provide explanatory power for defining higher-level
features to describe the behaviour of real-time systems.

IV. METRICS FOR INTER-ARRIVAL CURVES

The properties and metrics defined rely on the assumption
that Cf (T,∆ + 1) ≤ Cf (T,∆) + 1. This is valid for f
being max and min functions, because the minimum duration
difference between two consecutive ∆ is one event. Remember
that the inter-arrival curve uses event arrivals on the x-axis and
not time like standard arrival curves. This assumption leads to
the following theorem.

Theorem 1: Cmax and Cmin are monotonically increasing
with respect to window duration ∆.

Proof: Maximum and minimum inter-arrival curves use
cumulative computations over increasing window durations
∆, the corresponding Cmax(T,∆) and Cmin(T,∆) values are
either the same or increasing.

Using Theorem 1 and Definition 5, one can describe both
Cmax and Cmin as a set of steady intervals (i.e., plateaus) and
intervals of monotonically increasing counts Cf .

A. Single-Curve Metrics

The following metrics can be obtained from a single inter-
arrival curve (i.e., a min- or max-curve).

Longest Interval of Strong Monotonic Cmax Increase: For
a max-curve Cmax, there exist intervals of strong monotonic
increase.

Theorem 2: The longest interval of strong monotonic in-
crease, denoted by ∆HR, for Cmax exists at the beginning of
the curve, starting at (1, 1) and ending at the point having
smallest ∆ satisfying Cmax(T,∆) = Cmax(T,∆ + 1).

In other words, ∆HR shows the longest train of events ε
in mapped trace T . This can be shown on Figure 3a where
∆HR = 3 for event a as a result of having the stream {aaa}
in trace T̂ from Example 1. Note: ∆HR can be represented
on the y-axis as shown in Figure 3b as the maximum increase
in Cmax per increase in ∆ is 1.

Longest Plateau of a Min-Curve Cmin: We define a plateau
or steady interval of an inter-arrival curve as an interval of
successive ∆ values having the same Cf (T,∆).

Theorem 3: Longest plateau of a min-curve Cmin, denoted
as ∆FS , exists at the beginning of the curve starting by point
(1, 1) and ending at the point having smallest ∆ satisfying
Cmin(T,∆) = 2.

In other words, the ∆FS value on the x-axis indicates the
maximum window of separation between any two events ε
within a mapped trace T . This can be shown on Figure 3a
where ∆FS = 5 for event a as a result of having the streams
{abbca}, {accca}.

Steadiness Slope of Inter-Arrival Curve: We define a
metric S̄ that describes how Cf increases with the increase of
∆ by studying the steady intervals or plateaus of that curve.
The steadiness slope S̄ calculates the mean of the slopes of
all virtual lines Li that connects the last point of each two
successive plateaus as shown in Figure 3b where i refers to
the index of the plateau considered for calculation. The slope
of a single virtual line Li, denoted as SLi , having the start
point at ∆s and the end point at ∆e where ∆e > ∆s can be
calculated using the following equation:

Slope SLi
=

∆y

∆x
=
Cf (T,∆e) – Cf (T,∆s)

∆e – ∆s
(6)

To calculate the mean of slopes S̄ of all virtual lines Li

defined over n plateaus, we use Equation 7:

S̄ =

∑
i

SLi

n
, where S̄ ∈ (0, 1). (7)

The value of S̄ for event ε = a in Example 1 can be obtained
by applying Equations 6 and 7 as follows: S̄ = 1

5 ∗ {
2
4 + 1

2 +
1
3 + 1

4} = 0.42.
This metric differs from the longest plateau and strongest

monotonic increase as the steadiness slope S̄ describes the
occurrence behaviour of the system events over an interval
by describing the density of the occurrence, i.e., count of
symbolic event ε relative to the window duration ∆. For
example, a higher value for mean slope S̄ refers to a higher
increase in the count Cf (T,∆) as ∆ increases. This indicates
a higher event density within a trace as the length of the
sliding window increases. The steadiness slope metric enables
the comparison of inter-arrival curves calculated for different
events within the same trace or calculated for the same event
using different traces.

The Area under Inter-Arrival Curve: The next metric
calculates the area under an inter-arrival curve Cf , denoted
as Λ. Formally as follows:

Λ(Cf) =

∆max∑
∆=1

Cf (T,∆), where ∆max ≤ |T |. (8)

To calculate this area, Equation 8 considers a virtual grid
enclosed between the y-axis and the inter-arrival curve over
the range ∆ ∈ [1,∆max], then counts the squares having an
area equal to one unit on the x-axis by one unit on the y-axis.
Our work does not use absolute values of Λ as a single-curve
metric. Instead, the Λ metric allows us to relate multiple curves
to each other by defining the following multiple-curve metrics
whose calculation involves more than one curve.

B. Multiple-Curves Metric

We introduce a multiple-curves metric to describe system
behaviour using more than one inter-arrival curve. We then
employ a variant of this metric to anomaly detection purposes
in Section V.

The Proximity of Multiple Inter-Arrival Curves: We define
a metric Prox that relates different curves to each other by
calculating the ratio of their area under curve values. A variant
of the Prox metric, denoted as Proxmin/max, calculates the
proximity of Cmax to Cmin obtained from the same trace T as
follows:

Proxmin/max =
Λ(Cmin)

Λ(Cmax)
, P rox ∈ (0, 1] (9)

Proxmin/max describes the variation of inter-arrival be-
haviour of a given event in a trace by monitoring the variation
between the minimum and maximum counts of events obtained

0 50 100 150

0
1
0

2
0

3
0

4
0

Window Size ∆ (in events)

E
v
e
n
t
C
o
u
n
t
C

f

max-curve Cmax

min-curve Cmin

0 20 40 60 80 100

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (in Events)

Au
to

−c
or

re
la

tio
n

(a) RPT1 Pattern

0 50 100 150

0
1
0

2
0

3
0

4
0

Window Size ∆ (in events)

E
v
e
n
t
C
o
u
n
t
C

f

max-curve Cmax

min-curve Cmin

0 50 100 150

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (in Events)

Au
to

−c
or

re
la

tio
n

(b) RPT2 Pattern

0 20 40 60 80 100 120

0
1
0

2
0

3
0

4
0

5
0

6
0

Window Size ∆ (in events)

E
v
e
n
t
C
o
u
n
t
C

f

max-curve Cmax

min-curve Cmin

0 20 40 60 80 120

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (in Events)

Au
to

−c
or

re
la

tio
n

(c) No Pattern

Fig. 4: Cmax, Cmin Inter-Arrival Curves and Auto-Correlation of Cdiff

using instances of sliding windows of different durations. As
shown in Figure 2, Proxmin/max quantifies the proximity of
both curves to each other, where a higher ratio that tends to
1 indicates a minimum curve that is closer to the maximum
curve. The more variation in the event occurrence in the trace,
the lower the ratio will be as the min- and max-curves diverge
away from each other. In Section V, we show how another
variant of the Prox metric calculated using same types of
curves Cf , i.e. either Cmax or Cmin obtained from different
traces, can be used to reason about the conformance of a
system with the expected real-time behaviour.

V. INTER-ARRIVAL CURVES AS HIGH-LEVEL FEATURES
TO REASON ABOUT REAL-TIME SYSTEMS

In this section, we apply our work to real-time systems
through using the curves as high-level features to describe the
inter-arrival behaviour of generated events and to extract re-
current behaviour that these systems often exhibit. In addition,
we provide a framework that uses multidimensional features
to allow reasoning about the conformity of the behaviour ex-
pressed by an unknown trace to a system behaviour expressed
by a previously collected set of known traces.

A. Extracting Recurrent Behaviour using Cdiff

To reason about the existence of recurrent behaviour of a
real-time system, our approach aims to extract intervals of
repeating modes of operation and characterize the inter-arrival
behaviour of events within those intervals. For example, an
application that can be described to have a recurrent single-
mode of operation is a coffee machine having a ’brewing’
mode and otherwise an ’idle’ mode. We conjecture that finding
points having Cmax ' Cmin, i.e., Cdiff ' 0, separated by
roughly the same distance, denoted as ∆p, indicates that the
event trace has a specific pattern where sliding windows of
duration ∆p yield roughly the same Cf counts. In other
words, our conjecture is that a low variance σ of distances
∆ separating points of Cdiff ' 0 signifies such applications

having recurrent single-mode of operation. The following set
of Equations 10 shows how to calculate that variance σ of
distances:

ζ∆ = {∆′|Cdiff(∆
′, T) ' 0 ∧∆′ ∈ N>0}

diff(ζ∆) =

{δ|δ = ∆′j −∆′i,∆
′
j = inf{ζ∆ > ∆′i}for all∆′i ∈ ζ∆}

σ2 =

∑n
i=1(xi − µ)2

n
with x = diff(ζ∆), µ as mean of x

(10)

Following this conjecture, we employ the auto-correlation
function (acf) [19] to reason about the existence of recurrent
patterns within a Cdiff curve. Auto-correlation is widely used
in signal processing to detect repeating patterns [20]. The auto-
correlation function when applied to a curve shows the mutual
relation of the curve with itself versus increasing time lag,
where finding statistically significant auto-correlation values
separated by approximately equal lag distances indicates a
repeating pattern [21].

In our work, the auto-correlation function shows the corre-
lation of the Cdiff curve versus increasing window duration ∆
to detect repeating patterns within the set ζ∆, where a Cdiff
curve having points of Cdiff ' 0 at distances ' ∆p of low
variance σ is expected to yield an autocorrelation curve of
statistically significant values separated by distances ' ∆p.

Example 2: Consider a trace T1 composed of a repeating
pattern RPT1 of 19 events, RPT1 = {abbbbbbabbbbbbabbaa}
and trace T2 composed of a recurrent pattern RPT2 of 29
events which have an additional mode of operation, RPT2 =
{aaaababbba abbbbbbabbbbbbabbaa}.

Figure 4a and Figure 4b show the corresponding Cmin,
Cmax curves for traces T1, T2 and the auto-correlation of
the corresponding Cdiff curves. The auto-correlation result
in Figure 4a shows a decaying sinusoidal-like curve, which
indicates the existence of a repeating pattern within the Cdiff
curve with a cycle ∆p ' 20, i.e., the length of pattern RPT1.

Figure 4b shows a cycle of ∆P ' 30 as pattern RPT2 which
has more events than the pattern RPT1. In practice, a change
in the length of the recurrent pattern might indicate that a
system repeats a different mode of operation or repeats a
sequential order of several modes.

To show the result of applying our approach to traces whose
events do not have recurrent behaviour, we randomly introduce
events to disturb the patterns RPT1 and RPT2. As a result,
the auto-correlation result shown in Figure 4c did not have
statistically significant values. The significance is indicated
by the horizontal confidence intervals around ±0.2 shown in
Figure 4c, where having autocorrelation values only within
these bounds indicate that Cdiff shows no correlation versus
increasing lag [21]. Note that the choice of max window size
∆max is crucial to detect the recurrence period ∆p, e.g., ∆max

must be at least a multiple of ∆p.
The results obtained using the synthetic trace of Example 2

shows how inter-arrival curves are potentially good features
for describing recurrent behaviour within event traces. In
Section VI, we show how this approach can be applied to
event traces generated from deployed real-time systems.

B. Anomaly Detection Using Cmin and Cmax

We present the framework in Figure 1 to exploit inter-
arrival curves as high-level features suited for describing the
behaviour of real-time systems. We conjecture that anomalies
in an event trace would affect any of the metrics described in
Section IV, i.e., change the steadiness slopes or the proximity
of Cmin and Cmax. Therefore, we use these metrics to detect and
quantify such anomalies for the purposes of anomaly detection.

Behavioural anomalies can cause changes to either Cmax,
Cmin, or both of them. Anomalies that cause generation of
more events of type ε within similar trace intervals will prob-
ably lead to higher values for Cmax of that event type compared
to a normal trace. An example of such an anomaly can be
caused by running into a failure scenario for an embedded
system. Another type of anomaly are ones that affect events
of another type than ε leading to fewer counts in Cmin. In other
words, the density of events of type ε within sliding windows
might decrease due to the increased occurrence of other event
types within these windows. A practical example resulting in
this anomaly can be due to the occurrence of unexpected event
types in a trace (e.g., interrupts due to faults, error message
events, or new user events). Lastly, anomalies might disrupt
the distribution of multiple event types within the entire trace
altogether and as a result, will affect both Cmin and Cmax curves
for these event types.

We exploit inter-arrival curves in anomaly detection of real-
time systems by adopting a generic semi-supervised classifica-
tion framework as described in [2]. Figure 1 shows the building
blocks for the framework. The framework builds a model using
a set of event traces for a known expected behaviour, and then
inspects a set of unknown traces for being either anomalous
or not to that model.

Calculating Inter-Arrival Curves: During the training
phase, the output from this building block is a set of pairs of

min- and max-curve for each event type ε per each trace in the
known traces set. For more robust results, we only calculate
inter-arrival curves for event types that contribute more than
a defined percentage of events within a trace. This threshold
is a tunable framework parameter discussed in Section VI.

Building the Training Model: The second block shown in
Figure 1 builds a model using the input pairs of Cmin and Cmax
computed per each event type ε using traces of the training set.
To achieve this, we aggregate the similar inter-arrival curves
calculated using the same function f applied to the same
event type ε to obtain a corresponding aggregated inter-arrival
curve. The followed approach allows for incremental update
of the model, where having new normal traces can add to the
model by aggregating the curves obtained with the previously
calculated model.

We experimented with various aggregation methods. The
aggregation method that best represented the set of min-
and max-curves was calculating a mean curve (C̄f) and
confidence intervals for Cmin and Cmax independently. One
main advantage of this technique is that it is robust against
outliers, e.g., inter-arrival curves being unexpectedly different
from the corresponding curves calculated using traces from
the same traces set. We denote the mean curve as C̄f and the
confidence interval curves as C−f and C+

f where we compute
a student’s t-test confidence interval [22] using a window-by-
window computation. The data sample for confidence interval
calculation consists of all counts of events obtained from the
training traces using the same function f corresponding to the
same window duration ∆.

The output from the second block in the framework is a
model composed of six inter-arrival curves per each event type
ε as follows: the mean curves C̄min and C̄max along with the
corresponding confidence interval curves as C−min, C+

min, C−max,
and C+

max.
Trace Classification: Using inter-arrival curves allows pin-

pointing the specific events that caused the anomalous be-
haviour by specifying events ε whose Cmin and Cmax curves
deviate from the built model. To achieve this, the last building
block in the framework involves a binary classifier which
evaluates whether the features obtained from the unknown
trace conforms to the corresponding features obtained from
the set of known traces. If the curve fails the test, the classifier
then quantifies the deviation of that curve from the model for
further classification stage.

Figure 5 shows an example from our experiments that we
detail in Section VI. The figure visualizes the curves that
represent the aggregated model for an event type ε along
with the corresponding curves calculated using two unknown
traces. The visualization in Figure 5a, opposed to Figure 5b,
shows that curves conform to the obtained model, as the testing
curves are close to the corresponding curves in the aggregated
training model. Note that in our work, we consider an event
behaviour to be anomalous to the model as long as one or
more curves, i.e., Cmax or Cmin, are anomalous.

• Stage I: Detecting Curve Deviation.

As a result of Theorem 1, the technique in Example 3
shows how to represent the inter-arrival curves as a frequency
distribution to describe the curve shape for statistical testing.

Example 3: Consider a max curve with values Cmax =
{1, 2, 2, 3, 4, 4} calculated using ∆max of 6 events. We parti-
tion the curve to a set of intervals of unique Cmax ∈ {1, 2, 3, 4}
with corresponding ∆ intervals ∈ {1, 2, 1, 2}.

To automate the curve similarity procedure, we apply
the Wilcoxon-Mann-Whitney test, also known as the Mann-
Whitney U test [23], which is a non-parametric statistical
similarity test with a null hypothesis that two samples come
from the same population. In our work, the test checks whether
an inter-arrival curve Cf of an event type ε obtained from an
unknown trace has the same distribution of a corresponding
curve obtained from the aggregate model.
• Stage II: Measuring Deviation from Training Model.

To quantify a detected deviation in Stage I, we use the Prox
metric to quantify the proximity of an inter-arrival curve
calculated using a test trace to a corresponding curve from
the aggregate model. The corresponding curve from the model
can either be the mean curve C̄f , the confidence interval curve
C−f , or C+

f .To choose that corresponding curve, we perform
the Prox metric calculation using the three curves and pick
the nearest curve to Cf , i.e., picking the highest Prox value to
Cf . To finalize the analysis, a tunable threshold on the Prox
metric controls the classifier decision as will be discussed in
Section VI.

The inter-arrival curve of an event type will be considered
normal, if it passes the second stage of classification even if
it failed the statistical test of first stage. Otherwise, the curve
is declared to be anomalous by both stages. As the second
stage requires more tuning parameters, we make this sufficient
stage optional in our work. However, this stage can be essential
when the model is over-fitting the training set of known traces.

● ●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●

● ●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●

−

−−−−−−−−

−−−−
−−
−−
−−−−−−

−
−−−−−
−−
−−−−−
−

−
−−−−−−−−
−
−−
−−−
−

−−−−−−−
−−−
−−
−−−

−

−−−−−−
−−
−−
−−−−

−
−−−−−−−
−
−−
−−
−−
−
−
−−−−−−−
−−−
−−
−−
−−
−
−−−−−
−−−−
−−
−−
−
−
−
−−−−
−−−−−−
−−−−
−
−
−−−−
−−−−−
−−−−−
−
−−
−
−−−−
−−−−
−−−−
−
−
−−
−−−
−−−−
−−−−
−−
−−
−−
−−−−
−−
−−−
−−−−
−−−
−−−
−−
−−−
−−−
−−−
−−−−−−
−−−−
−−−−−−−
−−−−−−−−−−−
−−−−
−−−−−
−−−−
−−−−−
−−−
−−−
−−−
−−−−
−−
−−
−−−
−−−
−−−−
−−
−−−
−−−
−−
−−−
−−−
−−
−−−
−−
−−
−−−
−−−
−−−
−−
−−
−−−−
−−−−
−−−
−−−−
−−
−−−−
−−−
−−−
−−
−−−
−−−
−−−
−−−
−−−
−−
−−
−−
−−
−−−
−−
−−−−
−−
−−
−−
−−−
−−
−−
−−
−−−
−−
−−−
−−
−−
−−
−−−
−−
−−
−−
−−−−
−−
−−
−−−
−−
−−
−−
−−
−−−
−−−
−−−
−−
−−
−−
−−
−−−−
−−
−−
−−−
−−−
−−
−−
−−−
−−
−−−
−
−−
−−−−
−−−
−−
−−−
−−−−
−−
−−
−−−
−−−−
−−−
−−−−−−
−−
−−
−−
−−−−−
−−−−
−−−−−
−−−−−
−−−−−
−−−−
−−−−−−−−
−−−−−
−−−−−−−
−−−−−
−−−−
−−−−
−−−−−
−−−−−−
−−−
−−−
−−−
−−−
−−
−−
−−−−
−−
−−−
−−−−
−−−
−−
−−−
−−
−−−
−−−
−−−
−−−−
−−−
−−−
−−−
−−
−−−
−−−−
−−−
−−−
−−−
−−−
−−
−−−
−−
−−−−
−−−−
−−
−−−
−−−
−−
−−−
−−−−
−−
−
−−
−−−
−−−
−−−−
−−−
−−−−
−−
−−−−
−−−
−−−
−−−
−−−−
−−−
−−−
−−
−−−
−−−−−
−−−
−−
−−
−−−
−−−
−−−
−−−−
−−−
−−
−−−−
−−
−−
−−
−−−
−−−−
−−−
−−
−
−−−−
−
−−−
−−−−−
−−
−−
−−
−−
−−
−−−−−−
−−
−−−
−−−−
−−−−
−−−
−−
−−−−−
−−−−−−
−−−−−
−−−−−−−−−
−−−−
−−−−−−−−
−−−−−
−−−
−−−−−
−−−−−
−−
−−
−−−
−−
−−−−−
−−
−−
−−
−−
−−
−−−
−−−−
−−−
−−

−−−
−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−
−−−−−−−−
−−−−−−−−−
−−−−−−−−−−−−−−

−−−−−
−−−−−
−−−−−−−−−
−−−−−
−−−−−−−−
−−−−−−−−−−−
−−−−−−
−−−−−−
−−−
−−−
−−−−−−
−−−
−−−−−−
−−−−−−
−−−−−
−−−−−
−−−−−−−
−−−−−−−−−−−
−−−−−−−−−−−−−−−−

−−−−−−
−−−−−−−−−−
−−−−−−−−
−−−−−−−
−−−−−−
−−−−−−−−
−−−−
−−−−
−−−−−−−−
−−−−−
−−−−−
−−−−−
−−−
−−−−−−−−
−−−−
−−−−−
−−−−−−−
−−−−
−−−−
−−−−
−−−−−
−−−−−
−−−
−−−−−
−−−−
−−−−−
−−−−−−−
−−−
−−−
−−−−−
−−−−
−−−−−−
−−−−−−
−−−
−−−−
−−−−−−
−−−−
−−−
−−−−
−−−−−
−−−
−−−
−−−
−−−−−−
−−−
−−
−−−
−−−−
−−−−
−−−
−−−−
−−
−−
−−−−−
−−−
−−−−−
−−
−−−−
−−−
−−−−−
−−−−−
−−−−
−−−−−−
−−−−−
−−−−−−−−−
−−−−−−
−−−−−−−
−−−−−−−−−
−−−
−−−−−−−−−
−−−−−−
−−−
−−−−−
−−−−−−−
−−−−
−−
−−−−
−−−−
−−−−−
−−−−−
−−−
−−−−−
−−
−−−−−−−−
−−−
−−−
−−
−−−−−
−−−−
−−
−−−
−−−
−−−
−−−
−−−−−
−−
−−−−
−−−−−
−−
−−
−−−
−−−−
−−−
−−−
−−−−
−−−
−−−−
−−−
−−−−
−−
−−−
−−−−
−−
−−−
−−
−−−
−−−−−
−−−
−−−−−
−−
−−
−−
−−
−−−−−
−−−−
−−−−
−−
−−−
−−−
−−
−−
−−−
−−−−
−−−−−
−−−−
−−−
−−
−−−
−−−−
−−−
−−−
−−−
−−−
−−
−−
−−
−−
−−
−
−
−
−
−
−
−

−

−

−

−−−−−−
−−

−−−−
−−
−−−−−−−
−

−
−−−−−
−−
−−−−−−

−
−−−−−−−−
−
−−−−
−

−

−−−−−−−
−−−
−−−−
−

−

−−−−−−
−−−
−−−−
−

−
−−−−−−−
−−
−−
−−−

−
−

−−−−−−−−
−−−
−−
−
−
−−
−−−−−
−−−−
−−−
−
−
−
−
−−−−−−−
−−−−−
−−

−
−

−−−−
−−−−−−−
−−−
−
−−
−
−−−−−
−−−−−−
−
−
−
−−
−−−
−−−−−−
−−−
−−
−
−−
−−−−
−−
−−−−−
−−
−−−
−−−
−−
−−−−
−−−
−−−−−
−−−−−−
−−−−
−−−−−−−−−−−−−−−

−−−
−−−−−−
−−−−
−−−−
−−
−−−
−−−
−−−
−−−−
−−
−−
−−−
−−
−−−−
−−
−−−
−−−
−−
−−−−
−−−
−−
−−−
−−
−−
−−−
−−
−−−−
−−−
−−−−
−−−−
−−−
−−−
−−−
−−−−
−−−−
−−
−−
−−−
−−−
−−−
−−−
−−−
−−
−−
−−
−−−
−−−
−−−
−−−
−−−
−−
−−
−−
−−
−−
−−
−−
−−
−−−
−−
−−
−−
−−−
−−
−−
−
−−−−
−−−
−−
−−−−
−−
−−−
−−
−−−
−−
−−−
−−
−−
−−
−−−
−−−−
−−
−
−−
−−−−
−−−
−−
−−−
−−
−−−
−
−−−
−−−
−−
−−−
−−
−−
−−−
−−
−−
−−−−
−−−−
−−−
−−−−−
−−
−−
−−−−−
−−−−
−−−−−
−−−−−−−
−−−−−−
−−−−−−−
−−−−−
−−−−−−
−−−−−−
−−−
−−−−
−−−
−−−−−
−−−−
−−−−−
−−−
−−
−−−
−−−
−−
−−
−−−−
−
−−−−
−−−
−−
−−
−−
−−−
−−−
−−−−
−−−
−
−−−−
−−−
−−
−−−
−
−−
−−
−−−
−−−
−−
−−−
−−−
−−−−
−−
−−
−
−−−−−
−−−−
−−−
−−−
−−
−−
−−−
−−−−
−−
−
−−
−−−−−
−−−−
−−−
−−−−
−−−
−−−−
−−
−−−−
−−−
−−−−
−−−
−−−
−−
−−
−−
−−−−
−−
−
−−
−−
−−−
−−
−−−−
−−−−
−−−
−−
−−
−−−
−−
−−
−−
−−−
−−−
−−−
−−
−
−−−−
−
−−
−−−
−−−−
−−−
−−
−−
−−
−−−−−−
−−
−−−−
−−−
−−−−−
−−−−
−−−−−−
−−−−−
−−−−−−−
−−−−−−−−−−
−−−−−−−−
−−−−
−−−−
−−−−
−−−−−
−−−
−
−−
−−−
−−
−−−−−
−−
−−
−
−−−
−−
−−−

−

−−−−−−−−

−
−−−−−
−−
−−−−−−

−
−−−−−
−−

−−
−−−−

−
−−−−−−−−
−
−−
−−−
−

−−−−−−−
−−
−
−−
−−−
−

−−−−−−
−−
−−

−−−−

−
−−−−−−−
−
−−
−
−−−
−−
−−−−−−−
−−−
−−
−−
−−
−
−−−−−
−−−−
−−
−−−
−
−
−−−−
−−−−−−
−−−−
−
−
−−−−
−−−−
−−−−−
−−
−−
−
−−−
−−−
−−−
−−−
−
−
−−
−−−
−−−−
−−−−
−−−
−
−−
−−−−
−−
−−−
−−−−
−−−
−−−
−−
−−−
−−
−−
−−−−−−−
−−−−
−−
−−−−−−−−−−
−−−−−−−
−−−−−−
−−−−−−
−−−−
−−−
−−−−−
−−−
−−−−
−−−
−−−
−−−
−−−
−−−
−−
−−
−−−
−−
−−
−−−
−−−
−−−
−−
−−
−−
−−−
−−−
−−
−−
−−−−
−−−−
−−−
−−−
−−−
−−−
−−
−−−
−−−
−−
−−
−−
−−
−−−
−−−
−−
−−
−−
−−
−−
−−
−−−
−−−
−−−
−−
−−
−−−
−−−
−−
−−
−−−
−−
−−−
−−−
−−
−−−
−−−
−−
−−
−−−−−
−
−−
−−
−−−
−−−
−−
−−−
−−
−−−
−−
−−−
−−
−−
−−
−−−−
−−
−−−−−
−−−
−−
−−
−−−
−
−−−−
−−
−−−−
−−−
−−
−−−
−−−−
−−
−−
−−
−−
−−−
−−−
−−−−−−
−−
−−
−−
−−−−
−−−−
−−−−
−−−−−
−−−−
−−−−
−−−−−
−−−−−−
−−−−−
−−−−−−−
−−−−−−−
−−−−
−−−−−
−−−−−−−
−−−−
−−−
−−
−−−−
−−
−−
−−−−
−−
−−
−−−
−−−
−−−
−
−−−
−−
−−−
−−−
−−−
−−−
−
−−−
−−−
−−−
−−
−−−
−−−
−−−
−−
−−
−−−
−−−
−−
−−−
−−
−−−−
−−−−
−−
−−
−−−−
−−
−−−
−−−−
−−
−−
−−−
−−−−
−−−−
−−−
−−−−−
−−
−−−
−−−
−−−
−−−−−
−−−
−−
−−−
−−
−−−
−−−−−
−−−
−−
−−
−−−
−−−−
−−
−−−−
−−−
−−
−−−−
−−
−−
−−
−−−−
−−−
−−−
−−−
−−−−
−
−−−
−−−−−
−−
−−
−−−
−−
−−−−
−−−−
−
−−−
−−−−
−−−
−−−
−−−
−−−−−
−−−−−−−
−−−−
−−−−−−−
−−−−−−
−−−−−−−−
−−−−−−
−−−−
−−−−−−
−−−−
−−−
−−−
−−−
−−−
−−
−−
−−
−−
−−
−−−
−−−−
−−−
−−
−−
−−
−−
−−−−

−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−
−−−−−−−−
−−−−−−−−−−−−−−−−−−

−−−−−−−−−−
−−−−−−
−−−−−
−−−−−−−−
−−−−−−−−−−−−
−−−−−
−−−
−−−−−−−
−−−−
−−−−−
−−−−−−−−
−−−−−−−−−
−−−−−−−−
−−−−−
−−−−
−−−
−−−−−−
−−
−−−−−−
−−−
−−−−−
−−−−
−−−−
−−−−−−
−−−−−−−−−
−−−−−−−−−−−−−−−

−−−−−−−−
−−−−−−−
−−−−−−−−−−−
−−−−−−−
−−−−−
−−−−
−−−−−−−−
−−−
−−−−
−−−−
−−−−−−−
−−−
−−−−−
−−−−−
−−
−−−
−−−−−−−
−−−−
−−−−
−−−−−−−
−−−−
−−−−
−−−−
−−−−−
−−−
−−−−
−−
−−−−−
−−−−
−−−−
−−−−
−−−−
−−−−
−−
−−−−
−−−−
−−−−−−
−−−−−−
−−
−−−
−−
−−−−−−
−−−−
−−−
−−−
−−−−−
−−−
−−
−−
−−
−−−−−
−−−−−
−−
−−−
−−−−
−−−−
−−−
−−−
−−−
−−
−−−−−
−−−
−−−−−
−
−−
−−−
−−−
−−−−−
−−−−−
−−−−
−−−−−−
−−−−−
−−−−−−−−
−−−−
−−−−−−−−
−−−
−−−−−−−−
−−−
−−−−−−−−−
−−−−−−
−−−
−−−−−
−−−−−−−
−−−−
−−
−−−
−−−
−−−−−
−−−−−
−−−
−−−
−−−−
−−
−−−−−−−−
−−−
−−−
−−
−−−−−
−−−−
−−
−−−
−−−
−−−
−−−
−−−−−
−
−−−−−
−−−−
−−−
−−
−−−
−−−−
−−−
−−−
−−−−
−−−
−−−
−−−
−−
−−−
−−
−−
−−−−
−−−
−−−
−−
−−
−−−−−
−−−
−−−−
−−−−
−−
−
−−
−
−−−−−
−−−−
−−−−
−−
−−−
−−−
−−
−−
−−−
−−−−
−−−−
−−
−−−
−−−
−−
−−
−−−−
−−−
−−
−−−
−−
−−−
−−
−−
−−
−−
−−
−
−
−
−
−
−
−

−

−

−−−
−−−−−−−−−−−−−−−−

−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−

−−−−−−
−−−−−−−−−−
−−−−−−−−−
−−−−−−−−
−−−−−−−−−−−−−−−

−−−
−−−−−−−−
−−−−−
−−−−−
−−−−−−−
−−−
−−−−−−−
−−−−−−
−−−−−−
−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−

−−−−−−−−
−−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−
−−−−−−−−
−−−−−−−
−−−−−−−−
−−−−−−−
−−−−−−−
−−−−
−−−−−−
−−−−−−−
−−−−−
−−−−−−−−
−−−−−
−−−−−−−
−−−−−−−
−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−
−−−−
−−−−−
−−−−
−−−−−−
−−−−−−
−−−
−−−−
−−−−−−
−−−−
−−−−−
−−−−−
−−−
−−−
−−
−−−
−−−−−−
−−−−
−−
−−−−−
−−
−−−−−
−−−−
−−−
−−
−−−−−
−−−
−−−−−−
−−
−−−−
−−−
−−−−−−
−−−−−−−
−−−−−−−−−
−−−−
−−−−−−−−
−−−−−−−−−−−
−−−−−−−−−
−−−
−−−−−−
−−−−−−−−−
−−−−
−−−−−−−
−−−−−−−
−−−
−−−−
−−−−−
−−−−
−−−−−−
−−−−
−−−−−
−−−−−−
−−−−−
−−−
−−−
−−−−−
−−−−−
−−−−
−−−−
−−−
−−−−−−
−−
−−−−−
−−−−−−
−−
−−−−
−−−−
−−−−
−−−−
−−−−−
−−−−−
−−−
−−−−
−−
−−−−
−−−
−−−
−−−
−−−−−−
−−−−
−−−−
−−−−
−−
−−
−−
−−−−−
−−−−−
−−−−
−−−−
−−−
−−
−−
−−−
−−−−
−−−−−
−−−−
−−−
−−−
−−−−
−−
−−−
−−−
−−−
−−−
−−−
−
−−
−−
−−
−
−
−
−

−
−
−

−

−

●●

Cmax,Cmax+,Cmax−
Cmin,Cmin+,Cmin−
Cmax::trace
Cmin::trace

0 200 400 600 800 1000

0
1
0

2
0

3
0

4
0

Window Size (in events)
 [Prox of Cmax = 0.05 Prox of Cmin = 0.02]

E
v
e
nt

C
o
u
nt

Normal

(a) Normal Curves

● ●●●

●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

● ●●●

●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

−

−−−−−−−
−

−
−−−
−−

−−
−−−−−
−

−
−−−−−
−−

−−
−−−−

−

−−−−−−−
−−

−
−
−−−

−

−−−−−
−−
−
−−
−
−
−−−

−

−−−−−−
−−
−
−

−−−
−

−
−−−−−−
−
−
−−
−
−−−

−
−

−−−−−
−−−
−−
−−
−−

−
−
−

−−−−−
−−−
−
−−
−−
−

−

−

−
−−−−−−
−−−
−−
−−

−
−

−−
−−
−−−−
−−−
−−−

−
−
−

−
−−
−−−
−−−
−−−
−

−

−

−
−−
−−
−−−−
−−
−−−
−−
−

−−
−−
−−
−−

−−
−−−
−
−
−−−

−−
−−
−
−−−
−
−−
−
−−−
−−−−
−−−
−−
−−
−−−−−
−−−−−−−−−−
−−
−−
−−−−
−−−
−−−
−−−
−−−
−−−
−−
−−−
−−−
−−
−−
−
−−
−−
−−
−−
−−
−−
−
−−
−−
−
−−
−−
−−
−−
−−
−−
−−
−
−
−
−−
−−
−−
−−
−
−
−
−−
−−−
−−−
−−
−−
−
−−
−−
−
−
−−
−−
−−
−−−
−
−
−
−
−−
−
−−
−−
−
−−
−−
−−
−
−−
−
−
−−
−
−
−−−
−−−
−−
−
−−
−
−
−
−−
−−
−
−
−
−−
−−
−
−
−
−−
−
−−
−
−
−
−
−−
−−
−−
−
−
−
−−−
−−
−
−
−−
−−
−−
−
−−
−
−
−−
−

−−
−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−
−−−−−−−−−−−
−−−−−−−
−−−−
−−−−−−−
−−−
−−−−−−−−−−−−−−−−−−

−−−−−−−
−−−−
−−−−−
−−−
−−−−−−
−−−−−−−−−−−−−
−−−−
−−
−−
−−−−−
−−−−−
−−−
−−−−
−−−−−
−−−−−−−
−−−−−
−−−−−−
−−
−−−−
−−−
−−
−−
−
−−−−
−−−
−−
−−−−
−−
−−
−−−−
−−−
−−−
−−−
−−−−
−−−−−
−−−−−−
−−−−−−−−−−
−−−−−−−−
−−−−
−−−
−−−−
−−−−−−−
−−−−−
−−−−
−−−−−
−−−−
−−−
−−−−−−−
−−
−−
−−−−
−−
−−−−−−
−−−−
−−
−−−−
−−
−−
−−−
−−
−−−
−−−−−
−−
−−−
−−−
−−−
−−−−−
−−−
−−−
−−−
−−−
−−−−
−−−−
−−−−
−−
−−−−
−−−
−−
−−−
−−−
−−−−−
−
−−
−−−
−−−
−−
−−
−−−
−−−−
−−−
−−−
−−
−−
−−−
−−−
−−−
−−
−−−
−−
−−−
−
−−−−
−−
−−
−−
−−
−−
−−
−−−
−−−
−−−
−
−
−−−
−−−
−
−−−
−−
−−−
−−−
−
−
−
−−−
−−−
−−
−−−
−−−
−
−−−
−
−−
−−
−−−−
−−
−−−−
−−−
−−
−−−−−−−
−
−−−
−−−−−−
−−
−−−
−−−−−−−
−−
−−−−−−−
−−
−−
−
−−−−−
−−−−−
−−−−
−−
−−
−−−
−−−−
−−−−
−−−
−−
−
−
−−−
−−
−−−
−−−
−−−
−−−
−−
−−
−−−
−−
−
−−
−−−−−
−−
−−
−
−−
−−
−−
−−
−−−−
−−
−
−−
−−
−−
−−
−−
−−
−−−
−−
−−
−−−
−−−
−−−
−−
−
−
−−
−−
−−
−−
−
−−−
−−
−−
−−
−−
−−−
−
−−−
−−
−−−
−−
−
−−−
−−−
−−
−−
−−
−−
−−
−−−−
−−
−−
−−−
−−
−−
−−
−
−−
−
−−−−
−
−−
−−−
−−−
−−
−−−
−−
−−
−
−
−
−−
−
−−
−−
−−−
−−
−−
−−
−−−
−−
−−
−−−
−−
−−
−
−
−−
−−−
−−
−−
−
−−
−
−
−−
−−

−

−

−
−

−

−

−

−

−

−−−−−
−
−−

−
−−−
−−
−−
−−−−
−
−

−
−−−−−
−−

−−−−−
−

−

−−−−−−−
−−
−−−
−−

−

−−−−−
−−
−−
−
−−
−−
−

−

−−−−−−
−−
−−
−−
−
−

−
−−−−−−
−
−
−−
−−−
−

−
−

−−−−−
−−−
−−
−−
−
−

−
−
−

−−−−−
−−−−
−−
−−
−

−
−

−
−−−−−−
−−−
−−
−−

−

−

−−−
−−−
−−−
−−
−−−

−

−
−

−
−−
−−−
−−−−
−−−

−

−

−
−−−
−
−−−−
−−−
−−
−−
−

−−
−−
−−
−−
−−
−−−
−
−
−−−
−−
−−
−
−−−
−
−−
−−−
−−−
−−−−
−−
−−
−−−−−−
−−−−−−−−−−
−−
−−
−−−−
−−
−−−
−−
−−−
−−
−−−
−−
−−−
−−−
−−
−−
−
−−
−−
−−
−−
−−
−−
−
−−
−−
−
−−
−−
−−
−−
−−
−−
−−
−
−
−
−−−
−−
−
−−−
−
−−
−
−−−
−−−
−−
−−
−
−−
−−
−−
−−
−−
−−
−−−
−
−−
−
−−
−
−−
−−
−
−−
−−
−−
−
−−
−
−
−−
−
−
−−−
−−−
−−
−
−−
−
−
−
−−
−
−
−
−
−
−−
−−
−
−
−
−−
−
−−
−
−
−
−
−−
−−
−−
−
−
−
−−−
−−
−
−
−−
−−−
−
−

−

−−−−−−−−

−
−−−
−−

−−

−
−−−−−

−
−−−−−
−−

−−

−−−−

−

−−−−−−−
−−

−
−

−−−
−

−−−−−
−−
−
−−
−
−
−−−

−

−−−−−−
−−
−
−

−−−−

−
−−−−−−
−
−
−
−
−
−
−−
−
−

−−−−−
−−−
−−
−−

−−

−
−
−

−−−−−
−−−
−
−−
−−
−

−

−

−
−−−−−−
−−−
−−
−−

−
−

−−
−−
−−−
−−
−−
−−−
−
−
−
−
−−
−−
−
−
−−
−−
−−
−
−
−
−−
−−
−−−−
−−
−−
−−
−
−
−−
−
−−−
−−

−
−−
−−−
−−
−−

−−
−−
−
−−−
−
−−−
−−−−−
−−
−−−
−−
−
−−−−−−
−−−−−−−−−−
−−
−−
−−−−
−−−−
−−
−−−−
−−
−−−
−−
−−−
−−−
−−
−−
−−
−
−−
−−
−−
−−
−−
−
−−
−−−
−−
−
−
−−
−−
−−
−−
−−
−
−
−
−−
−−
−−
−−
−
−
−
−−
−−−
−−−
−−
−−
−
−−
−−
−
−−
−−−
−−
−−
−−
−
−
−
−−
−
−−
−
−−
−−
−−
−−
−
−−
−
−
−−
−
−
−−−
−−−
−−
−
−−
−
−
−
−−−
−−
−
−
−−
−−
−
−
−
−−
−
−−
−
−
−
−
−−
−−
−−−
−
−
−−−−
−−
−
−−
−−
−
−
−
−−−
−
−−
−−
−−
−−
−−
−−

−−−
−−
−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−
−−−−−−−−−
−−−−−−−
−−−−−−−
−−−−−
−−−−−−
−−−−−
−−−−−−−−−−−−−−−

−−−−−
−−−−−−−
−−
−−−−−
−−−
−−−−−−−
−
−−−−−−−−−−−−−
−−−−
−−
−−
−−−
−−−−−
−−−−
−−−−
−
−−−−−
−−−
−−−−−
−−−−
−−−−
−−−−
−−
−−−
−−
−−
−−
−
−−−−
−−−
−
−−−−
−−
−−−
−−−−
−−
−−−
−−−−
−−−−
−−−−−−−
−−−−−−
−−−−−−−−
−−−−−−−−
−−−−
−−−
−−−−
−−−−−−−
−−−−−
−−−
−−−−−
−−−−
−−
−−−−
−−−−−
−−
−
−−−
−−
−−
−−−−
−−−
−−−
−−
−−−−
−
−−−
−−−
−
−
−−
−−−
−−−−
−−−
−−−−
−−−
−−−−−
−−−
−−−
−−
−−−−
−−−
−−
−−−
−−−
−
−−
−−−−
−−−
−
−−−
−−
−−
−−
−−−
−
−−
−−−
−−
−−
−
−−
−−−
−−−
−−
−−−−
−−−
−−
−−−
−−−
−−
−−
−
−−−
−−
−
−−−
−−−−
−−
−−
−−
−−
−
−
−−
−−−
−−−
−−
−−
−
−−
−−−
−
−
−−−
−−
−−
−
−−−
−
−
−
−−−−
−−
−−
−−−
−−−
−−
−−−
−−
−−
−−−−
−−
−−−−
−
−−
−−
−−−−−−−
−
−−−
−−−−−−
−−
−−−
−−−−−−−
−−
−−−−−−−
−−
−−
−
−−−−−
−−−−−
−−−−
−
−
−−
−−
−−−
−−−−−
−−−
−−−
−
−
−−
−−
−−−−
−−−
−−−
−−−
−−
−−
−−
−−−
−
−−
−−−−−
−−
−−
−
−−
−−
−
−−
−−−
−−−
−−
−
−−
−−
−−
−−
−
−
−−
−−−−
−−
−−−
−−−
−−−
−−
−
−
−−
−−
−−
−−
−
−−−
−−
−−
−−
−
−−
−−−
−−
−
−−
−−−
−−
−
−−−
−−−
−−
−−
−
−
−
−
−
−−−−
−−
−
−−
−−−
−−
−−
−−
−
−−
−
−−−−
−
−−
−−
−−
−−
−
−
−−−
−−
−−
−
−
−
−−
−
−−
−−
−−−
−−
−
−−
−
−−−
−−
−
−
−−−−
−
−−
−
−
−−
−−−
−−
−−
−
−−

−
−
−−
−−

−

−

−−−
−−−−−−−−−−−−−−−−

−−−−−−−−−−−
−−−−
−−−−−−−
−−−−−−−−−−−−−−−−−−

−−−−−−−−−−
−−−−−−−
−−−−−
−−−−−−−−−−−−−−−−−−−

−−−−
−−−
−−−−
−−−−−−−−−
−−−−−
−−−−−
−−−−−−−
−−−−−−−−
−−−−−
−−−−−
−−−−
−−−
−−−−
−−−
−−−
−−−−−
−−−
−−−−
−−−
−−−
−−−
−−−
−−−−−
−−−−−−−−
−−−−−−−−−−−
−−−−−−−
−−−
−−−−−−
−−−−−−−
−−−−−−
−−−−−−−
−−−−−
−−−−−
−−−−−−
−−
−−−−−
−−−−
−−−−−
−−−−
−−−−−
−−−−
−−−
−−
−−−
−−−−−−
−−−
−−−−
−−−
−−−−−
−−−
−−−
−−−−−−
−−−−
−−−−
−−−−
−−
−−−−
−−−−
−−−−
−−−−
−−−−−
−−
−−−
−−−−−
−−
−−−
−−−−−
−−−−
−−−
−−
−−−
−−−−
−−−
−
−−−
−−
−−−
−−
−−−−
−−
−−
−−
−
−−
−−
−−−−−
−
−−−
−
−
−−−
−−−
−
−−−−
−−
−−
−−−
−−
−−
−−−
−−−
−
−−−
−−−
−
−−−
−−
−−
−−−−−
−−
−−−−
−−−
−−
−−−−−−−
−−
−−−−−
−−−−
−−−−
−−−−−−−−
−−
−−−−−−−
−
−−−
−−−−−−−−−
−−−−−
−−
−−
−−−−
−−−−−
−−−
−−
−−−
−
−−−
−−−
−−
−−−
−−−
−−−−
−−
−−−
−−−
−
−−
−−−−−
−−−
−−
−−
−−
−−−
−−−
−−−−
−
−−−
−−−
−−
−−
−−−
−−−−
−−
−−−
−−−
−−−
−−−
−
−−
−−−−
−−
−
−−−−
−
−−
−−−
−−−−
−−
−−−
−−
−−−
−
−
−−−
−−−
−−
−−
−−
−−
−−−−−
−−−
−−
−−−
−−
−−
−−
−
−−
−
−−−−
−−
−−−
−−−−
−−
−−−
−−
−−
−
−−
−−
−
−−−
−
−−−
−−
−−−
−−
−−

−−
−−
−−−
−−
−−
−−
−−
−−
−
−−
−−
−−
−
−
−
−−
−−

−
−

−
−

−

−

−

−

−

●●

Cmax,Cmax+,Cmax−
Cmin,Cmin+,Cmin−
Cmax::trace
Cmin::trace

0 200 400 600 800 1000

5
1
0

1
5

2
0

Window Size (in events)
 [Prox of Cmax = 0.48 Prox of Cmin = 0.42]

E
v
e
nt

C
o
u
nt

Anomalous

(b) Anomalous Curves

Fig. 5: THREAD_THRUNNING using two unknown traces

Figure 5a shows Prox values of 0.06 and 0.02 for max- and
min-curves respectively, hence the trace is declared normal

using a Prox threshold of 0.10. Curves of Figure 5b show
Prox values of 0.48 and 0.42 for max- and min-curves
respectively, hence the trace is declared anomalous using the
same threshold.

To obtain the final analysis result for the unknown trace, we
use a straightforward voting technique that uses the classifier
results obtained using a defined set of event types ε within
that trace. In the next section, we discuss the significance of
using different values for the tunable framework parameters
on experiments results.

VI. EXPERIMENTAL EVALUATION

In this section, we use event traces generated from deployed
real-time systems of two industrial case studies to show the
feasibility of the applications proposed in Section V.

UAV Case Study: We use kernel event traces generated
from a unmanned aerial vehicle (UAV) running the real-time
operating system QNX Neutrino 6.4. The UAV was developed
at the University of Waterloo, received the Special Flight
Operating Certificate (SFOC), and flew real mapping and
payload-drop missions in Nova Scotia and Ontario. The trace
snippet in Figure 6 shows the event attributes used in our
experiments.

class ,event ,pname
PROCESS ,PROCCREATE_NAME ,proc/boot/procnto-instr
THREAD ,THREADY ,proc/boot/procnto-instr
THREAD ,THRECEIVE ,proc/boot/devc-seromap
..... ,..... ,.......

Fig. 6: QNX Trace Snippet

The snippet is generated using the tracelogger and tra-
ceprinter utilities available in QNX Neutrino. In the exper-
iments, an event type ε has a unique value that combines the
values from the three attributes described in the snippet as
an event from an event class that is generated by the
kernel while running a specific process pname. We generated
254 UAV traces where each trace consists of a stream of
roughly 10K events. These traces are generated from four
anomalous execution scenarios. One scenario implements a
task that interferes with system tasks by running a while-
loop to consume CPU time, two scenarios implement a job
executed every few seconds where the task is scheduled using
two different scheduling algorithms (e.g., FIFO and sporadic
scheduling), and the last scenario corresponds to a normal
execution behaviour but does not conform to the training
traces.

CAN Case Study: We captured 167 traces of CAN mes-
sages from a production vehicle during different driving sce-
narios. Each trace consists of roughly 10K CAN messages
which represents 10 seconds of message capturing during the
following driving scenarios: starting and stopping the engine,
accelerating and decelerating between speeds of 0 and 40
km/h, and making lane changes to the left and to the right.
On average, a trace has messages of 42 different CAN IDs,
we combine the bus ID with the CAN message ID to obtain

an event type ε, e.g., a CAN message on bus 1 with ID 2C4
has a type of 12C4.

A. Extracting Recurrent Behaviour

We now provide the initial empirical evaluation for the
conjecture presented in Section V-A using traces from the
CAN case study, and then further evaluation using a subset
of traces from the UAV case study.

Since CAN messages sent over a vehicle communication
bus are often periodic, the aim of this case study is to validate
our conjecture on traces known to exhibit recurrent behaviour.
Using ∆max = 5000 messages to extract recurrent behaviour
of CAN messages IDs occurring frequently, the experiments
show that 10 out of 15 frequently occurring event types exhibit
strong recurrent behaviour within the collected traces. Such
recurrent behaviour is indicated by a decaying sinusoidal acf
output of Cdiff as discussed in the previous section.

0 1000 2000 3000 4000 5000

−
0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (in Events)

A
ut
o
−
c
o
r
r
el
at
i
o
n

Event: THREAD THREPLY ∆p = 827

(a) UAV Recurrent Pattern

0 1000 2000 3000 4000 5000

−
0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (in Events)

A
ut
o
−
c
o
r
r
el
at
i
o
n

Message: 1−B4 ∆p = 12

(b) CAN Recurrent Pattern

Fig. 7: Extracting Recurrent Behaviour Experiments

As the UAV case study uses QNX event traces generated
by a real-time system, we expect the traces to show signs
of recurrent behaviour. We use a subset of roughly 60 traces
which consist of a stream of 10K events each to represent
the three different execution scenarios: normal, full-while, and
fifo-ls. The normal execution scenario shows that 19 out of
22 event types have recurrent behaviour in the generated
traces. The fifo-ls scenario shows similar numbers of event
types having recurrent behaviour, however such behaviour
occurred with different intervals ∆p. The full-while scenario
shows on average of 7 event types to have recurrent behaviour
meaning that several events lost the recurrent behaviour due
to the highly utilized CPU behaviour affecting the behavioural
patterns of the system.

Figure 7 provides a sample of the result of autocorrelation
function applied to the Cdiff curves obtained from both case
studies where Figure 7a corresponds to the curve of a QNX
event type THREAD_THREPLY while Figure 7b corresponds
to the curve of a CAN message B4 from the vehicle CAN bus
ID 1. Both curves shows the recurrent behaviour within the
generated trace that can be characterized using the recurrence

windows ∆p = 827 events and ∆p = 12 messages respec-
tively.

The number of events that showed recurrent behaviour in
both case studies highlights the applicability of using inter-
arrival curves for the purpose of characterizing the recur-
rent behaviour of real-time systems using their event traces.
The promising technique can be applied similarly to generic
streams of recorded events as function calls, system tasks, etc.

B. Anomaly Detection Analysis

To evaluate the anomaly detection framework discussed in
Section V-B, we use a modelling set of roughly 100 known
traces of an expected behaviour from the UAV and a set of
roughly 40 unknown traces divided equally between normal
and anomalous traces for each experiment. Note that the
normal traces used in the testing phase were different from
the ones used in the training phase.

The experiments show the results of classifying the un-
known traces as normal or anomalous where we evaluate
the classification performance using the receiver operating
characteristic (ROC) curve [24]. An ROC curve plots the True
Positive Rate (TPR) values on the y-axis versus the False
Positive Rate (FPR) values on the x-axis which are obtained
by varying the binary classifier threshold values. The TPR and
FPR are calculated using the following equations:

TPR =
True Positives Detected by Classifer

Actual Positives in Testing Set
(11)

FPR =
False Positives Flagged by Classifier

Actual Negatives in Testing Set
(12)

An ROC with a higher area under the curve indicates a better
classifier where the point on the top-left corner (0%, 100%)
indicates a perfect classification result. The line TPR = FPR

corresponds to a classifier which is as good as a random
classifier.

Tuning Framework Parameters. The implemented frame-
work has some tuning parameters that can be used to achieve
better classification results. Such tuning operation also ensures
that the model does not overfit the set of normal traces.
We explain how to use the prior knowledge to tune the
following framework parameters along with experiments that
show their effect on the classification results: voting threshold
on anomalous curves count denoted as νa, the significance
percentage of an event type ε within a trace denoted as S%,
and the maximum events window duration denoted as ∆max.

The voting threshold νa specifies the minimum number of
anomalous inter-arrival curves computed using a trace so that
the binary classifier declares the trace as anomalous. Tuning
the threshold controls how strict the classification is. For
example, a strict classifier with νa = 1 will consider a trace
to be anomalous if only a single inter-arrival curve turned out
to be anomalous. In practice, this setting would lead to high
false alarms as some event types within a normal trace might
still yield inconsistent inter-arrival curves, so a low value for
νa would raise more false alarms and lead to a higher false
positive rate.

The significance percentage parameter, S%, specifies the
minimum proportion of events of the same type in a trace
before that type is considered significant. Choosing a value for
S% requires preliminary analysis of training traces to study
the occurrence frequency of the different event types, that
is to choose S% values that yield an appropriate count of
event types contributing to the classification procedure in the
framework. We want a value of S% high enough to capture
just enough significant event types to accurately distinguish
traces with fundamental differences using their inter-arrival
curves. However, using more event types ε in the training
model might overfit the training data and hence degrade the
classifier performance.

The last parameter, ∆max, specifies the maximum duration
for a sliding window of events. Increasing ∆max might
allow detection of anomalies whose disruption effect might
go undetected using shorter window sizes. The deviation in
Figure 5b between the result obtained using a testing trace
with respect to the training model is significant after ∆ & 200
events, so using a ∆max = 200 events will classify the curve
of that event type to be normal however using a ∆max = 1000
events will correctly classify it as anomalous. It is important
to note that such detection comes at higher computation
cost. That is why we consider it to be the last resort while
tuning parameters for better classification results. However,
increasing ∆max might have an over-fitting effect on the
training model which raises the FPR during testing. For our
case studies, experimental results represented by ROC curves
show that using ∆max = 500 events achieves classification
results better than using ∆max = 1000 events.

Table I shows the best classification results obtained for
the different anomalous scenarios after tuning the previously
mentioned parameters. Since results of scenarios fifo-ls and
different-normal achieved only less than perfect classification
results, we show the best classification results indicated by the
ROC curves in Figure 8. The full dataset of results generated
by our algorithms are available publicly [25]. The values in the
figure corresponds to the tuned ∆max and S% while varying
νa over a range of [2, 5]. Using other values for the tunable
parameters yielded poor classification results, i.e., ROC having
less area under the curve.

Scenario TPR FPR Framework Parameters Values

full-while 100% 0% ∆max = 500, S% = 3, νa = 3
different-normal 100% 0% ∆max = 500, S% = 1, νa = 4

sporadic-ls 97% 0% ∆max = 500, S% = 3, νa = 5
fifo-ls 94% 0% ∆max = 500, S% = 3, νa = 3

TABLE I: Classification Results

The results in Table I and Figure 8 show the feasibility of the
proposed framework and its applicability to real-time systems
deployed for industrial purposes. The lack of publicly available
datasets hinders the process of comparing the different feature
extraction techniques to each other [26]. To address that,
we are working on making our framework implementation
publicly available and compatible with generic event streams

from different sources. However, one main difficulty specific
to cyber-physical systems is that these systems all have their
own format for event traces which is not the case with research
techniques developed for more common traces, e.g., Java
execution traces.

0 20 40 60 80 100

0
20

40
60

80
10

0

False Postive Rate (FPR) %

Tr
ue

Po
st

iv
e

R
at

e
(T

P
R

)
%

Using S% = 3 and ∆max = 500

0 20 40 60 80 100

0
20

40
60

80
10

0

False Postive Rate (FPR) %

Tr
ue

Po
st

iv
e

R
at

e
(T

P
R

)
%

Using S% = 3 and ∆max = 500

0 20 40 60 80 100

0
20

40
60

80
10

0

False Postive Rate (FPR) %

Tr
ue

Po
st

iv
e

R
at

e
(T

P
R

)
%

Using S% = 3 and ∆max = 500

0 20 40 60 80 100

0
20

40
60

80
10

0

False Postive Rate (FPR) %

Tr
ue

Po
st

iv
e

R
at

e
(T

P
R

)
%

Using S% = 3 and ∆max = 500

νa
2
3
4
5

(a) sporadic Scenario

0 20 40 60 80 100

0
20

40
60

80
10

0

False Postive Rate (FPR) %

Tr
ue

Po
st

iv
e

R
at

e
(T

P
R

)
%

Using S% = 3 and ∆max = 500

0 20 40 60 80 100

0
20

40
60

80
10

0

False Postive Rate (FPR) %

Tr
ue

Po
st

iv
e

R
at

e
(T

P
R

)
%

Using S% = 3 and ∆max = 500

0 20 40 60 80 100

0
20

40
60

80
10

0

False Postive Rate (FPR) %

Tr
ue

Po
st

iv
e

R
at

e
(T

P
R

)
%

Using S% = 3 and ∆max = 500

0 20 40 60 80 100

0
20

40
60

80
10

0

False Postive Rate (FPR) %

Tr
ue

Po
st

iv
e

R
at

e
(T

P
R

)
%

Using S% = 3 and ∆max = 500

νa
2
3
4
5

(b) fifo-ls Scenario

Fig. 8: Effect of Tuning Count Threshold νa on Classification

Complexity and Parallelism. Sliding window techniques
are computationally exhaustive with complexity O(|T |2) where
|T | is the number of events within a trace T [2]. However,
that complexity can be reduced using pruning techniques that
do not necessarily perform all possible computations [27].
Similarly in our framework, we reduce computations needed
to calculate inter-arrival curves for a reduced set of significant
event types controlled by S%.

We implemented our technique using the R programming
language to calculate the Cmin and Cmax curves and the auto-
correlation of the Cdiff curve. We obtain the ROC curve values
of FPR, TPR using ROCR R library [28]. Implementing inter-
arrival curves using a sliding windows technique is well-
suited for parallelism because the computations performed on
different windows are completely independent. For the parallel
computations, we used the doMC R library [29] to benefit from
our experimentation machine having 32 CPU cores spread
on four processors with an 8-core Intel Xeon E5-2630 V3
2.4GHz each. Although the computation times achieved using
that approach were reasonable, we implemented inter-arrival
curves via a more scalable Cartesian product approach that
is more computationally efficient however, consumes more
memory. The computation of the curves and the analysis for
classification takes ∼ 2 to 3 seconds using a trace of 10K
events and ∆max = 1000 events.

VII. DISCUSSION

The experimental results in Section VI show the technical
feasibility and viability of using inter-arrival curves for the
proposed applications. The ROC curves show how the intro-
duced framework can detect anomalies in the behaviour of
real-time systems.The mentioned computation time demon-
strates the practicality of using discrete event traces, which
despite being less informative still capable of modelling the
system behaviour for anomaly detection purposes.

The autocorrelation function applied to Cdiff verifies the ex-
istence of recurrent behaviour of interval ∆p within their event
traces. The approach requires further work to extract char-
acteristic sub-traces for online anomaly detection purposes.
Further research work can adopt different curve representation
and model aggregation functions in addition to more curve
similarity techniques for better classification results.

We highlight that inter-arrival curves are not capable of
detecting anomalies that affect events timing because the
behavioural model does not consider event timestamps. Also,
inter-arrival curves will not be able to detect anomalies that
have a minor disruption to the event trace which is not enough
to deviate the system from its well-specified behaviour.

VIII. CONCLUSION

Following the success of well-known arrival curves in
performance analysis of real-time systems, we introduced
inter-arrival curves as a special form of arrival curves to be
used as an analytical modelling technique using event traces
along with quantifiable metrics for reasoning. We integrated
inter-arrival curves into an anomaly detection framework and
provided initial evidence on the suitability of inter-arrival
curves for detecting recurrent system behaviour using event
traces. The experiments validate our work using industrial case
studies from two different application domains.

REFERENCES

[1] A. Pimentel, L. Hertzbetger, P. Lieverse, P. van der Wolf, and E. Depret-
tere, “Exploring embedded-systems architectures with artemis,” Com-
puter, vol. 34, no. 11, pp. 57–63, Nov 2001.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection for
discrete sequences: A survey,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 24, no. 5, pp. 823–839, 2012.

[3] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet. Springer Science & Business
Media, 2001, vol. 2050.

[4] K. Altisen, Y. Liu, and M. Moy, “Performance evaluation of components
using a granularity-based interface between real-time calculus and
timed automata,” CoRR, vol. abs/1004.2637, 2010. [Online]. Available:
http://arxiv.org/abs/1004.2637

[5] L. T. X. Phan, “Towards a safe compositional real-time scheduling
theory for cyber-physical systems,” AVICPS 2013, p. 21, 2013.

[6] S. Perathoner, T. Rein, L. Thiele, K. Lampka, and J. Rox, “Modeling
structured event streams in system level performance analysis,” in ACM
Sigplan Notices, vol. 45. ACM, 2010, pp. 37–46.

[7] A. Bouillard, A. Junier, and B. Ronot, “Hidden anomaly detection in
telecommunication networks,” in Proceedings of the 8th International
Conference on Network and Service Management. International Fed-
eration for Information Processing, 2012, pp. 82–90.

[8] K. Huang, G. Chen, C. Buckl, and A. Knoll, “Conforming the runtime
inputs for hard real-time embedded systems,” in Proceedings of the 49th
Annual Design Automation Conference. ACM, 2012, pp. 430–436.

[9] B. Hu, K. Huang, G. Chen, and A. Knoll, “Evaluation of runtime
monitoring methods for real-time event streams,” in Design Automation
Conference (ASP-DAC), 2015 20th Asia and South Pacific. IEEE, 2015,
pp. 582–587.

[10] V. Chandola, V. Mithal, and V. Kumar, “Comparative evaluation of
anomaly detection techniques for sequence data,” in 2008 Eighth IEEE
International Conference on Data Mining. IEEE, 2008, pp. 743–748.

[11] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs.” in DATE, vol. 3. Citeseer, 2003, p. 10190.

[12] K. Banerjee and P. Dasgupta, “Acceptance and random generation of
event sequences under real time calculus constraints,” in Proceedings
of the conference on Design, Automation & Test in Europe. European
Design and Automation Association, 2014, p. 254.

[13] Y. Qiao, X. Xin, Y. Bin, and S. Ge, “Anomaly intrusion detection method
based on hmm,” Electronics Letters, vol. 38, no. 13, p. 1, 2002.

[14] X. Li, J. Han, S. Kim, and H. Gonzalez, “Roam: Rule-and motif-based
anomaly detection in massive moving object data sets.” in SDM, vol. 7.
SIAM, 2007, pp. 273–284.

[15] S. Salvador, P. Chan, and J. Brodie, “Learning states and rules for time
series anomaly detection.” in FLAIRS Conference, 2004, pp. 306–311.

[16] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent
episodes in event sequences,” Data mining and knowledge discovery,
vol. 1, no. 3, pp. 259–289, 1997.

[17] D. Lo, S.-C. Khoo, and C. Liu, “Efficient mining of recurrent rules from
a sequence database,” in Database Systems for Advanced Applications.
Springer, 2008, pp. 67–83.

[18] M.-Y. Su, “Discovery and prevention of attack episodes by frequent
episodes mining and finite state machines,” Journal of Network and
Computer Applications, vol. 33, no. 2, pp. 156–167, 2010.

[19] G. E. Box and G. M. Jenkins, Time series analysis: forecasting and
control, revised ed. Holden-Day, 1976.

[20] S. Laxman and P. S. Sastry, “A survey of temporal data mining,”
Sadhana, vol. 31, no. 2, pp. 173–198, 2006.

[21] M. Natrella, “Nist/sematech e-handbook of statistical methods,” 2010.
[22] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908.
[23] H. B. Mann and D. R. Whitney, “On a test of whether one of two

random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[24] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[25] M. Salem, M. Crowley, and S. Fischmeister, Dataset for Anomaly
Detection Using Inter-Arrival Curves for Real-time Systems. [Online].
Available: http://dx.doi.org/10.5281/zenodo.51472

[26] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[27] A. Ghoting, S. Parthasarathy, and M. E. Otey, “Fast mining of distance-
based outliers in high-dimensional datasets,” Data Mining and Knowl-
edge Discovery, vol. 16, no. 3, pp. 349–364, 2008.

[28] T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer, “Rocr:
visualizing classifier performance in r,” Bioinformatics, vol. 21, no. 20,
p. 7881, 2005. [Online]. Available: http://rocr.bioinf.mpi-sb.mpg.de

[29] R. Analytics, doMC: Foreach parallel adaptor for the multicore package.
[Online]. Available: http://CRAN.R-project.org/package=doMC

