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ABSTRACT
Automata-based models of embedded systems are useful and at-

tractive for many reasons: they are intuitive, precise, at a high level
of abstraction, tool independent and can be simulated and analyzed.
They also have the advantage of facilitating readability and system
comprehension in the case of large systems. This paper proposes
an approach for mining automata-based models from input/output
execution traces of embedded control systems. The models mined by
our approach are hybrid automata models, which capture discrete as
well as continuous system behavior. Specifically this paper proposes
a framework for analyzing multiple input/output traces by identifying
steps like segmentation, clustering, generation of event traces, and au-
tomata inference. The framework is general enough to admit multiple
techniques or future enhancements of these steps. We demonstrate
the power of the framework by using some specific existing methods
and tools in two case studies. Our initial results are encouraging and
should spur further research in the domain.

1 Introduction
Automata-based specifications are useful for specifying behavioral

descriptions of complex embedded control systems. They are intu-
itive and precise, abstract and high level, and more importantly they
are tool-neutral. Further, automata-based models allow simulation,
testing, debugging and sometimes even rigorous formal verification.
In the case of legacy systems and physical systems, the automata spec-
ifications can help developers migrate to model based development.
Unfortunately, legacy systems often lack such models. Further, for
large systems, one could focus on specific aspects of the system and
build precise and compact automata specifications capturing those
aspects for better comprehension, debugging and testing.

For embedded control systems, a suitable automata-based model
is the hybrid automata model [16]. Hybrid automata are extensions
of traditional finite state machines capturing discrete states and tran-
sitions as well as continuous behavior using differential equations.
Hybrid automata have the advantage of visualizing system states
and how control transitions between them, allowing for an abstract
conceptual understanding of the system.

This paper presents a framework for learning hybrid automata mod-
els from black-box implementations of embedded control systems by
mining their input/output traces. For instance, consider a legacy sys-
tem for which there exists no model or documentation. Our objective
is to design a framework that uses input/output traces collected from
executing such a system, and recovers a hybrid automaton that models
the behavior present in the collected traces. To that end, we propose
a general framework for mining by clustering multiple input/output
training traces, translating the clustered traces to event sequences,
and constructing automata based upon the input/output correlation.
To demonstrate how to use the framework, we populate it with some
concrete methods and tools of clustering, segmentation, automata
constructions and perform some experiments.

The specific contributions of the paper include:

• A formalized framework for mining hybrid systems specifica-
tions. The formalization precisely describes the assumptions
and expectations of the various components required for min-
ing. This helps incorporate future evolutions and refinements
of the components into the framework.
• A set of algorithms and heuristics for the suggested framework

that have proven to work for the evaluated case studies.
• A quantitative evaluation framework for future work, so follow-

up work can compare the results to this and other approaches.
• Case studies demonstrating the application of the proposed

framework to different control systems.
Recently, the works in [12, 18, 23] attempted to construct models

from black-box systems using only execution traces. However, that
line of work requires some level of understanding of formal logic,
hence it is less accessible to engineers. Whether the objective is
system comprehension, simulation, or integration with other systems,
it is challenging for an engineer to decipher properties in formal logic.
In contrast, automata-based models are easily visualized to aid in
their comprehension.

The remainder of the paper is structured as follows: Section 2
introduces a motivating example of the use of the proposed framework.
Section 3 formalizes the problem and introduces some terminology.
Section 4 introduces the proposed framework and discusses its steps,
as well as the concrete models and tools used to build our case studies.
Section 5 discusses the case studies we implement to experiment
with the proposed framework. Section 6 discusses related work,
Section 7 discusses the limitations of the proposed framework, and
finally Section 8 presents the conclusion of the paper and future work.

2 Motivating Example
Consider the traces in Figure 1, which are extracted from an engine

timing control system. The topmost trace is the output engine speed.
The middle trace is the input throttle speed. The bottom trace is the
input load torque. The control system is responsible for actuating the
input throttle and minimizing the effect of changes in load torque.
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Figure 1: Running example traces (left) and an example abstract
automaton (right).
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The objective of the proposed framework is to construct a hybrid
automaton that models and abstracts the behavior of such a control
system. On the right-hand-side of Figure 1 is an example of a man-
ually constructed automaton that models the trace on the left. The
automaton realizes the following behavior:
• The system starts at a stable speed.
• If the torque drops, the transition labelled “Torque ↓” is taken.

The engine speed experiences a bump while the controller is
attempting to negate the effect of the torque drop. This can be
seen in the engine speed trace.
• The system returns to a stable speed after some time ∆t.
• If the throttle rises, the system transitions to the “Ramp Up”

state where it gradually increases the engine speed.
• The system returns to a stable speed after some time ∆t .
• Similar to torque drop, if the torque rises the engine speed

experiences a dip, which is rectified by the controller and the
speed returns to stability once again.

For the rest of the paper, we will use this example to illustrate
the different stages of the proposed framework to produce a hybrid
automaton model from the I/O traces of a system.

3 Problem Definition
We attempt a formal definition of the general framework which fo-

cuses on the requirements including the assumptions of the interfaces,
abstracting out the details of the specific algorithms used for different
steps of the mining algorithm. This helps in accommodating future
versions or refinements of the different components like clustering,
segmentations, etc. employed in the proposed work.

3.1 Input/Output Traces
Our objective is to construct a hybrid automaton using input/output
traces of a hybrid system. Naturally, the hybrid system receives a set
of input signals and produces a set of output signals. First, we define
a sampled trace of any such signal.

DEFINITION 1 (SAMPLED TRACE). A sampled tracewS of sig-
nal S is a finite sequence of pairs of timestamps and values (t1, v1)
(t2, v2) · · · (tp, vp) such that:

– ti ∈ R≥0, ∀i ∈ [1, p] : ti < ti+1 (strict monotonicity),
– ∀i ∈ [2, p] : ti − ti−1 = c where c is the sampling period,
– ∀i ∈ [1, p] : vi ∈ D(S) where D(S) is the domain of signal
S sampled values.

A sub-trace of wS is indicated as wS [ti, tj ] where ti is the first
timestamp in the sub-trace and tj is the last timestamp.
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Figure 2: Visualization of a sampled trace.

Figure 2 demonstrates a visualization of an engine speed signal that
has been sampled to construct a trace w. The speed is seen starting at
2000 rpm and rises to 3000 rpm as the input throttle increases.

3.2 Presegmented Traces
By breaking down traces into segments, we can correlate changes in
the inputs to changes in the outputs in a piece-wise manner, which
is essential in mining the behavior of the digital aspect of the hybrid
system. Signal segmentation heavily relies on the type of signal, and
multiple methods are successful within the scope of their target signal
type. Hence, we assume traces are pre-segmented using some signal
segmentation method that is not in the scope of this work, since we
are not attempting to contribute to the science of signal processing.
Therefore, a trace of an input or output signal is segmented or split at

points where some segmentation algorithm detects abrupt change in
the signal values. Ideally, these points – referred to as change-points
– are selected by the segmentation algorithm to mirror changes in
the system’s state. However, the quality of the segmentation process
depends on the quality of the segmentation algorithm and the inputs it
receives. Different algorithms [3, 7, 34] are more accurate for specific
types of signals. For instance, detecting change-points in a sinusoidal
signal depends on changes in frequency, amplitude, or phase shift,
whereas a boolean signal exhibits change-points only when it toggles.
We refer to these various characteristics as features.

DEFINITION 2 (FEATURE). A feature is a function

φ : W → V

where W is the domain of all sampled traces, and V is the domain of
feature vectors extracted from the input trace. V is also referred to as
the feature space, for which the similarity relation ∼ is defined.

An example of a feature is a linear fitting feature φl, which con-
structs a linear fit to the values of the signal in the trace. Such a
feature returns a vector 〈m, b〉 where m and b are parameters of the
linear fit equation (y = mx+ b).

For instance, consider the signal in Figure 2, specifically the
samples at times 0, 15, and 19. These three points form two sub-
traces: w[0, 15] and w[15, 19]. Let feature φs be a feature extract-
ing the slope of the linear fit of the values in the segment. Ac-
cording to the trace in the figure, φs(w[0, 15]) = 〈0.0〉, while
φs(w[15, 19]) = 〈1.0〉. Let the similarity relation for the feature
space of φs be defined as follows:

φ(w) ∼ φ(w′) iff
∥∥φ(w)− φ(w′)

∥∥ ≤ 0.1

According to such definition, φs(w[0, 15]) 6∼ φs(w[15, 19]). The
similarity relation is normally more complicated. The work in [28,
32] introduces different methods to cluster feature vectors based on
similarity.

Hence, a signal is processed by some segmentation algorithm. This
algorithm uses knowledge of the feature(s) that indicate change of
state in the signal to identify change-points. We formally define
change-points as follows:

DEFINITION 3 (CHANGE-POINT VECTOR). Given
– a sampled trace wS = (t1, v1) · · · (tp, vp) of signal S,
– a set of features ϕ = {φ1, · · · , φq}

a change-point vector πwS ,ϕ is a vector of time stamps that indicate
a significant change in feature vectors, and is defined as follows:

πwS ,ϕ = 〈τ1, τ2, · · · , τl〉

such that
– ∀i ∈ [1, l] : τi ∈ {tj | j ∈ [1, |wS |]},
– τ1 = t1 indicating the time of’; the first sample of the signal,

and τl = tp indicating the time of the last sample of the signal,
– each change-point τk, where k ∈ [2, l − 1], indicates a sig-

nificant change in the feature vector produced by at least one
feature when applied to the left side sub-trace ws[τk−1, τk]
versus the right side sub-trace ws[τk, τk+1]. That is

∀k ∃j : ws[τk−1, τk]
φj

6∼ ws[τk, τk+1]

where j ∈ [1, q] and
φj∼ is a similarity relation defined for

feature φj .

Recall the trace in Figure 2, and feature φs which given a sub-trace
returns the slope of the linear fit of all values in that sub-trace. As
indicated in the figure by the samples with circles on top, these are
points where the slope shows significant change between the left hand
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side segment and the right hand side segment. Thus, for this trace,
ϕ = {φs}, and consequently the change-point vector is

πwS ,ϕ = 〈0, 15, 19, 22, 39, 46, 50, 55, 69, 74, 79, 95〉 (1)

A hybrid system is a system where continuous-time dynamics
interact with discrete-event dynamics. For a hybrid system S, let
I = {I1, I2, · · · , In} be a set of input signals to the system, and
O = {O1, O2, · · · , Om} be a set of output signals produced by the
system. We now define an input/output sampled trace as an extension
to Definition 1.

DEFINITION 4 (INPUT/OUTPUT TRACE). Given a set of input
signals I, and a set of output signals O, an input/output trace wI,O
is a finite sequence of tuples:

wI,O = 〈t0, µ0, ν0〉〈t1, µ1, ν1〉 · · ·

such that
– ti follows the same conditions as in Definition 1,
– µi is a vector of values of input signals I at time ti. That is,
µi = 〈u0,i, u1,i, · · · , un,i〉 where uk,i is the sampled value of
input signal Ik at time ti,

– νi is a vector of values of output signals O at time ti. That is,
νi = 〈v0,i, v1,i, · · · , vn,i〉 where vk,i is the sampled value of
input signal Ok at time ti.

Finally, we introduce the definition of a segmented I/O trace.

DEFINITION 5 (SEGMENTED I/O TRACE). A segmented I/O
trace is a tuple ψ = 〈wI,O,ΦI ,ΠI ,ΦO,ΠO〉 where

– wI,O is an input/output trace,
– ΦI is a vector of sets of features associated with each input

signal:

ΦI = 〈ϕI1 , ϕI2 , · · · 〉

where ϕIi is the set of features associated with input signal Ii.
– ΠI is a vector of change-point vectors for each input signal:

ΠI = 〈πwI1
,ϕI1

, πwI2
,ϕI2

, · · · 〉

where πwIi
,ϕIi

is the change-point vector of input signal Ii
given its associated feature set.

– Similarly, ΦO and ΠO are defined for output signals.

3.3 Formal Problem
Based on the definitions introduced in the previous sections, the
formal problem definition is as follows:

Given two sets of segmented traces: a training set
Ψr = {ψr1 , ψr2 , · · · }, and test set Ψt = {ψt1 , ψt2 , · · · }

Construct a hybrid automaton A that models the behaviour of
the system exhibited in the training set traces Ψr such that
upon simulating the input test traces on A, the average error
between the output test traces and the generated output from A
is minimized:

e =
1

|Ψt|

|Ψt|∑
i=1

‖A(ψti .wI)− ψti .wO‖ (2)

where ψti .wI and ψti .wO are the sets of input (output) traces
in the segmented trace ψti (respectively),A(ψti .wI) is the out-
put of automaton A given the input traces, and the subtraction
operator calculates some predefined distance metric between
two signals.

4 Proposed Framework
This section discusses a high-level overview of the proposed frame-

work and details how different components can be replaced to allow
more optimized system-centric modifications. Figure 3 presents the
framework we propose to construct a hybrid automaton for a single
output from segmented traces. We decompose a system with multiple
outputs by building an automaton for each output signal. The process
described in the figure is repeated for each output signal in the sys-
tem, resulting in one hybrid automaton per output signal. The final
automaton for the entire system is computed as the cross-product of
all single output automatons.
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Figure 3: Overview of the proposed framework.

4.1 Clustering Segments
The main purpose of clustering segments is to identify which seg-
ments potentially represent the same internal state of a system. We
have generalized clustering to be independent of what type of features
are extracted from segments (see Definition 2), where it is stated that
the similarity relation is assumed to be defined for the feature space.
Upon clustering similar output segments, it is possible to hypothesize
about the states of the hybrid system, since it is exhibiting similar
behavior during clustered segments. Clustering of similar input seg-
ments enables us to reason about the triggers that can possibly cause
transitions between output states. Note that what we can observe is
correlation between an input segment and a transition to an output
state. If this correlation is consistent across the training set traces, it
is hypothesized as a possible cause in the output automaton.

Clustering is based on the feature vectors extracted by the features
associated with signals. To this end, we compile a list of features
that are indicative of state change we observe in our case studies (see
Table 1). Obviously this list is incomplete, yet it should converge as
more systems are studied.

Table 1: List of features and the returned feature vectors.

Feature Feature Vector
Value 〈v〉
Slope 〈m〉
Range 〈a, b〉
Linear Fit 〈m, b〉
Higher-order Fit 〈c0, c1, · · · 〉
Frequency 〈f, a〉
Length (time) 〈t〉

4.1.1 Input/Output Segment Clustering
Clustering groups segments in multiple traces of a signal according to
similarity in the feature space associated with the signal. This enables
our approach to overcome small variation between traces and identify
common behavior of a specific signal across the entire training set.
We use K-Means clustering [15] on the feature spaces associated
with the signal, yet different clustering algorithms [19, 33] can be
used within the structure of the workflow. We selected K-Means
since it is widely available and simple to use. Since the optimum
number of clusters is not known a priori, we use the Davies-Bouldin
Index [11]. This approach is widely followed when the number of
clusters is unknown. It is an iterative process of running the K-Means
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clustering algorithm with a preset number of clusters, calculating the
Davies-Bouldin Index (DBI) for the output, incrementing the preset
number of clusters then repeating the process. The final number of
clusters is the number of clusters for which we observe the maximum
DBI. The DBI is calculated as follows:

DBI =
1

N

N∑
i=1

max
j,j 6=i

Si + Sj
dij

(3)

where N is the number of clusters in the trial. Si is the average
distance between elements of cluster i and its centroid, and dij is
the distance between the centroids of clusters i and j, calculated as
follows:

Si =
1

|Ci|
∑
x∈Ci

‖x−mi‖ (4)

dij = ‖mi −mj‖ (5)

where mi is the centroid of cluster Ci and |Ci| is the number of
segments in the cluster.

To demonstrate how clustering works, consider the sampled trace in
Figure 2, which is a trace of an output signal in our running example.
The change-points in the figure indicate change in the slope feature
φs, shown in Equation 1. Upon applying the clustering process
described above to the feature vectors, namely the slopes of each
segment, the result is four clusters based on the highest DBI. The
cluster assignments are listed below:

C1 = {w[0, 15], w[22, 39], w[55, 69], w[79, 95]}
C2 = {w[15, 19], w[46, 50], w[74, 79]}
C3 = {w[19, 22], w[50, 55], w[69.74]}
C3 = {w[39, 46]}

(6)

4.1.2 Input Event Detection
The purpose of input event detection is to identify significant changes
in the input as potential causes for changes in the output. This is
distinguishable from input segment clustering, which we perform to
be able to infer whether a specific cluster of input segments is the
cause for changes in the output. To clarify this, consider a discrete
input signal that is set to value a for a period of time, and then changes
to b. At that point of transition from a to b, the output experiences a
change that we observe. The change could be attributed to
• The input becoming b, meaning that value b specifically causes

the output to behave in the observed manner. That is, if the
input was initially b, the output would have behaved in the
observed manner from the start of the trace.
• The differential change in the input signal between a and b

causes the output to behave in the observed manner. That is,
b− a is the reason for the output to change.

Input event detection clusters changes in feature vectors between
consecutive segments instead of clustering feature vectors. For every
change-point τk in trace w of a signal I , the change in the feature
space between segment w[k − 1, k] and w[k, k + 1] is calculated as
follows:

δk = w[τk, τk+1]− w[τk−1, τk] (7)

Similar to the clustering process in Subsection 4.1.1, clustering of
input events is performed on the set of changes in feature vectors:

∆ψI = {δ2, δ3, · · · , δl−1} (8)

where ∆ψI is the set of changes in feature vectors for signal I in the
segmented trace ψ, and δk is the change in feature vectors around
change-point τk.

To demonstrate how input event detection works, consider Figure 4,
which shows a sampled trace wA of input signal A in our running

time

value

0 15

25

20

69 95
Figure 4: Sampled trace of an input signal.

example. The samples with black circles on top are detected change-
points. Assume the feature associated with this signal is φv which
simply extracts the constant value of the segment. This is appropriate
since this signal is a digital signal and changes are simply changes
in value. The following are the resulting feature vectors for each
segment:

φv(wA[0, 15]) = 〈25〉
φv(wA[15, 69]) = 〈20〉
φv(wA[69, 95]) = 〈25〉

Clustering the input segments as per Subsection 4.1.1 results in two
clusters: C1 = {wA[0, 15], wA[69, 95]} and C2 = {wA[15, 69]}.
However, the set of changes in value vectors (see Equation 8) is as
follows:

∆wA = {〈−5〉, 〈5〉}

which now results in two clusters: C′1 = {15} and C′2 = {69}. Thus,
the next steps of the proposed algorithm will utilize multiple traces
to reason about whether the change in the output at 15 and 69 (see
Figure 2) is caused by C1 and C2 or C′1 and C′2.

4.2 Generating Trace Strings
The second step in the proposed framework (see Figure 3) is to
generate trace strings. A trace string is defined as follows:

DEFINITION 6 (TRACE STRING). Given a segmented trace w,
its associated change-point vector πw, and its cluster mapping func-
tion C which maps a segment to a cluster symbol. A trace string is a
sequence of symbols that indicate the cluster to which each segment
of a trace belongs. That is s = α1α2 · · ·αi where s is a trace string
and αi is the symbol associated with the segment w[τi, τi+1]. That is
αi = C(w[τi, τi+1]).

As mentioned earlier, we focus on segmented and clustered traces for
which there is one output and possibly multiple inputs. Consider the
examples in Figures 5 and 6, where all signal traces are segmented
and clustered. The engine speed signal is an output signal, while the
throttle and torque are inputs. The engine speed signal is clustered as
per Equation 6. The symbol assignment proceeds as follows:

1. We assign a unique symbol to each cluster in the output signal
(a, b, c, d).

2. We assign a unique symbol to each cluster in the input signals
(f, g, h, i).

3. We assign a unique symbol to each transition from one input
segment to another (f → g = j, h→ i = k, and i→ h = l).

4. We assign a unique symbol to each cluster of input events (see
Subsection 4.1.2).

5. Finally, we assign a unique symbol to each unique combination
of concurrently changing inputs or concurrent input events. For
instance, if the throttle in Figure 5 transitions from f to g at
the same time the torque transitions from h to i, this event is
assigned a unique symbol. This scenario occurs at the initial
point in the traces in Figures 5 and 6, and is assigned the
symbols m for when f and h occur concurrently, and n for
when f and i occur concurrently.
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Note that step 3 and 4 cannot be used concurrently, in the sense
that a transition in the input trace can either be assigned a symbol that
represents a change from the previous input segment to the next input
segment (step 3), or assigned a symbol that represents the cluster to
which the change belongs (step 4). The symbol assignment we make
in step 5 relies on whether we select the symbol from step 3 or step
4. Initially we select the choice that results in a lower number of
symbols, however this is later modified in the feedback loop of our
framework, where we refine specific states based on their error values.
This is detailed in Subsection 4.6.1.

As mentioned earlier, we assume that the effect of a change in
the input will appear instantaneously in the output trace. This can
be achieved by assuming that the sampling period is larger than the
propagation delay of the input signal through the system. This as-
sumption simplifies the problem of determining causality, and results
in perfectly synchronized traces as seen in Figures 5 and 6.

The result is an I/O trace string pair, which is defined as follows:

DEFINITION 7 (I/O TRACE STRING PAIR). An I/O trace string
pair is a pair of trace strings sI = α1α2 · · ·αi and sO = β1β2 · · ·βi
such that the segment αi occurs concurrently with the occurrence of
the input event combination βi. For any βi and βi+1, if αi = αi+1

and αi 6= ∆, αi+1 = ∆.

where ∆ indicates that while there is detectable change in the
output, there is no change in the input. This can be demonstrated by
observing the trace in Figure 5, for which the I/O trace string pair is
as follows:

Table 2: I/O Trace string for the trace in Figure 5.
sO a b c a d b c a c b a
sI m k ∆ ∆ j ∆ ∆ ∆ l ∆ ∆

In case of the trace in Figure 6, the I/O trace string pair is:

Table 3: I/O Trace string for the trace in Figure 6.
sO a c b a d b c a b c a
sI n l ∆ ∆ j ∆ ∆ ∆ k ∆ ∆
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Figure 5: The first example of a segmented, clustered Input/Output
trace in our running example.

4.3 Automaton Inference
The automaton inference step in our framework receives a set of
input/output trace string pairs as shown in the previous section, and
produces an automaton that models these traces. Since we are dealing
with input/output traces, the produced automaton is a Mealy automa-
ton. Mealy automata inference has been rigorously studied in various
work [35,38]. The algorithms in most of the work on Mealy inference
are based on Angluin’s L∗ algorithm [2]. Note that as mentioned
earlier, our framework supports plug-and-play components to replace
the inference step; as long as the component receives input/output
trace string pairs and produces Mealy automata.
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Figure 6: The second example of a segmented, clustered Input/Output
trace in our running example.

4.3.1 Modification of Mealy Inference
Mealy inference algorithms based on L∗ assume there is a system
for which we want to produce a Mealy automaton. To produce such
automaton, these algorithms rely on two oracles: a membership oracle
and an equivalence oracle:
• Membership Oracle. This oracle receives an input string and

returns the output string produced by the system.
• Equivalence Oracle. This oracle checks whether the automa-

ton and the system are equivalent. If not, the oracle returns
a counterexample in which the output of the system does not
match the output of the automaton.

Unfortunately a membership oracle is often unavailable. This is
specially true, if the traces are recorded live and not through simula-
tion, requiring an engineer to rerun the system every time the Mealy
inference algorithm requests a membership query. An equivalence
oracle is even harder to achieve, since it requires a formal model of
the original system, which is not available in the first place. Various
work has tackled this problem using different approaches [17,37]. We
propose a similar approach that fits within our framework: namely
modified membership oracles and equivalence oracles.
• Modified Membership Oracle. This membership oracle

searches through the training set of traces and finds the longest
match. It returns the output corresponding to that match. If the
input is longer than the longest match, the rest of the output
is set to an error state. For example, consider the traces in
Tables 2 and 3. Assume the input is mk, the output will be ab
as per the trace in Table 2. Now assume the input is mkl, the
output will be ab⊗, indicating an error occurring on passing
in the third input symbol (m).
• Modified Equivalence Oracle. This equivalence oracle sim-

ply searches for a counterexample using the training set traces.
That is, it runs every input trace in the training set through the
produced Mealy automaton, and checks whether the output
matches the output in the training set. Granted, this does not
prove formal equivalence, yet since our objective is to produce
an abstract model of the system, strict equivalence is unneces-
sary.

We have used Learnlib [31] as the basis of our implementation. We
have extended the built-in Mealy membership and equivalence oracles
to rely on the training set of traces instead of an actual automaton.

4.3.2 Automaton Post Processing
After the automaton is inferred using LearnLib and our modified
oracles, it is processed to ensure that no state has multiple incoming
edges that produce different outputs. This is to prevent confusion
when generating the flow condition for such state.

4.4 Infer Flow Conditions and Initial Values
Initial values are functions that define the initial value of a variable
when the system enters a specific state in the hybrid automaton.
Flow conditions are functions associated with a state in the hybrid
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automaton that describe how a variable changes while the system is in
that state. The purpose of inferring initial values and flow conditions
is to produce functions that given input values return accurate output
values as per the training set. Since our framework produces one
automaton per output signal, each state is associated with a function
that returns the initial value of the output signal upon entering the
state, and a function that describes the change of the output signal
when the system resides in that state.

To this end, we propose a heuristic to infer flow conditions and
initial values that is based on simple statistical methods such as
standard correlation and linear regression. As mentioned earlier,
the plug-and-play design of the framework allows for replacing the
proposed heuristic with different methods in the future. An overview
of the heuristic is presented in Algorithm 1. The heuristic receives as
input the following:
• Automaton A, which is the automaton produced by the previ-

ous step in the framework (see Figure 3).
• Training set of traces Ψr ,
• Cluster mappings C which maps each segment in the trace to a

symbol. This mapping should be readily available after trace
strings are generated (see Figure 3).

The heuristic proceeds as follows:
• Line 2 declares a map between states in the automaton and

traces.
• The loop at Line 3 iterates over the training set, and foreach

segmented trace, calls SPLIT which breaks down the traces
into input/output segments defined by the change-points in the
trace. SPLIT then returns a vector of all the segments in the
trace.
• The automaton is reset to its initial state, and then the loop at

Line 6 iterates over each input/output segment in the trace.
• For each segment, the symbol of the associated input cluster

is retrieved (Line 7). The automaton then advances to the next
state given the input symbol.
• The segment is then associated to the current state of the au-

tomaton (Line 9).
• Next, for each state in the automaton, a standard correlation

matrix is built using a normalized version of all the segments
associated to that state. The matrix expresses the correlation
between the output signal and the input signals. Note that
time is also considered an input. It is readily available as the
timestamp of each sample in the segment.
• The matrix is then filtered for significant relationships only

(relationships for which there is strong positive or negative
correlation between the output and input). The filter threshold
can be configured, for instance to allow only relationships with
correlation coefficient |c| > 0.5.
• A linear regression is then constructed for the output versus

significant inputs, and the resulting coefficients are assigned to
variable c.
• The initial condition assigned to the state is a linear function

in the input variables and the coefficients c in the form c1x1 +
c2x2 . . . (Line 16).
• Finally, the flow condition is set to the derivative of the above

linear function with respect to time.
Consider the automaton in Figure 7, which a subset of the automa-

ton we achieve through learning from traces of our running example.
As can be seen, the input symbols m and n direct control to states q1
and q2 respectively, while both producing the output a. This directly
maps to the two traces in Figures 5 and 6.

q0 q1q2 q3
m
∣∣ an

∣∣ a k
∣∣ b

Figure 7: A subset of the states in the automaton inferred for our
running example. q0 is the initial state.

Now let us focus on state q1. Upon executing the first for loop in

Algorithm 1 Infer Flow Conditions.
1: INPUT: Automaton A, Training set traces Ψr , Cluster mappings

C
2: declare traces mapping T
3: for ψ ∈ Ψr do
4: W ← SPLIT(ψ.wI,O ,ψ.ΠI ,ψ.ΠO)
5: RESET(A)
6: for ω ∈ W do
7: s← C[ωI ]
8: v ← PROCESSSTRING(A,s)
9: APPEND(T[v],ω)

10: end for
11: end for
12: for State v ∈ A do
13: r ← CORRELATION(T[v])
14: I ← FILTER(R)
15: c← REGRESSION(I)
16: v.init← c
17: v.flow← dc

dt
18: end for

Algorithm 1, the state will be associated with all segments where ini-
tially the input throttle is low and the torque is high, which constitutes
input event m (refer to Figure 5). To clarify this, Figure 8 demon-
strates seven instances of the output signal taken from seven different
traces while the system is in state q1. We concatenate these seven
instances to form one vector for the purpose of studying correlation.
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Figure 8: Concatenated output traces for segment a. The x-axis
represents the index of the concatenated data frame.

Next, we study the correlation of the output signal with the inputs:
namely time, input throttle and input torque. The following are the
resulting correlation coefficients:

Time Input Torque Input Throttle
0.079 0.014 0.997 ≈ 1.0

Time and input torque are insignificant with respect to the output,
as observed by their low correlation coefficient. Input throttle however
is strongly correlated with the output. This results in y = x1 where y
is the output and x1 is the input throttle. Since time is insignificant
to the output at state q1, the flow condition of q1 is ẏ = dx1

dt
= 0,

resulting in no change in output since the input when the system is
in that state does not change with time. The updated automaton is
shown in Figure 9.

To further clarify flow conditions, let q3 be the state that represents
the system when segment b first occurs after segment a (see Figure 5).
Upon studying the correlation of the output in that state against the
inputs, it is obvious that time is contributing factor, since the output
exhibits a steady rise as time passes. In that case, the derivative of
the initial condition (based on the regression coefficients) will be as
follows:

ẏ = ct + c1
dx1

dt
+ c2

dx2

dt

where ct is the regression coefficient of the input time variable.
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q0
q1

ẏ = dx1
dt

q2 q3
m, y = x1n

∣∣ a k
∣∣ b

Figure 9: q1 updated with its flow condition and initial condition.

4.5 Inferring Timing Relationships
A time-based condition (time guard) is added to a transition in a
hybrid automaton to illustrate that the transition may be taken when
the condition is satisfied. Recall that in our I/O trace strings we used
the notation ∆ to signify that the output changes while no change
occurs in the input. Naturally this can be caused due to a change in a
hidden internal state of the system, or due to some time limit elapsing.
Since we cannot postulate about a hidden unobservable system state,
we attempt to model all such transitions as time-based transitions.

The amount of time spent in a specific output segment is measur-
able through trace timestamps. By analyzing multiple traces we can
attempt to infer an average time which must pass before the transition
occurs, or try to deduce a relationship between the previous change
in the input and timed change in the output. Consider the following
subset of the automaton inferred from our running example.

q1 q3 q4 q5
k
∣∣ b ∆

∣∣ c ∆
∣∣ a

The states in this example map to states observed in the trace in
Figure 5. The two timed transitions are q3 → q4 and q4 → q5. We
introduce the notion of a closest input events, which are the latest
input events to occur before a time transition is taken. In the case of
both transitions in the above automaton, the closest input event is k.

We now follow a process similar to the inference of flow conditions
and initial values in Subsection 4.4. To that end, we distinguish
between two different scenarios:

1. The time between the two states surrounding a timed transition
across all traces is normally distributed. In such a case, we
assign the average time to the transition time guard. Note that
other statistical techniques might yield more accurate results,
such as survival analysis. However, a normality test is sufficient
for an initial heuristic and can be replaced later within the
framework.

2. The time between two states surrounding a timed transition has
a high correlation to one or more inputs at the closest input
event, and we hence build a linear regression and assign the
expression c1x1 + c2x2 . . . to the transition guard, where ci
are regression coefficients.

To test for normality, we use D’Agostino and Pearson’s tests of
normality that combine skewness and kurtosis [6, 9].

To clarify how we infer timing relationships, let us apply the pro-
posed technique to our running example. Assume we have collected
the time it takes the system to transition from q3 to q4 across eight
traces. If the ∆ dataset passes the normality test, then the transition
is assigned the average time as a time-guard.

By assigning time guards to the appropriate transitions, we com-
plete the final step in preparing the hybrid automaton. The automaton
can now be verified against test traces to quantify its accuracy, as
detailed in the next section.

4.6 Verify Automaton Against Test Traces
The final step in our framework is to verify the produced hybrid
automaton. Our evaluation technique proceeds as follows:

1. Given a segmented input/output trace ψ, for each input assign
each segment to a cluster from the set of precomputed clusters
for that input. This is done using a K-Means predictor.

2. Generate an input trace string using the same methodology as
that used in Subsection 4.2.

3. Run the input string and the accompanying input traces through
the hybrid automaton and record the output.

4. Compare the output of the automaton to the original output in
the segmented input/output trace and return the total distance.
The total distance is calculated as follows:

γA,ψ =
1

L

L∑
i=1

|wA[i]− ψ.wO[i]| (9)

where wA is the sampled output from the automaton, ψ.wO is
the original output in the input/output trace, and
L = max {|wA|, |ψ.wO|}. If w[i] does not exist for either
trace, it is assumed to be zero.

The final error metric for the entire test set is the average γ for
each individual trace in the test set:

e =
1

Ψt

|Ψt|∑
i

γA,ψi (10)

which is the error metric explained in Eq. 2. The objective of the
framework is to reduce the error through multiple iterations of au-
tomaton refinement. This is further explained in Subsection 4.6.1.

4.6.1 Automaton Refinement
Automaton refinement utilizes data collected from the test runs to
improve the accuracy of the automaton. Since test input traces are run
through the automaton, and the output of the automaton is compared
to the output traces point by point, we can breakdown the error to
every state and transition in the automaton. We plan to elaborate on
refinement in our future work (Section 8).

5 Case Studies
This section presents the case studies we use to evaluate the appli-

cability of our framework to different systems. Obviously these case
studies are not representative of the entire spectrum of hybrid systems,
yet this paper proposes a framework that can be further enhanced
in the future to support different types of systems and evolve into a
robust abstraction engine.

The case studies are based on systems for which there already
exists a Simulink model. Our framework is designed to support any
input/output traces, whether their origin is simulation or live execu-
tion. However, having the models helped us in producing noiseless
input/output traces which is beyond the scope of the current work.
Moreover, the Simulink models helped us in validating the proposed
approach by generating test traces.

We implemented the framework using a mixture of Python, Java,
and R with various libraries associated with it. R was used for seg-
mentation, Java was used for automata inference based on LearnLib,
and Python was used for clustering, flow condition inference and
timing condition inference.

5.1 Engine Timing Model
This case study is based on the engine timing model in the Simulink
toolbox examples (www.mathworks.com), which is also the basis for
our running example in Figure 1. The system has two inputs: (1)
input throttle, which is the desired speed of the engine in rounds per
minute (RPM), and (2) load torque in joules per radian. The output
of the system is the engine speed in RPM.

To test our approach, we collect eight traces of the model in
Simulink, which cover permutations of inputs as well as basic states.
We then segment them using the changepoint library in R [22].
At this point, we have the training set Ψr . Next, we feed them through
the framework outlined in Figure 3. The final output of the frame-
work is a hybrid automaton that models the behavior of the system as
observed in the training traces. Figure 10 shows the produced hybrid
automaton.

To verify the output automaton, we use a test set of traces to ensure
that the automaton can produce correct output to traces other than
its training traces. The test traces have different values for inputs
and transition at different times. To that end, we run a set of these
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Figure 10: Hybrid automaton for the engine timing control model.
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Figure 11: Comparison of automaton output versus test output.

test input traces through the automaton and compare the outputs to
the respective output test traces. Figure 11 shows the test output
versus the automaton output. The dashed line shows the output in
the test trace recorded from Simulink, and the solid line shows the
output of the hybrid automaton. As can be seen in the figure, the
automaton output closely follows the test trace output, except when
the input throttle increases, where the automaton overshoots beyond
the actual system. This is caused by inaccurate assessment of the
slope of the overshoot, which is in fact a function of the change in the
throttle input. We plan to rectify this in future work. Based on our
experiments, increasing the number of traces that cover the same use
case improves the fidelity of the model. Using less than eight traces
in this case study results in an inaccurate model, simply because the
traces do not cover the use cases shown in the automaton in Figure 1.

The error γ, which is the average distance between the automa-
ton trace and the test trace in Figure 11, is 26.37 RPM per sample.
Knowing that the range of the output in the trace is between 2000
RPM and 3000 RPM, this error amounts to 2.6%.

5.2 Fault-Tolerant Fuel Control System
The second case study we conduct is based on the Simulink fault-
tolerant fuel control system (www.mathworks.com). The model con-
tains both Simulink and StateFlow components. The controller should
regulate the fuel rate without interruption in case of individual sensor
failure. Four sensors are connected to the controller: throttle, speed,
EGO, and MAP. Failure in at most one sensor should not interrupt
fuel rate control.

The training set traces record the output fuel rate control signal
in different combinations of sensor failures. Each input/output trace
consists of four inputs (one for each sensor) and one output. Using
Simulink, any sensor can be toggled to simulate failure. The model
simulates a failed sensor by producing readings that are outside the
valid range for that sensor.

Although we require presegmented traces, the traces for this case
study were easy to segment automatically. We applied k-means clus-
tering to the values of the input traces (which are sensor readings),
and we were able to identify the periods in the traces where a spe-
cific sensor is turned off. For instance, as per the Simulink model,
the speed sensor normally provides readings between 300 and 700,
whereas when it is off it reads 0 (see Figure 12). Similarly for the

remaining three sensors, faulty readings are easily identifiable. The
output trace is segmented according to the input traces, meaning that
the change-points in the output trace are the union of all change-points
in the input trace. Figure 13 shows a concatenated output trace of
the system when different sensors fail, where change-points are black
circles.

Upon applying our framework, we first cluster the output segments
into four clusters based on the range feature (see Table 1). Each
cluster is assigned a symbol from a to d. For example, the trace in
Figure 13 is translated to the output trace string abacabababdba. The
input traces in Figure 12 are clustered using the same technique used
for our running example. Throttle is assigned the symbols f and g
for when it is on (value above 10) and off (value is zero) respectively.
Similarly, Speed is assigned h and i, EGO is assigned j and k, and
MAP is assigned l and m. Note that although we refer to a sensor
as on or off, the framework is unaware of that notion and only sees
two clusters per input signal that are assigned two unique symbols.
Since it never occurs in the training set traces that two sensors fail at
the same time, there are no symbols assigned to two or more sensors
failing concurrently. However, initially all sensors are on in all traces,
and thus this is assigned the symbol n.
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Figure 12: The four input traces of the fuel rate controller.

Using 17 training traces, the inferred hybrid automaton for the
system is shown in Figure 14. Note that we assume once a sensor
is faulty it cannot recover. The input events g, i, k, and m indicate
failures in the throttle, speed, EGO, and MAP sensors respectively. A
sample run of the hybrid automaton against a test trace (a trace not in
the training set) is plotted in Figure 15. While the automaton mimics
the oscillations of the original output, it fails to replicate the amplitude
of these oscillations. This can be improved by using other regression
models, namely for this case study a sinosoidal regression model
would produce more accurate results. Since our framework allows
for plug-and-play components, one can replace linear regression with
sinosoidal regression to reduce error. Even with the use of simple
linear regression models, the error percentage is 3.7%.

6 Related Work
Many researchers tackled the problem of specification mining of

software systems [26], the work in [5, 10, 25, 36] being the prominent
advances in the field. But none of these works deal with the problem
of mining specifications for control systems, where analog and digital
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Figure 13: Fuel rate control signal trace with change-points.

Figure 14: The inferred hybrid automaton of the fuel rate controller.

signals coexist. There are some works on generating API specifica-
tions [1, 39], yet control systems offer a new challenge due to the
need to mine their input output relationship.

The work on invariant generation from traces has yielded favourable
results and has proven to be versatile in mining basic invariants on
variables in traces [8, 13]. Our work is capable of breaking down
traces and constructing an automaton in which different states can
hold different invariants. Thus, an invariant generation module can
be a pluggable component within our framework to produce a more
accurate hybrid automaton. Invariant generation techniques can also
be used to infer transition conditions along with input event detection.

The work on behavioral model inference is close to the work
in this paper since it targets inference of behavior from execution
traces [14, 24, 27, 29]. The objective is to produce a model that
represents the system behavior. However, these works target discrete
system behavior and can not be used for inferring hybrid models.

The work on system identification is well established and vari-
ous robust tools exist to aid in the process [4, 20, 21, 30]. System
identification approaches produce complete models which would be
large and complex. In contrast, our objective is to to focus on certain
aspects of the system and generate small and comprehensible models,
thus aiding in the comprehension of such system, its integration with
other components, and its simulation. Further, our framework is
general enough to accommodate system identification techniques and
combine them with other techniques of specification mining to infer
abstract accessible hybrid automata.

7 Discussion
Mining hybrid automata from traces is a complex problem with nu-

merous challenges. Here we identify the limitations of our framework:
(1) Although we were successful with automatically segmenting the
signals in our case studies, the methods used may not be applicable
to all types of signals. The signals collected from live systems pose
some challenges. They are noisy and need to be filtered and pro-
cessed before being fed to our framework. (2) Any hidden state that
cannot be observed in the traces cannot be modelled. The modelling
technique we use relies on correlating inputs and outputs as observed
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Figure 15: A sample of the hybrid automaton output (solid) versus
the original system output (dashed).

in the training set traces. If certain behavior is triggered by an internal
state that is not observable through inputs and outputs, the behavior
will not be modelled, or the framework will model it with faulty
assumptions. (3) Some transition guards cannot be modelled such as
guards on output values, which will be addressed in the future. (4)
We assume that the propagation delay of a change in the input to an
observable change in the output is instantaneous. This allows consis-
tent segmentation and synchronized trace strings. In future work, this
assumption needs to be relaxed to infer time-delayed responses.

8 Conclusion
This paper has presented a general framework for inference of

hybrid automata models from black box system implementations by
mining their input/output traces. The framework outlines an iterative
process for the inference and refinement of hybrid automata. We
presented specific techniques in our case studies for the purpose of
demonstration but the framework is general enough to allow replace-
ment/improvements of these techniques. We introduced two case
studies that demonstrate the applicability of the approach (and also
some limitations). The results are highly encouraging and we believe
would spur more work on hybrid automata inference.

The framework allows for multiple directions of improvement
from within. As future work, we plan to explore enhancements
such as better preprocessing of data, improved segmentation, more
efficient algorithms, support for more causality rules, and improved
automata inference. In parallel with these enhancements, we plan to
elaborate on automata refinement by experimenting with case studies
where automata refinement is necessary. We plan to explore various
feedback techniques to reduce the error of the produced automaton
iteratively and apply these techniques to case studies. Finally, we plan
to explore modifying the framework to produce constrained hybrid
automata on which we can verify properties formally.
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