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Abstract—Real-time applications have deadline constraints.
The system should provision sufficient resources for the appli-
cation to meet the deadlines, and use supply and demand bound
functions to analyze the schedulability of workloads. The concept
of the demand bound function describes the upper bound on the
resources required by the application, while the supply-bound
function specifies the lower bound on the resources supplied to the
tasks. If the system provides fewer resources than required, the
application will experience an overload. Most work concentrates
on designing systems that cannot experience short periods of
overloads.

This work explores resource provisioning for control applica-
tions that can tolerate overloads. It introduces analysis techniques
for supply and demand bound functions that specifically consider
overloads and delays in a periodic resource model. With this ex-
tended model, the work addresses three problems: (1) determine
the worst-case delay for a given resource demand and supply
under a periodic resource model, (2) find a periodic resource
supply for a given workload and worst-case tolerable delay, and
(3) for a control system with a given robustness criterion, identify
a periodic resource supply with a worst-case delay.

I. INTRODUCTION

Real-time applications require sufficient resources (i.e.,
computation, communication) to meet their timing require-
ments. Given a set of applications, various schedulability tests
exist to evaluate whether each application receives the required
resources. For instance, in hard real-time systems, a schedula-
bility test, based on supply and demand bound functions [26],
[1], [21], [18], will indicate that insufficient resources are
available when the supply-bound function (sbf ) drops below
the demand bound function (dbf ) for a given time interval.
However, this condition is too conservative for systems such
as soft real-time systems or firm real-time systems that can
tolerate the occurrence of overloads (i.e., situations where
the application requires more resources than available) with
a bounded duration. For example, if the system can tolerate
dropping or delaying tasks, the schedulability test will accept
a system whose supply bound function intermittently drops
below the demand bound function.

Overloads can be either transient or permanent. A transient
overload always has a bounded time span until its resolution
and can occur perhaps due to excessive task execution times,
or due to the simultaneous arrival of asynchronous events. A
permanent overload always has an unbounded time span and
will occur if the system is badly designed and unschedulable. A

large class of systems can tolerate the occurrence of overloads
with a specified duration. For example, while control systems
require a certain measure of reliability in their feedback loops
to function correctly, these systems are usually robust to short
delays in their control updates (depending on the dynamics
of the system) [31], [13]. Other applications that fit into this
category are classic soft real-time applications such as video-
on-demand that can show a static image for a few frames when
overloaded, or audio applications.

Compositionality is a way to convert multiple independent
timing requirements of different components of a system into a
single real-time system timing requirement. Satisfying timing
requirements together with logical correctness can make a
real-time system predictable, guaranteeing that it will operate
correctly when deployed. Abstracting timing at the higher
level of system design permits designers to model the system
by eliminating the low-level timing requirements of different
components in cyber-physical systems. Since it is often prefer-
able to work at higher levels of abstraction, compositionality
analysis facilitates design productivity.

Motivated by feedback control systems that are robust to
small delays in the feedback loop, this work investigates an
efficient periodic resource supply model for workloads that
can tolerate transient overloads and delays and extends dbf and
sbf -based techniques to analyze such systems. To characterize
overloads, this paper focuses on the worst-case delay for
recovery. Thereafter, we provide methods for finding a suitable
resource to meet desired delay constraints.

The novelty of the work lies in finding an efficient resource
model for tasks with transient overloads. This work extends
the analysis of periodic resource models using the supply and
demand bound functions as described in [25] by introducing
overloads. Consequently, this extended model can find the
resource supply required for a hierarchical or compositional
system with transient overloads. In this work, we mainly
focus on the application to control systems. The workflow
of the application to control systems is the following: (1) a
control engineer models a physical system and defines the
control objective, (2) the control engineer designs a feedback
controller for the plant based on a given sampling period, (3)
the control engineer determines the maximum tolerable delay
in calculating and applying the feedback inputs, based on the
dynamics of the system, and (4) the system provisions the
computational resources required to perform the computations



within the given delay. This work uses the earliest deadline
first (EDF) scheduling scheme, leaving the extension to other
schemes for our subsequent work.

The remainder of this paper is structured as follows: Sec-
tion II presents an overview of the problem, and the motivating
application of control systems is presented in Section III.
This produces a set of computational and tuning requirements,
along with a specification on the maximum overload (i.e.,
delay) that can be tolerated. Section IV presents the system
model and shows how to characterize overloads using supply
and demand bound functions. Section V presents methods on
calculating a suitable resource supply to meet the workload
timing requirements in the presence of overloads. Section VI
demonstrates the use of the workflow for state feedback control
of two plants. Section VII presents some related work on
schedulability analysis, specifically using supply and demand
bound functions. Section VIII discusses what parameters in the
system model affect the overloads, and Section IX concludes
the paper.

II. PROBLEM STATEMENT

A supply bound function (sbf ) and demand bound function
(dbf ) convert the timing requirements of the workload and the
resource supply into a single timing requirement. Tradition-
ally and informally, the dbf must stay below the sbf in all
time intervals in order to avoid overloads. When permitting
overloads, the sbf can remain below the dbf for bounded time
intervals. Overloads then cause delays as the application must
wait to receive sufficient resources. The worst-case delay δ∗ is
the maximum delay that tasks experience before they receive
their requested resources.

In the context of control systems, a scheduling framework
that supports overloads can help control engineers design
efficient and safe systems. A control system task-specification
might include the worst-case tolerable delay in all time inter-
vals. One can design an efficient resource supply to exploit the
robustness of a given set of tasks to delays. Then, the following
problem identifies the resource supply that the system designer
needs to provide for the control application that permits
overloads:

Goal: Given a control system workload W =
{T1, T2, . . . , Tn} and a worst-case delay (δ∗), find the resource
supply such that W is schedulable under the EDF scheduling
policy and experiences a worst-case delay of at most δ∗.

A solution to this problem is applicable to hard, soft, and
firm real-time systems. For a hard real-time system, δ∗ must be
zero. Soft real-time systems might specify some bound for δ∗.
Firm real-time systems [20] may specify a δ∗ with a probability
of occurring.

III. FEEDBACK CONTROL SYSTEMS WITH DELAYS

Consider a physical system (plant) modeled as a linear
time-invariant system of the form

ẋ(t) = Ax(t) +Bu(t), (1)

where t is the time variable, x(t) ∈ Rn is the state of
the system, u(t) ∈ Rm is the control input applied via the
actuators, and matrices A and B are of appropriate dimensions.

This model is obtained from the physical processes governing
the system under consideration. A typical objective is to choose
the input u(t) so that the system is stable in the following
sense.

Definition 1: The system (1) is said to be asymptotically
stable if limt→∞ x(t) = 0 for any initial condition x(0).

When the full state x(t) is measurable and the pair (A,B)
satisfies an algebraic property known as stabilizability [6], it
is possible to find a state-feedback control input of the form
u(t) = Kx(t) such that the system is asymptotically stable
(where K is an appropriate m × n gain matrix). When the
plant is controlled over a network, however, stabilization is
complicated by issues such as sampling, delays and packet
drops. There has been a large amount of research devoted to
characterizing conditions under which stabilization is possible,
for various assumptions on the system and the network [31],
[13], [7], [14], [12], [23], [22]. This work follows the approach
in [7], which presented a general and computationally efficient
method to obtain bounds on the delays that can be tolerated
by a given control system.

First, we assume that the plant state is sampled every p
seconds to produce the state measurements x(tk), where tk =
kp for k ∈ N. These state measurements are then sent over
the network to the controller (i.e., a computational resource),
which calculates the control input u(tk) = Kx(tk) and sends
this value to the plant’s actuators, where it is held until the
next input is received. There is a delay τk incurred between
measuring the plant’s state at time tk and applying the input
u(tk). Thus, as in [7], the system evolves as follows:

ẋ(t) = Ax(t) +BKx(tk), t ∈ [tk + τk, tk+1 + τk+1).

Let τ∗ be the maximum possible delay over the network (i.e.,
τ∗ = supk∈N τk). The following result from [7] provides a
method to determine whether the system will be stable with a
given worst-case delay and feedback gain K.

Theorem 1 ([7]): For a given scalar η and matrix K, if
there exist matrices P > 0, T > 0, Ni and Mi (i = 1, 2, 3) of
appropriate dimensions such that (3) is true, then the system
is asymptotically stable with the state feedback input u(t) =
Kx(tk), t ∈ [tk + τk, tk+1 + τk+1), as long as the sampling
period p and worst-case delay τ∗ satisfy

p+ τ∗ ≤ η. (2)

For a square symmetric matrix P , the notation “P > 0” in
the above theorem indicates that the matrix is positive definite.
The matrix in (3) is symmetric, and to save space, the ∗
symbols are used as placeholders for the appropriate matrix
elements. When η is a fixed constant, the above expression is
a Linear Matrix Inequality, which can be solved efficiently
for the unknown matrices P, T,Ni and Mi using convex
programming software such as CVX [4], [11]. One can find
the largest value of η for which the system will be stable by
using bisection.

To relate the above characterization of stability to the
characterization of overloads or delays, we note that the worst-
case delay δ∗ represents the longest length of time after the end
of any task’s period that would be required for the necessary
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computational resources to become available. Thus, from the
perspective of the control system, the longest possible delay
seen by a packet generated at time tk would be τ∗ = p + δ∗

(i.e., the length of one period plus the maximum additional
time required to obtain the desired resources). Thus, once we
find a worst-case value for η from Theorem 1, we can obtain
an upper bound on δ∗ from Equation (2) as

δ∗ = η − 2p.

Figure 1 outlines how developers can use the results of
this work. After the control engineer designs the system,
she computes the dbf of the application, and specifies the
upper bound on the worst-case delay (for example, using the
technique described above). Second, using our algorithms as
specified in Section V, the engineer finds a resource supply
for the resource of interest (e.g., the processor). Third, the
engineer analyzes the sbf , the dbf , and the control system to
determine whether the found supply is sufficient for the system
(e.g., worst-case delay remains below the specified bound). If
the found supply fits the system, then in the fourth step, the
engineer can use the supply to deploy the system; otherwise,
the engineer can tweak the constraints on the supply generation
and find a different supply.

Stability condition satisfied?

Stability condition violated? Compute metrics

Design control and find δ∗

Compute DBF with δ∗

Find resource supply demand with δ∗

Analyze SBF, DBF

Run system

Fig. 1. Workflow for our approach

IV. OVERLOADS IN SUPPLY AND DEMAND CURVES

The system model consists of a periodic resource model
and a periodic workload, consisting of a set of tasks (e.g., the
tasks to process the feedback control signals). A task Ti is
characterized by a tuple (pi, ei) where pi is the period and
ei is the worst-case execution time. We assume the deadline
di of task i is equal to pi. A set of tasks or a workload is
characterized by a set of tuples: {(p1, e1), . . . , (pn, en)}. This
work assumes that all tasks in the system are fully preemptive
and have a known tolerable delay. The hyperperiod of all
tasks’ periods forms the cycle at which the system repeats
its behaviour. A periodic resource model indicates resource
replenishment in each period. Given a periodic resource model
R(λ, θ), tasks are allocated for θ time units in every interval

[kλ, (k + 1)λ], k ∈ N. This work uses the EDF scheduling
policy. The generalization of our work to other scheduling
policies is the object of ongoing research.

A. Characterizing Overloads

Since a periodic resource R(λ, θ) guarantees a supply of
at least θ time units in every interval [kλ, (k + 1)λ], k ∈ N,
the model leaves open how the guaranteed θ time units are
distributed over a time interval of size λ. An instance of the
periodic resource is a time trace of resource allocations that
satisfies the guarantee (λ, θ). For a given workload, the dbf is
the maximum possible resource demand in any time interval
t. Obtained from [26], Equation 4 shows how to calculate the
resource demand for n tasks for the EDF scheduling scheme
for a time interval of length t:

dbf(W,EDF, t) =
∑
Ti∈W

⌊
t

pi

⌋
ei. (4)

The supply bound function (sbf ) calculates the minimum
resource supply in any time interval t. Using Equation 5
from [26], it is possible to calculate the periodic resource
supply in any time interval t as

sbf(t) =


(t− (k + 1)(λ− θ)) if t ∈ [k1, k2]

(k − 1)θ otherwise
(5)

with k1 = (k + 1)λ− 2θ, k2 = (k + 1)λ− θ, and k as

k = max(d(t− (λ− θ))/λe, 1). (6)

Note that, the value of k is greater than or equal to 1.
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Fig. 2. An example of sbf and dbf where ∀t: sbf (t) ≥ dbf (W, t,EDF)

Definition 2 (Overload): An overload is said to occur in a
time interval t when ∃t > 0 : dbf(t) ≥ sbf(t).

While previous work on the periodic resource model [28]
only discusses resource supplies and demands for which the



sbf is always less than the dbf , our work focuses on using the
periodic resource model in systems for which the dbf can be
greater than the sbf for some time intervals. Figure 3 shows
such overloads. Figure 4 shows a more detailed view of a
single overload.

Example 1: Consider a periodic resource supply R(3, 1),
and a scheduling model M(W,R,EDF) that has two tasks in
the workload, W = {T1(6, 1), T2(12, 1)}. Figure 2 shows the
computed sbf and dbf . This workload is schedulable with the
given resource, because the supply is always greater than the
demand.

Slightly changing the workload to W =
{T1(6, 1), T2(12, 2)} makes the system infeasible to schedule.
Figure 3 shows the new dbf . The system is infeasible because
in a time interval of t = 12, the system can experience an
overload, since the dbf is greater than the sbf .
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Fig. 3. An example of an overload (∃t: sbf (t) < dbf (W, t,EDF))
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Fig. 4. A detailed view of an overload shown in Figure 3

An overload starts and ends at a specific time interval at
which the sbf and the dbf intersect before the dbf becomes
greater than the sbf . The points at which this intersection
happen are called points of interest.

Definition 3 (Points of Interest): A point t will be an over-
load point (to), if

∃π > 0 : ∀ε ∈ (0, π] sbf(t− ε) ≥ dbf(t− ε)
and sbf(t) < dbf(t). (7)

A point t will be a recovery point (tr), if

∃π > 0 : ∀ε ∈ (0, π] sbf(t− ε) < dbf(t− ε)
and sbf(t) = dbf(t). (8)

We use these points of interest to define the duration
and severity of an overload. The first recovery point with a
time interval greater than an overload point is the associated
recovery point. Informally, this is the point at which the sbf
catches up to the dbf again.

Definition 4 (Overload duration and severity): For a
given overload point to and its associated recovery point tr
such that to ≤ tr, the duration of an overload is tr − to when
to ≥ t or t− to when tr < to ≤ t, where t is the length of the
time interval under consideration. The severity of the overload
is dbf(to)− sbf(to).

The duration of an overload is a useful metric when
designing the system. The existence of a given overload point
to and its associated recovery point tr means there exist time
intervals of length tr in which the system may be overloaded.
However, at the same time, for time intervals greater or equal
to tr, the system no longer experiences an overload. Thus the
difference tr−to specifies the delay that tasks experience when
waiting for their resources. However, if no such recovery point
tr exists, the delay is taken to be t − to, where t is the time
interval under consideration.

Observation [Duration=Delay]: For a given overload point
to and its associated recovery point tr, the duration of the
overload tr− to or t− to characterizes the delay that tasks ex-
perience during the overload before receiving their demanded
resource.

Definition 5 (Worst-case Delay): For a scheduling model
M(W,R,EDF) with a periodic resource R(λ, θ) and a work-
load W , then under the EDF policy, the maximum of all
overload durations will be the worst-case delay (δ∗) of any
task.

The following observations limit the locations of points of
interest:

1) For an overload point to, the dbf can only exceed
the sbf at points t where the dbf increases. The dbf
only increases at t = m · pi for some positive integer
m and task period pi. Thus, if the system contains
overload points, then they must be values in the set
{mpi : m ∈ N+}.

2) For a recovery point tr, the sbf can only be equal to
or greater than the dbf at points t where the sbf is
increasing, i.e., at t = cλ+ 2(λ− θ) + r, where c is
a positive integer and 1 ≤ r ≤ θ. Thus, if the system
contains recovery points, then they must be of this
form.

We now show that when the resource utilization is equal
to the workload utilization, the overload characteristics of the
system are periodic. In the process, we characterize the length
of the largest time interval that has to be considered to analyze
the system. To do this, we define the function

f(t) = sbf(t)− dbf(t), t ∈ R≥0. (9)



Note that the values of t for which f(t) < 0 correspond exactly
to time intervals where the system is experiencing an overload.

Theorem 2: Consider a system with workload utilization
UW =

∑
i
ei
pi

and resource utilization UR = θ
λ . If UR = UW ,

then after t = 2(λ − θ), the function f(t) is periodic with
period LCM(λ, p1, . . . , pn), i.e.,

f(2(λ− θ) + t+ kLCM(λ, p1, . . . , pn))

= f(2(λ− θ) + t), ∀t ∈ R≥0,∀k ∈ N.

Proof: First, one can verify from Equations (4) and (5)
that dbf(t) and sbf(t) satisfy

dbf(t+ kLCM(p1, . . . , pn)) = dbf(t)+
kLCM(p1, . . . , pn)UW ,∀t ∈ R≥0,∀k ∈ N

sbf(2(λ− θ) + t+ kλ) = sbf(2(λ− θ) + t) + kθ,

∀t ∈ R≥0,∀k ∈ N.

Using these identities, we obtain

f(2(λ− θ) + t+ kLCM(λ, p1, . . . , pn))

= sbf(2(λ− θ) + t+ kLCM(λ, p1, . . . , pn))

− dbf(2(λ− θ) + t+ kLCM(λ, p1, . . . , pn))

= sbf(2(λ− θ) + t) + kLCM(λ, p1, . . . , pn)
θ

λ
− dbf(2(λ− θ) + t)− kLCM(λ, p1, . . . , pn)UW .

When UR = UW , this expression becomes

f(2(λ− θ) + t+ kLCM(λ, p1, . . . , pn))

= sbf(2(λ− θ) + t)− dbf(2(λ− θ) + t)

= f(2(λ− θ) + t),

which proves the theorem.

The function f(t) fully captures the relative behavior of
the supply bound function and the demand bound function,
and the entire function f(t) is characterized by its values in
the interval [0, 2(λ−θ)+LCM(λ, p1, . . . , pn)). Thus, we only
need to analyze the system for intervals up to this length to
determine schedulability. We will use this fact in the rest of
the paper.

B. Computing the Points of Interest

Overloads can only occur at the points where the dbf in-
creases, because the sbf is a monotonically increasing function.
A recovery can only occur at points where the sbf increases
and the dbf remains flat. Since overload points and recovery
points are located at intersection points, it is possible to find
these points by solving the equation sbf(t) = dbf(W,EDF, t):


∑
Ti∈W b

t
pi
cei = (t− (k + 1)(λ− θ)) if t ∈ [k1, k2]

∑
Ti∈W b

t
pi
cei = (k − 1)θ otherwise.

(10)

We use the algorithms (Algorithm 1 and Algorithm 2)
to find the overload and recovery points to Equation 10.
Algorithm 1 identifies all overload points in any interval of

length t. Algorithm 2 computes the recovery points associated
with each overload point. The algorithm uses Equation 8 to
determine the points.

Algorithm 1 Finding all overload points in intervals of length
up to t
Output: Ordered list of overload points Lo

1: for every i→ 1, . . . , |W | do
2: for every 1 ≤ m ≤ b tpi c do
3: if mpi satisfies (7) then
4: Lo ← Lo ∪mpi
5: end if
6: end for
7: end for

Algorithm 2 Finding all (to, tr) pairs in intervals of length up
to t
Output: List of (to, tr) pairs Lr

1: for every i→ 1, . . . , |W | do
2: for every tuple of consecutive tio, t

j
o ∈ {Lo ∪ t} do

3: if ∃tr with tio < tr < tjo which satisfies (8) then
4: Lr ← Lr ∪ 〈to, tr〉
5: end if
6: end for
7: end for

Example 2: Continuing from Example 1, three overload
points (to) and three recovery points (tr) exist in all time
intervals t of length 0 < t ≤ (LCM(6, 12) + 2(3 − 1)) as
defined in Theorem 2. The overload and associated recovery
points up to the hyperperiod are: (12, 14). Hence, the worst-
case delay is two units. Figure 4 shows a tuple of an overload
and a recovery point where the worst-case delay occurs.

A system enters into continuous overload if ∃to : ∀t > to
sbf(t) < dbf(t). If the resource utilization is less than the
workload utilization, the system will eventually experience
continuous overload.

C. Schedulability Analysis with Overloads

Schedulability analysis is one of the key requirements in
real-time systems. A hard real-time system will be schedulable
if sbf(t) ≥ dbf(t) at any time interval t. However, the
schedulability condition sbf(t) ≥ dbf(t) in any time interval
t is not applicable for soft real-time system that can tolerate
overloads. Therefore in the following, the schedulability anal-
ysis condition for EDF is defined in the presence of overloads
(Theorem 3), characterized by the maximum tolerable delay.

Theorem 3: Given a system workload W =
{T1, T2, . . . , Tn} with tolerable δ∗ and a given resource
model, W is schedulable if and only if the resource demand
in any time interval exceeds the resource supply during the
same time interval for no more than δ∗ consecutive units
of time. Furthermore, this only has to be checked for time
intervals up to length LCM(p1, . . . , pn, λ) + 2(λ− θ).

Theorem 2 establishes the proof of Theorem 3, because
f(t) = sbf(t)−dbf(t) repeats after LCM(p1, . . . , pn, λ)+2(λ−
θ).



V. FINDING AN EFFICIENT RESOURCE SUPPLY

For a given system specification consisting of a workload
and a worst-case delay, the objective of the developer is
to provision the system with an applicable resource supply.
In [28], the authors show how to calculate θ under the EDF
scheduling policy with a given demand and resource period λ.
Since our approach permits overloads, the technique specified
in [28] is inapplicable. Furthermore, our target is to find θ
without a predefined λ.

Since many possible resource supplies exist for a given
workload, our method of calculating an efficient resource
supply uses a cost function to choose one resource supply
among many. The resource period λ and the supply θ are the
parameters of the cost function. Our approach not only focuses
on increasing the system throughput by lowering the resource
usage (corresponding to a small θ/λ), but also reducing the
number of context switches (corresponding to a large λ). A
larger λ will decrease the number of context switches because
the resource accounting mechanism in the operating system
will preempt the workload less frequently.

Assuming tasks with periods equal to deadlines, periodic
transient overloads (UW = UR), and a periodic resource
model, we propose an efficient periodic resource supply model
and calculate λ and θ using the following lines:

• the diagonal lines (e.g., lines 0, 1, 2, and 3 in Figure 5)
that pass through the points where sbf(t) increases,

• the horizontal lines (e.g., lines 4, 5, and 6 in Figure 5)
that pass through the dbf(t) where dbf(t) > 0,

• the vertical lines (e.g., lines 7, 8, and 9 in Figure 5)
that pass through the points where dbf(t) might equal
to sbf(t) after an overload occurred at t− δ∗.

The diagonal, horizontal, and vertical lines intersect (as
shown in Figure 5) for a certain λ and the corresponding θ.
The calculation of the lines of interest is as follows.
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Fig. 5. Finding intersection points for a given dbf and δ∗

Calculating diagonal lines: The diagonal lines as shown in
Figure 5 intercept the points where sbf(t) increases at periodic
intervals after an initial time-interval offset of 2(λ − θ). The
sbf increases by θ in each time interval of length λ after the
initial offset. At each t = 2(λ−θ)+k(λ−θ), k ∈ N, the slope

of sbf (t) is 1. The diagonal lines are of interest because they
represent all the points where the sbf increases. Equation 11
represents the set of all diagonal lines.

{yk(t) = (t− (k + 2)(λ− θ)), k ∈ N} . (11)

Example 3: Using the workload W =
{T1(6, 1), T2(12, 2)} presented in Example 1, the tolerable
worst-case delay δ∗ = 2, and Equation 11, the following
equations correspond to the four diagonal lines shown in
Figure 5 such that k = 0, . . . , 3.

y0(t) = t− 2(λ− θ), (12)

y1(t) = t− 3(λ− θ), (13)

y2(t) = t− 4(λ− θ), (14)

y3(t) = t− 5(λ− θ). (15)

Calculating horizontal lines: The horizontal lines shown
in Figure 5 intercept the y-axis at the sum of the execution
time units of a currently executing instance of a task and the
execution time of all the preceding periodic instances of the
current task and higher priority tasks. The y-intercept points
are from the horizontal lines drawn on the dbf(t) such that
dbf(t) > 0. The horizontal lines are of interest because they
contain the points where sbf(t) may be equal to dbf(t).

To devise an equation for representing the horizontal lines
that intercept the y-axis, we assume a vector v containing the
execution times of all tasks (i.e., v = (e1, e2, . . . , en)). We also
define C as a set of indices that refer to the possible number
of instances of a task.

C =

{
(α0, α1, . . . , αn) | ∃t ∈ R+ ∀Ti ∈W : αi =

⌊
t

pi

⌋}
.

(16)

Equation 17 represents the set of horizontal lines that
originate from y-intercept points.

D =
{
y | y =

∑
αvT , α ∈ C

}
. (17)

(Continuing Example 3). In the following, the horizontal
lines of Figure 5 represent the first few lines drawn at the y-
intercept points using Equation 17 for Example 3 (all the lines
are indexed numerically in ascending order).

y0 = e1,

y1 = 2e1 + e2,

y2 = 3e1 + e2.

Calculating vertical lines: Finally, the solid vertical lines
shown in Figure 5 intercept the x-axis at the positive integer
multiples of pi of each task Ti. Since the time intervals pi
represent the time intervals where an overload might have
occurred, the recovery points will be located on the right of
overload points by an amount of δ∗. Therefore, these vertical
lines will be shifted right by an amount of the worst-case delay



δ∗ (e.g., lines 7 , 8, and 9) that may pass through the recovery
points where sbf(t) = dbf(t) when there is an overload at time
interval t− δ∗.

The dbf increases at time intervals of length piω where
ω ∈ N+ for Ti ∈ W . Equation 18 represents the set of the
vertical lines where sbf(t) = dbf(t).

S =
{
x | x = piω + δ∗, Ti ∈W,ω ∈ N+

}
. (18)

(Continuing Example 3). In the following, the horizontal
lines represent the first few lines drawn at the x-intercept
points where sbf(t) might equal to dbf(t) using Equation 18
for Example 3.

x0 = 8,

x1 = 14,

x2 = 20.

To find λ and θ, our method uses the intersection points
resulting from these equations. First, we solve Equation 11
with Equation 17, and then replace θ and t using

∑ ei
pi

= θ
λ

(i.e., UW = UR) and Equation 18. This yields

λ = θ −
(∑

αvT − t
(k + 2)

)
=
∑ ei

pi
λ−

(∑
αvT − t

(k + 2)

)
=
∑ ei

pi
λ−

(∑
αvT − piωi − δ∗

(k + 2)

)

∴ λ =

∑
αvT − piωi − δ∗

(k + 2)(
∑ ei

pi
− 1)

(19)

(Continuing Example 3). By combining Equations 12 − 15
with Equation 17 and replacing θ = 1

3λ, we get the following
equations which later are replaced by Equation 18 to deduce
λ and θ.

λ =
3

4
(t−

∑
αvT ) (using Equation 12),

λ =
1

2
(t−

∑
αvT ) (using Equation 13),

λ =
3

8
(t−

∑
αvT ) (using Equation 14),

λ =
3

10
(t−

∑
αvT ) (using Equation 15).

Using the possible values of ω, and α until the hyperperiod
(i.e., LCM(p1, . . . , pn, λ)), we will get a set of (λ, θ) such
that θ = 1

3 (λ). Using these assignments we can calculate δ∗
using Algorithms ?? and 2, and check for the validity of the

resource supply with respect to the workload demand. Thus the
algorithm based on our proposed resource supply calculation
model finds a list of resource supplies that allow the worst-
case delay to be less than or equal to the value δ∗ and chooses
the best solution as (λ, θ) = (3, 1).

Since searching up to LCM(p1, . . . , pn, λ) + 2(λ − θ)
for each possible λ is too time consuming, we devise
a time-efficient algorithm to reduce the search space to
LCM(p1, . . . , pn) + 2(λ − θ) and check the schedulability
for 0 ≤ t ≤ LCM(p1, . . . , pn, λ) + 2(λ − θ). If the iden-
tified supply leads to a system that is not schedulable until
LCM(p1, . . . , pn) + 2(λ − θ), then our method gradually
increases the utilization of the resource supply until the system
will become schedulable. The algorithm we devised based on
the resource supply calculation equation (Eq. 19) is not shown
in the paper because of the page limitations.

To find an efficient resource supply, the workflow is as
follows for a given set of tasks: the utilization of the resource
supply is kept the same as the workload utilization. The
algorithm based on the supply calculation model searches for
resource supplies that have recovery points at t = δ∗ +m · pi
(i.e., time intervals that denote the recovery of overloads)
and calculates a fitting resource period. However, a resource
supply that contains the recovery point may still be unusable,
because the supply might have a worse δ∗ at a later or earlier
part of the sbf . Therefore, the algorithm searches for different
supplies and checks them based on the method described in
Section IV-A. Figure V shows multiple resource supplies for
the Example 1 workload with δ∗ = 1; e.g., λ = 1.5 (blue color
line in Figure V) and λ = 1.12 (red color line in Figure V).
Our framework then selects from these candidates the one that
has the largest λ to reduce the number of context switches.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Time interval

D
ur

at
io

n

Fig. 6. Two of the candidate solutions for Example 1 with input delay one

Theorem 4 (Completeness): Any algorithm based on the
proposed resource supply calculation model (Eq. 11, 17,
and 18) and the proposed method to find a valid resource
supply is complete.

Proof: In the proposed resource supply calculation model
we see that the denominator of Equation 19 increases by
the value k ∈ N, because the utilization of the workload is
constant. Therefore, the supply calculation model proceeds by



decreasing λ, which automatically decreases θ as UW = UR.
With a small enough λ and θ, the sbf will become similar to
a line with slope such that the δ∗ constraint is preserved. The
proposed model will always find a valid resource supply, if
one exists for the given inputs. Therefore, an algorithm based
on the model is complete.

Note that the secondary goal of maximizing λ is irrelevant
for completeness (c.f., Theorem 4).

Corollary 1 (Soundness): Any complete algorithm based
on the proposed model (Eq. 11, 17, and 18) and the proposed
method to find a valid resource supply is sound.

Proof: Since a complete algorithm based on the proposed
model checks the validity of the resource supply after finding
one and eventually finds at least a valid solution, the algorithm
based on the model is sound.

Feasibility analysis refers to whether a task set is feasible
under a resource model. Feasibility ensures that there exists a
resource supply that can satisfy the requirements of the tasks.
Theorem 5 denotes that the mathematical model we use to cal-
culate an efficient resource supply is feasible under a periodic
resource model for workloads with bounded overloads.

Theorem 5: Given a system workload W =
{T1, T2, . . . , Tn} with tolerable δ∗, the proposed model
is feasible if and only if there exists a resource supply such
that the resource demand in any time interval exceeds the
resource supply during the same time interval for no more
than δ∗ consecutive units of time.

Proof: Theorem 4 establishes the proof of Theorem 5, be-
cause there exist always a resource supply such that maximum
delay is bounded by δ∗.

VI. EXPERIMENTAL ANALYSIS OF A CONTROL SYSTEM

We developed a MATLAB-based application called
sbFinder based on the results shown in this work. To demon-
strate the utility of our technique for designing the resource
supply in the context of a control system, we consider the
problem of simultaneously stabilizing two plants with a single
computational resource. The first plant, denoted by Σ1, is an
inverted pendulum mounted on a cart, and is given by the
following linearized dynamical system [19]:

ẋ(t) =

 0 1 0 0
0 −0.1818 2.6727 0
0 0 0 1
0 −0.4545 31.1818 0


︸ ︷︷ ︸

A

x(t) +

 0
1.8182

0
4.5455


︸ ︷︷ ︸

B

u(t).

(20)
The state feedback controller for this system is designed (under
nominal delay-free conditions) as

u(t) =
[
2.6939 3.5571 −23.5576 −4.462

]︸ ︷︷ ︸
K

x(t).

The plant is sampled every p1 = 0.02 seconds. Using The-
orem 1, the maximum value of η is 0.0732. The worst-case
delay in this system then is δ1 = η − 2p1 = 0.032 seconds.

The second plant, denoted Σ2, is a chemical distillation
column modeled as a linearized system with 8 states and

4 inputs; the exact model can be found in [29], and we
omit the details here to save space. The nominal state feed-
back controller is designed to place the closed loop poles
at −1,−1.1,−1.2,−1.3,−1.4,−1.5,−1.6,−1.7, and this pro-
duces the control gain K. The plant is sampled every p2 =
0.15 seconds. Once again applying Theorem 1, the maximum
value of η is 0.3340, and thus the maximum delay for obtaining
computational resources that can be tolerated by this control
system is δ2 = η − 2p2 = 0.034 seconds.

The computation of both control inputs is done by a
single processor. Thus, to maintain stability, the processor must
guarantee that the worst-case delay for calculating any control
input is δ∗ = min(δ1, δ2) = 0.032 seconds. We take our unit
of time to be 0.01 seconds, and assume that the processor can
compute the control input for either plant within this length of
time. Thus, in terms of this time-unit, the period and execution
time for the first plant are p1 = 2 and e1 = 1, respectively, and
the period and execution time for the second plant are p2 = 15
and e2 = 1, respectively. The maximum tolerable delay δ∗ for
both systems is δ∗ = 3.

With this workload and delay specifications, our proposed
model produces a list of 138 solutions that are valid. The list
contains 132 different assignments of resource supply that have
the minimum utilization. Traversing the list for the maximum
resource period yields λ = 2.5, θ = 1.4167, δ∗ = 1.8, and
utilization = 0.5667.

VII. RELATED WORK

Shin and Lee present schedulability analysis based on the
sbf [26], [27] and the dbf [1], [17] for the compositional real-
time scheduling framework. This framework can be used to
establish global (system level) timing properties by composing
individual timing properties. The authors present schedulability
conditions for the standard Liu and Layland periodic resource
task model and propose a periodic resource model under earli-
est deadline first (EDF) and rate monotonic (RM) scheduling
that allows the composition of multiple timing requirements
into a single timing requirement. In the related work [26], the
authors analyze schedulability of a bounded delay resource
partition model in terms of the sbf and the dbf . Deducing a
single timing requirement out of multiple timing properties
creates some new challenges which have been solved in a
number of subsequent works [24], [27]. As a variant of the
system model from [26], Shin et al. also propose algorithms
that define optimal interfaces for the subsystems which may
share resources. Integrating subsystems into a system having
optimal interfaces motivates the development of adaptive and
reconfigurable systems.

An important aspect of using the sbf and the dbf is the
optimized use of the resources. Easwaran et al. [9] show
that selecting a particular resource model that minimizes the
collective resource requirements facilitate systems to change
components on the fly. Lee et al. propose an optimization
framework for maximizing the quality of service (QoS) under
K random failures on schedulability. The authors use Lan-
garian duality [16] for distributed computation that results in
optimal solutions.

Mok, Feng, and Chen [21] introduce the concept of a
supply function to measure the minimum amount of com-



puting resources provided to a static partition. Wandler and
Thiele [30] propose the concept of interface-based design that
uses real-time calculus and modular performance analysis to
compute the supply curves. Lipari and Bini [18] derive a set of
supply functions that are feasible to schedule an application.
Later Bini et al. propose an optimization framework [3] to
select the minimum bandwidth required of a EDF task set.
These works use the fraction of computing resource supplied
by the processor and the initial delay of the resource to ensure
that minimum bandwidth is given to the workload demand, but
do not consider delays due to the transient overloads that the
tasks may tolerate and the existence of a periodic resource
model (a special class of supply functions) that Shin and
Lee [25] introduce.

Devi and Anderson [8] introduce tardiness bounds under
global EDF scheduling on a multiprocessor for soft real-
time systems. However, the tardiness bounds are not de-
rived in terms of the supply and demand bound functions
for a compositional framework as discussed in [26]. Kumar
et al. [15] propose a model to compute the resource with
a given delay bound from a stream of jobs characterized
by an input arrival trace. However, the arrival jobs are not
specified with a certain delay bound that we assume in this
work to characterize application-specific tasks that can tolerate
overloads or delays. Moreover, the delay is calculated in terms
of time rather than the time intervals that we follow because
we attempt to calculate the delay from the supply and demand
bound as defined in [26], [27] which are functions of time
intervals. Buttazzo et al. [10] introduce elastic scheduling that
allows to vary the period of a task based on its flexibility
specified in the task model. This model inherently allows to
tolerate overloads to a certain amount but does not use the
concept of supply and demand bound functions we use to
compute an efficient periodic resource model towards building
a compositional system. Hence our work is in-line with the
other work in the literature but differs in finding an efficient
resource model due to the time-interval analysis of supply and
demand bound functions for systems that can tolerate bounded
transient overloads.

VIII. DISCUSSION

Compositionality: A compositional framework can
combine different specifications and build up a schedule that
satisfies the workload demands. The system calculates the
most suitable resource supply for each of the specification’s
demands. Each resource supply turns into the workload de-
mand while using the compositional framework. Earlier work
on the periodic resource model [26] assumes no overloads
or delays in the workload. Using our work to extend [26],
it is possible to deal with workloads with bounded transient
overloads. Definition 6 describes the composition method in
the context of transient overloads.

Definition 6 (Composition method): Given a number of
scheduling models M1 . . .Mn, a compositional scheduling
model MP (WP , RP , EDF ) can be derived by mapping the
resource model of a child scheduling model Ri(λi, θi) to its
periodic task Ti(pi, ei) and including any new tasks (T ′i ) such
that WP = {T1(λi, θi), . . . , Tn(λn, θn)} ∪ {T ′i (p′i, e′i)}.

Handling sporadic tasks: With a slight modification,
the proposed resource supply model can handle sporadic tasks.
Sporadic tasks have a minimum inter-arrival time. Therefore,
the dbf for sporadic tasks is different from periodic tasks.
For sporadic tasks, dbf(W,EDF ) =

∑
Ti∈W

max(0, (
⌊
t−di
pi

⌋
+

1)ei). In the worst case, sporadic tasks can arrive periodically
based on their inter-arrival time and our model can still handle
such workloads.

Relation between overload duration and overload
severity: The duration and the severity of an overload are
related. During the work, we made the following observations:

1) A large overload severity implies a long overload
duration and thus a long delay.

2) A long overload duration (and thus a long delay) does
not necessarily imply a large overhead severity.

These two observations originate from the fact that the
best possible resource supply is R(1, 1) in which the system
receives all resources. In such a scenario, the slope of the sbf
is 1. Thus, the overload delay is always at least equal to the
overload severity. Hence, a large overload severity implies a
long overload duration.

On the other hand, the worst possible resource supply is
R(x, 1) where x→ 0. In this scenario, the slope of the sbf is
close to 0. Thus, even a small overload severity can result in
a long overload duration.

Multiprocessor systems: The way to deal with multi-
processor systems is to use partitioning algorithms [2]. EDF
is not guaranteed to be optimal for multiprocessor systems,
although it is optimal for uniprocessor systems. Therefore,
prior to running the EDF scheduling policy for uniprocessor
systems, a partitioning algorithm can distribute the tasks of
multiprocessors into several uniprocessors.

Hyperperiods: The hyperperiod grows exponentially as
a function of the longest period, number of tasks, and co-
primeness of the period of the tasks. Task period selection to
minimize the hyperperiod is an interesting problem and has
been studied in previous work [5].

IX. CONCLUSION

This paper presents a holistic analysis to characterize over-
loads using overload points and recovery points for systems
experiencing transient overloads. To understand the impact
of overloads, we define overload metrics such as the worst-
case delay and the worst-case severity. Using the analysis of
overloads, we propose an efficient resource supply model for
a given workload and a tolerable worst-case delay. Control
engineers can use the framework for feedback control systems,
which is demonstrated by simultaneously stabilizing two plants
with a single computational resource.
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