SiPTA: Signal Processing for Trace-based Anomaly Detection

Mohammad Mehdi Zeinali Zadeh, Mahmoud Salem, Neeraj Kumar,
Greta Cutulenco and Sebastian Fischmeister

University of Waterloo, ON, Canada
{mmzeinal, m4salem, n26kumar, gcutulen, sfischme}@uwaterloo.ca

Abstract

Given a set of historic good traces, trace-based anomaly detec-
tion deals with the problem of determining whether or not a spe-
cific trace represents a normal execution scenario. Most current ap-
proaches mainly focus on application areas outside of the embed-
ded systems domain and thus do not take advantage of the intrinsic
properties of this domain.

This work introduces SiPTA, a novel technique for offline trace-
based anomaly detection that utilizes the intrinsic feature of period-
icity found in embedded systems. SiPTA uses signal processing as
the underlying processing algorithm. The paper describes a generic
framework for mapping execution traces to channels and signals for
further processing. The classification stage of SiPTA uses a com-
prehensive set of metrics adapted from standard signal processing.
The system is particularly useful for embedded systems, and the
paper demonstrates this by comparing SiPTA with state-of-the-art
approaches based on Markov Model and Neural Networks. The pa-
per shows the technical feasibility and viability of SiPTA through
multiple case studies using traces from a field-tested hexacopter, a
mobile phone platform, and a car infotainment unit. In the experi-
ments, our approach outperformed every other tested method.

1. Introduction

Even for well-tested deployed systems, undetected errors may lead
to catastrophic failures similar to the failures of Therac-25 de-
vice [18] and Ariane 5 flight [19]. Therefore, safety-critical embed-
ded systems typically used in medical, nuclear, and automotive do-
mains require compliance with standards that recommend the use
of software monitors to detect anomalies in the development and
production phases (e.g., ISO-26262 [7] for automotive functional
safety and DO-178C [8] for airborne systems).

In such systems, trace-based anomaly detection can act as a
monitoring mechanism and invoke modules responsible for preven-
tion and recovery from failures. In essence, trace-based anomaly
detection aims at detecting execution patterns that do not conform
to the normal functioning of the system. Anomalous patterns can
indicate software bugs or malfunctions. This is also convenient, as
such an analysis treats the system under scrutiny as a black box
and does not require knowledge of its internals. The approach just
leverages the computational power of computer processors to dis-
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tinguish anomalous traces from normal traces, and therefore can
help in reducing the likelihood of catastrophic failures.

However, the main challenge of trace-based anomaly detection
is how to identify an incorrect behavior without raising too many
false alarms. Related work in a comprehensive survey [10] mea-
sures the effectiveness of detection mechanisms through false pos-
itives, where the detector incorrectly raises an alarm for a normal
execution behavior, and false negatives, where the detector over-
looks an anomaly. High false alarm rates diminish the value of the
mechanism, because the users stop trusting it.

Detection of anomalies can be done both, online (during run
time) or offline (once the program has finished execution). The
offline approach considers an entire trace of a system execution
scenario for analysis, while the online approach can only work
on streams of execution events collected during program runs to
detect anomalies on-the-fly. Online anomaly detection techniques
can therefore be used for monitoring program behavior and tak-
ing corrective actions during run time. They normally do so by in-
crementally adapting the threshold of the anomaly scores for the
captured streams. Offline detection techniques will therefore need
some adaptation to be used at run time, mainly in the amount of data
required to detect anomalies. However, as pointed out in [11], some
offline techniques cannot be used for online anomaly detection as
they need to process the entire trace before deriving a conclusion.

This paper introduces SiPTA, which realizes a novel technique
for offline program trace-based anomaly detection utilizing the in-
trinsic feature of periodicity found in embedded systems. As it will
be explained later, SiPTA uses signal processing algorithms to iden-
tify periodic features in an embedded system. The contributions of
this paper are outlined as follows:

* Introducing the concept of using intrinsic system periodicity for
trace analysis.

* Demonstrating the feasibility and viability of using signal pro-
cessing algorithms for trace analysis.

* Formalizing a generic framework for modeling traces and map-
ping them to signals and channels.

* Specifying a comprehensive set of metrics based on frequency
spectra useful for the classifying traces.

In our study, we restrict our attention to traces obtained from
embedded devices. We evaluate SiPTA through the analysis of sets
of application-specific traces generated from QNX RTOS [2] run-
ning on deployed commercial platforms (i.e., a hexacopter plat-
form, a car infotainment system, a phone OS, and an embedded
development test kit) covering a wide range of execution scenar-
i0s. We chose to create our own dataset, since the established
datasets [1, 3] are unsuited for embedded systems and are under
criticism [13, 22].
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The remainder of the paper is organized as follows: Section 2
presents an overview of the proposed methodology for detecting
anomalies; Section 3 explains SiPTA in detail; Section 4 outlines
the experimental setup and briefly discusses the alternative ap-
proaches to SiPTA; Section 5 compares the experimental results
for SiPTA and other alternative approaches; Section 6 discusses the
results and threats to validity, followed by conclusion in Section 7.

2. Overview

Our work applies to detecting anomalies by analyzing traces from
systems with recurring periodic processes, as often found in the
embedded systems domain [24].

Figure 1 shows a generic work-flow for offline detection of
anomalies in a system. The preprocessor extracts relevant informa-
tion from the input traces to be analyzed by the underlying anomaly
detection technique. This information can contain, for instance,
event names, time-stamps, and process names. The detection en-
gine outputs a comprehensive score for each of the input traces.
For the training traces, this score represents the normal behavior of
the system and can be called normal behavior score. For the testing
phase, the same procedure results into an anomaly score for the in-
put trace. Finally, a binary classifier decides whether this test trace
is normal or anomalous by comparing this anomaly score to the
normal behavior score.
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Figure 1: Work-flow Overview

SiPTA is the anomaly detection engine that we propose in this
paper. It takes advantage of the periodic behavior exhibited in
the traces [20], transforms the data and uses signal processing to
identify anomalous traces. More specifically, SiPTA performs the
following key steps:

1. Modeling the trace to signals. First, it extracts signals and
channels from the input trace. These signals and channels are
then valuated by assigning a time series to them.

2. Extracting periodic features of the trace. Next, SiPTA ex-
tracts periodic features from the time series obtained in the pre-
vious step. For this purpose, it uses discrete Fourier transform
(DFT) to calculate the spectra of channels.

3. Classifying using periodic features. Finally, it applies metrics
to estimate the expected periodic features for any normal trace.

If a new trace does not meet these expectations, it will be
considered as an anomalous trace.

In the context of detection of anomalies from sequential traces,
most of research has been focused on the anomaly detection of
operating system events. A recent survey paper [11] summarized
the progress in that research area. They discussed two major ap-
proaches. The first approach uses Markovian modeling [27] to
study the probabilistic characteristics of event transitions. This ex-
tends from first-order to higher-order Markov Models and some
equivalent methods as probabilistic suffix trees (PST), and sparse
Markov trees (SMT). The second approach models the event tran-
sition states through Finite State Automata (FSA) and Hidden
Markov Models (HMM) methods. Besides these, there are other
approaches to anomaly detection that do not fall into either of
the two categories. These approaches to anomaly detection exploit
mathematical concepts that are widely used in signal processing.
For instance, wavelet transform was used in [12, 15, 21, 25, 26]
and Fourier transform was used in [30]. Their work focused on
detecting anomalies in network-based systems. In contrast, our ap-
proach introduces the idea of using frequency characteristics of
event transitions.

3. SiPTA — Signal Processing for Trace Analysis

The following subsections, will formulate each of the parts of the
proposed anomaly detection engine and trace classifier described in
Figure 1. These parts are trace-to-signal modeling, signal process-
ing algorithm, metrics, and classification. We first show how a trace
is modeled as signals. Next, we show how the signal processing al-
gorithm processes these signals to extract their periodic features.
We then discuss the metrics which SiPTA uses to detect the dif-
ference between the results for training and testing traces. Finally,
we discuss the classification method that SiPTA uses to classify the
testing traces.

3.1 Trace-to-signal modeling

The first part of SiPTA is modeling traces to signals and channels.
This allows the signal processing algorithm to process traces. This
section provides the necessary terms and definitions for the trace
model, time series, and the trace to signal association. To define
trace-to-signal modeling, we should first formally model traces,
signals, and then also model the relation between them.

3.1.1 Trace Model

A trace consists of entries. Each entry contains multiple parame-
ters as data points. The following model formally specifies these
parameters.

The parameter p specifies a permitted value in a trace element
(e.g., a concrete process identifier value). A parameter set P spec-
ifies a set of parameters seen at a particular trace location (e.g., all
process identifiers listed in the whole trace, or the concatenation
of two or more columns, e.g., PID and Syscall). With these two
definitions in place, we can now formalize a trace.

DEFINITION 1 (Trace Entry). A trace entry E := (idz,t, P) is a
tuple consisting of a row index idx, a real-time value t, and a trace
parameter sequence P.

The parameter sequence P in a trace entry has a finite number
of trace parameters. Let M := |P|. Then the i" member of
P is a member of P;. In other words we say that a parameter
sequence P = (p1,...,pum), (and consequently the trace entry
E = (idx,t, P)) is defined over P = (IP1,...,Py) if and only if
V1<i< M:p; €P.



DEFINITION 2 (Trace). A trace T is a temporally ordered se-
quence of trace entries E; over P. The order is based on E;.t,
which is the real time value of the entry.

T = (FE1,..., E)
Also, the idx should be equal to the index of the entry, namely:
Vi<i<n:FE;idr=1

Naturally, a trace contains entries in temporal order. Thus the
following property should hold for a trace with n entries.

VEi,E]‘ withi > j: FEit < Ejt (€8]

DEFINITION 3 (Filtered trace). Let B € P, filtered trace T'(j, 3)
reduces a trace to entries that match a particular trace parameter
B. The filtered trace is ordered based on the time values of its
entries.

T(j,) = (T.E | T.E.Pp, = §)

EXAMPLE 1 (Trace). Consider a trace that contains the following
columns: time, process identifier, system call. A simple raw example
trace is shown in the following table.

Index Time | PID  Syscall
1 0 3 open
2 3 3 read
3 5 4 open
4 9 3 read
5 10 4 close
6 12 3 close
7 13 3 open
8 18 4 read
9 21 4 read

The parameter sets P1 to P2 will describe the process iden-
tifier and the system call columns with P1 = (3,4) and P» =
(open,read close). The trace entries will then be : E1 =
(0, (3, 0pen)), Ex = (3, (3,read)), and E3 = (5, (4, open)) with
the specific example values of E2.t = 3 or E3.P.p1 = 4. The trace
T will therefore be T' = <E1, FEs, Fs, B4, Es5, Fs, E7, Eg, E9>

3.1.2 Trace-Signal Association

Creating the formal model 7" is the starting point for mapping a
trace to channels and signals. This section defines signal class,
signal, and channel in relation to a trace.

DEFINITION 4 (Channel). A channel c; ) models the parameter
Pk in a parameter set Pj, where 1 < k < |P;|.

DEFINITION 5 (Signal). A signal s; := {c;k|1 < k < |P;|} is
the set of all channels for a parameter set.

DEFINITION 6 (Signal Class). A signal class S is the set of all
signals for a given trace:

S(T) = {s;]1 < j < M}

Following up on Example 1, the channel c;,;1 corresponds to the
process identifiers with value 3. The signal so models the system
call column. The channel cz,1 will therefore correspond to syscall
open. The signal class S for the example trace is S = {s1,s2}
modeling both the process identifier and the system call column.

3.1.3 Time Series

Based on the definition of a signal class S, we can now define the
time series through time stamps, and method of constructing a time
series which is inter-arrival method.

DEFINITION 7 (Real-Time Stamp Sequence). A real-time stamp
sequence is the projection of a (filtered) trace onto time, thus

ttss(T, 5, B) = T4, B)-t.

DEFINITION 8 (Logical-Time Stamp Sequence). A  logical-time

stamp sequence is the projection of a (filtered) trace onto index,
thus ltss(T), 3, 8) = T'(3, B).idz.

Time stamps are the means to construct time series of channels
or in simpler words the channels. This work uses the inter-arrival
time series construction method which is was presented in [30]. We
refer to this time series as inter-arrival time series.

DEFINITION 9 (Inter-arrival time series for rtss). Given a real-
time stamp sequence ttss(7T, j, 3), inter-arrival real-time series
rtssa is the difference function applied to subsequent time stamps:

V1 <I<L-—1:1tssa(T,j,B)[l] =rtss[l + 1] — rtss[{]
with L being the length of the trace T.

We can define a similar function on the inter-arrival logical time
series ltssa, which operates on the logical-time stamp sequence
Itss.

DEFINITION 10 (Channel valuation). Given an inter-arrival time
series tsa (T, §, B) (which is either ttssa or ltssa), a channel ¢; i,
has a value cj i, = tsa(T, j,Pj.px).

EXAMPLE 2. We now construct rtssa (T, j,P;.pr) with T as the
trace shown in Example 1 and j being either 1 or 2 for the different
columns.

With j = 1, we create the signal for the PID column and k
specifying which concrete PID to model (e.g., k = 2 models the
PID being 4 as 4 is the second member of P1).

With j = 2, we create the signal for the Syscall column and k
specifying the concrete system call to model (e.g., k = 1 models
open as it is the first member of P2).

For different values of j and k, c; i will look like the following:

J | Pipe | rtss(T,5,Pj.pr) | ¢jn = rtssa(T,5,P;.px)
1 3 (0,3,9,12,13) (3,6,3,1)

1l 4 | 5101821 (5.8.3)

2 open | (0,5,13) (5,8)

2 | read | (39.,1821) (6.9,3)

2 | close | (10,12) 2)

3.2 Signal Processing Algorithm

Using the defined model, we can now specify what signal process-
ing algorithms to apply and how. The previous section described
a deterministic method for the first part of the anomaly detection
technique that deals with trace-to-signal modeling. The output of
this method, S, is a signal class that is the input of the second part
of SiPTA. As discussed earlier, DFT is a tool to extract periodic
features or more generally frequency properties of a time series.
The main focus of our signal processing algorithm is DFT, how to
perform it on the signal class of a trace, and how to scale the results.

DEFINITION 11 (FFT function). Let N be the set of natural num-
bers and C is the set of complex numbers. F be the function per-
forming DFT using the fast Fourier’s Transform (FFT) algorithm
on its input on input positive-integer time series of length L. Then
F is the FFT function on the input time series, i.e., the input posi-
tive integer vector of size L. Namely:

F:N 5t



In this work, the inputs to the FFT function are channels that are
extracted by modeling the trace to signal classes.

For the vector, we require the functions abs and sum, which are
the element-wise absolute value of the input vector and summation
of the elements in the vector, respectively.

Using the time series of channels as inputs, we can now define
how to compute the frequency series, for which we then normalize
the area under the curve. For this normalized frequency series we
can then define the frequency axis that our metrics and classifier
will use.

DEFINITION 12 (Frequency Series). For every 1 < 5 < M, and
everyl < k < |P;|, let F i, be the frequency series associated with
channel c; i, of length L; 1. The frequency series F} i, is defined as:

Fj 1, = abs(F(cjk))

DEFINITION 13 (Normalized Frequency Series). For every 1 <
j < M, and every 1 < k < |Pj|, let f;i be the normalized
frequency series associated with channel c; . Let Fjj be the
frequency series of the channel c; i, of length L; ;. defined as:

fik = Fiik
" S () L = 1)

The normalization ignores the first element (F} x[1]), because
we ignore the DC value of the frequency series for normalization.

DEFINITION 14 (Frequency Axis). Let f;x be a normalized fre-
quency series of length L; . The following defines frequency axis
wj,k vector of length Lj i associated with f; 1.:

wj,k[l] = withl <1< Ljyk 2)

gk
So, wj k[l] is the normalized frequency [23] associated with

Fixlll-

EXAMPLE 3. Let c1,1 and ci1,2 be the first two channels in Exam-
ple 2, namely ¢1,1 = (3,6,3,1), and c1,2 = (5,8, 3). In this case,
L1,y =4 and L1 = 3 are respectively the lengths of these chan-
nels. According to Definition 12 and 13, the values of define F1 1,
f1,1, and w1 1 are as following:

F(e1,1) = (13, =53, —1, 57)
F1,1 = abs(f(c1,1)) = (13,57 1,5)

S5 (Faall) _ 1
Lia 3
Fiq
fin= ~ (3.55,1.36,0.27, 1.36)

11/3
wi,1 = (0,0.25,0.5,0.75)

Also, the values for F 2, f1,2, and w1 2 are as following:
Fl(er2) = (16,—0.5 — 4.33014, —0.5 + 4.33014)
F1,2 = abs(F(c1,2)) =~ (16.0000, 4.36, 4.36)
fl,2 ~ (367, 17 1)
w1,1 ~ (0,0.33,0.67)

It is worth noting that these examples are for the purpose of
demonstration and therefore the values of L ;. are arbitrarily small.
In real traces, values of L; ;, are usually magnitudes larger. Figure 2
depicts a normalized frequency series (i.e., spectrum) of a chan-

nel corresponding to the THREAD-THREPLY parameter of a non-
anomalous trace. Higher values in the spectrum close to w =~ 0.25

indicate a significant periodic behavior around this normalized fre-
quency relative to other periodic behaviors. It means that the chan-
nel has a periodic feature with an approximate sequence length of
Lx1pos=4
= . .

p=THREAD-THREPLY - Normal
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Figure 2: Spectrum of THREAD-THREPLY for a normal case

3.3 Metrics

Based on the spectra, we can compute metrics to distinguish be-
tween normal and anomalous traces. Consider a system that be-
haves normally, i.e., it does not show an anomaly. In this case,
the system produces normal traces which are representative for the
specification. Normal traces will result in normal spectra after ap-
plying our signal processing algorithm. Naturally, normal spectra
of each parameter P;.p;, for different normal traces result in sim-
ilar periodic features. We expect that, in case an anomaly occurs
which results in an anomalous trace, then this anomaly will have
measurable impact on the spectrum.

For example consider the parameter THREAD-THREPLY in a
trace obtained from one of our experiments. THREAD and THREPLY
are individual parameters, and THREAD-THREPLY refers to the pa-
rameter obtained by concatenating them. Figure 2 shows the spec-
trum of the channel modeling this parameter in a normal trace. Fig-
ure 3 shows the spectrum of the same parameter with an anomaly
present. Obviously, the two spectra differ and the second one can
be labeled as an anomalous trace (assuming that the first shows a
normal trace). For example the periodic behavior near w ~ 0.25
vanished in the anomalous trace.

Several metrics can help detecting periodic features. So far,
SiPTA implements the following metrics: peak-frequency and DC-
significance.

DEFINITION 15 (Peak-Frequency Metric). Let fj 1 and wji of
lengths L, represent the spectrum of the parameter P;.py. Also
let 0 < w;“L < 0.5 be the minimum frequency cu{-oﬁ‘ representing
a high-pass filter, and let 1 = min{l|w; x [I] > w§', } be the lowest
index which its corresponding frequency is higher than wj“}c Basi-

cally, I is the smallest index where wj i[I™"'] > wg"‘}c Similarly,

let 1" = max{l|w; r[l] < 0.5} indicate the greatest index, where
wj k[l] < 0.5. In this case, let ™ = argmax L << Jhatfy
be the index for which the maximum magm'tudé in the spectrum of
normalized frequency falls between w;“}g and wl;",lf In this case
the metric peak-freq consists of the two values f;i[I™], and
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Figure 3: Spectrum of THREAD-THREPLY for an anomalous case

lmax]

wj k[[™]. Formally:

P = f.[l™]
Fjp = wjk[™]

where Pjj is the valuation for metric peak part of the metric
and Fj 1. is the valuation for the frequency part of the metric.
Basically, this valuation points to the point in the spectrum which
has the highest magnitude while it is ignoring the values that
has frequencies near 0, i.e., DC. This metric represents the most
significant periodic feature of the parameter.

DEFINITION 16 (DC-Significance Metric). Let f; 1, be the nor-
malized frequency domain of extracted with respect to the param-
eter Pj.pi of lengths Lj 1. In this case, DC} ), representing the
DC-significanceof the parameter pj i, is defined as below:

ik 1
DC],k — f] [ ]
Lk
In the case of inter-arrival time series, this metric points that how
regularly the parameter pj . occurred.

EXAMPLE 4 (Metrics). Let p = THREAD-THREPLY. The valuation
of peak-frequency and DC-significance metric on the two spectra
of the two traces depicted in Figure 2 (normal trace), and Figure 3
(anomalous trace) are as following, where clean represent normal
and dirty represent anomalous traces.

Metric | Clean | Dirty

P 9.037 5.378
F 0.2374 | 0.2181
DC 0.0156 | 0.0081

As we can see from Example 4, there is a significant difference be-
tween peak and DC-significance metrics for normal and anomalous
traces.

3.4 Classification

As mentioned earlier, classification consists of two phases, the
training phase and the testing phase (also referred to as analysis
phase). In the training phase, the classifier analyzes the values of
each metric of each parameter of each training trace and calculates
a mean value for each of them. For each trace in the analysis

phase, SiPTA calculates the difference of each metric value with
the computed mean. SiPTA does this for every channel and finally
averages them with respect to some weight values. If the result is
greater than a specified threshold, then the trace being evaluated is
identified as anomalous, otherwise it represents a normal execution
scenario.

To formalize different steps of classification, we should be able
to distinguish between the notation for the training and testing
traces. We do so by using superscripts. Therefore, a trace T'
represents the i-th training trace. Similarly, 7' represents the
i-th testing trace. In a similar way, the length of the trace T
will be denoted by L', the value of DC-significance metric for
a parameter IP;.p;, for valid j and k is denoted by DC;:}C, and so
on.

DEFINITION 17 (Training and Analysis Sets). Consider an arbi-
trary parameter set sequence P = (P1, ..., Pn) with M parame-
ter sets. Let T* = {T%', ... . T"™} and T® = {T*",...,T""*} be
the sets of training and analysis traces, each of which are defined
over P, where n is the number of training and n, is the number of
analysis traces.

DEFINITION 18 (Metric Mean). Let T* be a training set of length
ng Forall1 <i<n, 1 <j< Mandl <k< |P;|, assume
that mj y, is an arbitrary metric such as DC—signiﬁc“ance, or peak-
frequency value, for parameter P;.py in trace T'. In this case,
metric mean of parameter Pj.px, ™ . is defined as following:

ng i
Dot Mk

ne

myk =

Basically, it is the mean value of that metric from all the traces in
training set.

DEFINITION 19 (Scores). Let T be a trace either in the training

or analysis sets. Also, assume the parameters P;.py are assigned
. . . PB;

to normalized weights wj i, that is, Z;Vil ZL;ll W = 1, and all

weights are positive. Now, the score assigned to T™" is the weighted

average of squares of normalized differences of the metrics to the
metric mean. Put formally:

M Pl

m' = Z Z(m;vk - mj,k)g X Wy k
j=1k=1
DEFINITION 20 (Overall Scores). In order to merge the scores of
different metrics to compute an overall score, we calculate the
average of the individual metric-scores. For example, for a trace
T the overall score ( score' ) over the DC-significance, and peak-
frequency metric, will be the following:

DC' + P+ F'
3
The average presented in Definition 20 can be replaced with a
weighted average that signifies more important metrics. The reason
that we did not do a weighted average, is that it we did not have an
estimate of which metric is more significant.

score' =

DEFINITION 21 (Maximum Training Score). This is defined as
the maximum overall score over all traces in the training set.

scoreMax = max(score') Vi such that T"" is a training trace

DEFINITION 22 (Classification). Let r be a multiplication factor
which in turn defines the threshold factor of scoreMax X r. And
also let score™ be the score for T™' from the analysis set. Then
the following function determines which class (C*') this particular
trace belongs to:



oo — { false if score™' < scoreMax X r
T ] true otherwise

We can vary the factor r, to define new threshold levels.

EXAMPLE 5 (Scoring and Classification). For a studied case, the
training set had 5 members and analysis set had 10 members
which contained 5 normal and 5 anomalous traces. Traces 1 to
5 construct the training set. Traces 6 to 10 are the normal traces
in the analysis set, and traces 11 to 15 are anomalous traces in
analysis set. Figure 4 gives the score values for these traces.
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Figure 4: Classification scores for a system

In this example ScoreMax = 0.0183 and with a threshold
value r between 9 and 100, the classifier will provide a perfect
classification of anomalous and normal traces.

Figure 4 also shows that the scores for normal training traces
are clearly more than these scores for clean analyzing traces. The

reason is that expansion of the defintion BE", P’ and F'in the
score’ for a real example, it will be the weighted mean of squares of
many (in order of 1000) of metrics. On the other hand the square
Sfunction magnifies the difference from score mean which in turn
results in high expected score for clean analyzing set compaired to
the training set.

4. Experimental Evaluation

While SiPTA in theory is well suited to the problem domain of peri-
odic systems, we followed up our theory work with an experimen-
tal evaluation to provide quantitative results. The following section
describes the conducted experiments used to evaluate the proposed
technique, the evaluation process, and the results.

4.1 Experimental Setup and Workload

Our experiments use the QNX Neutrino 6.4 real-time operating
system. While the framework is independent from system traces,
we used QNX, because we have three distinct applications from
which we can gather traces: a hexacopter application [4], a QNX
CAR infotainment unit, and Blackberry phones running QNX. This
allows us to gather system traces from very different execution
contexts and properly evaluate SiPTA.

To collect data, we used the QNX kernel logging facility for our
experiments. The kernel logging facility provides trace capabilities
through QNX tracelogger. A trace collected from tracelogger con-
tains a chronological order of system events such as system calls,
message passes, interrupts, I/O etc. Every trace entry corresponds

to a system event and a set of additional related information, such as
the source/destination of a message pass. A sample trace is shown
in the following snippet:

TIMESTAMP, CPU, EVENT, PID, PROC, Details

t1, 1, PROCCREATE, 1, A, PPID: O ...
t2, 1, THCREATE, 1, A,

t3, 2, INT_ENTR, 1, A,

t4, 2, INT_EXIT, 1, A, ...

t5, 1, MSG_SND, 1, A, To: B ..
t6, 1, MSG_RECV, 3, B, From: A ...
tn, 1, KER_CALL, 1, A, SIGKILL ...

The above snippet shows the life-cycle of a process as recorded
by the system. The process A, once created, spawns a thread,
addresses an interrupt, sends message to some other process B
before being terminated.

Our experiment uses only a subset of all the information that
is contained in a trace. Specifically, our comparisons only consider
the following event attributes: class, event, time, pid, and process
name. This is consistent with related work [10] which reduces the
used attributes to similar lists.

The experimental workload consists of different execution sce-
narios of the available systems. Each set contains normal and
anomalous traces. The traces are not shared between the scenarios.
Each scenario runs between 10 to 20 seconds. Each trace contains
all logging information for a single scenario, and within one sce-
nario each trace is approximately the same length in terms of run
time. For a given scenario, we split the set of traces arbitrarily into
a training subset and a testing subset where a trace belongs to only
one of those subsets. Depending on the detection technique, the
training set can contain just normal traces or it can contain a com-
bination of normal and anomalous traces (e.g., we need anomalous
traces as part of the training set for the comparison with Neural
Networks). Similarly, the testing set can contain a set of normal
traces, a set of anomalous traces, or a combination of both.

The experimental setup and workload is specific for embedded
systems. In particular, we picked four embedded devices (details
later in the section), and used some test scenarios to collect traces.
As most events in embedded systems are periodic in nature, our test
cases attempt to cover general cases that exhibit periodicity. Each
scenario contained two sets of traces: T* and T®. Of these sets, T*
trains the system with relevant information to be able to identify
anomalous traces from the set T®. Recall that an anomalous trace
is one that does not conform with the expected behavior learnt from
the training traces.

* Hexacopter: The first scenario uses traces from an unmanned
aerial vehicle (UAV) platform, which implements non-trivial
software and systems control [4]. The platform runs on beagle-
bone white with ARM Cortex-A8 processor and comprises a
networked system of hardware and software components. The
hexacopter is field tested through several mission-critical ap-
plications including iceberg monitoring on the open sea and
creating infrared maps over critical Canadian Solar infrastruc-
ture. For our experiment, we created two test scenarios. In both
scenarios, the training traces correspond to the hexacopter run-
ning normally. The classes of anomalous traces involved, for
instance, a periodic recursive listing on the file system' and get-
ting stuck in a tight loop.

ONX CAR infotainment device: The second set of scenarios
uses QNX CAR [5], which is the leading in-car infotainment
system. The device was running QNX Neutrino on an i. MX6Q
(Sabre lite) board with an ARM Cortex A9 quad-core proces-

lwhile [ 1 1; do sleep 2; 1ls -1R /; domne



sor. We created the following scenarios on this platform:

Normal trace \ Anomalies

Idle | Induced network traffic, user inputs
Play MP3 | Seeking, fast-forward, different song
Play Video | Seeking, fast-forward, different video
Run fop command | Induced network traffic, more shell tasks

ONX-based BlackBerry Z10 phone: The third set of scenarios
uses the BlackBerry phone. These phones run a modified ver-
sion of QNX Neutrino, however, the tracelogging facilities are
still available. We created the following set of scenarios on this
platform:

Normal trace | Anomalies
Record video | Zooming and toggling the camera
light on/off
Play youtube video | Playing different video,
toggling HD on/off
Play game | Change sound, using different controls
Run flash applet | Reload page, leave page

Embedded target: This scenario uses a non-commercial demon-
strator platform for QNX Neutrino [6]. The hardware runs on
the i. MX6Q (sabre lite) similar to our QNX CAR case study.
For this scenario, the platform executes a sound alarm applica-
tion displaying audio frequencies recorded through the micro-
phone. The normal behavior runs the system in a quiet setup.
The anomalies include producing different loud sounds nearby.

Variable delay traces: Finally, we ran SiPTA on a set of traces
which were generated on QNX Car platform by varying the de-
lay between the events. We emulated this behavior in the traces
by inserting delays between two instances of high system activ-
ity. For example, a scenario in which the device pings the net-
work every other second, and another in which the interval is
increased to 5 seconds. Considering the slow traces as normal
and the faster ones as anomalies, SiPTA was able to correctly
identify and appropriately label the traces as we show in Sec-
tion 5.

SiPTA has varying parameters that we should set for experi-
ments. These parameters are the channels and signals that SiPTA
uses, time stamps, and the classification weights wj 5. In this exper-
iment setup, the trace-to-signal modeling phase extracts the signal
class as a concatenation of the CLASS, EVENT, and PID columns.
Also, the time stamps are real-time stamps. Classification scores
are calculated using the following weight values:

B gk fdevi (m 1)
- P, _ .
Z;\/il Li;(mﬂ'f’“/ﬂevi(m}ﬂ)

where dev; (m; &) is the standard deviation of the metric for param-
eter ;. py, This formula gives more weight to parameters that show
less deviation in training phase.

(3)

Wy, k

4.2 Evaluation Criteria

To measure the effectiveness of SiPTA, we need to compare the re-
sults to different existing techniques. The prevalent metric for com-
parison in anomaly detection is receiver operating characteristics
curve (ROC) analysis [14].

ROC Analysis

ROC analysis is a common technique in research to compare dif-
ferent classifiers based on their performance [22, 29]. ROC analysis
explains the trade-off between the true positive rate (TPR), plotted

on the y-axis, and the false positive rate (FPR), plotted on the x-
axis. To compare different classifiers, the common approach [14] is
to consider the classifier with the higher area under the ROC curve
as the better classifier.

Figure 5 shows an ROC curve for one of the experiment runs.
The algorithm calculates the values for a point (FPR, TPR) using
Equations 4 and 5 where a classifier threshold interprets the input
probabilities into a binary output of 0 (negative) or 1 (positive).

Positives correctly classified

TPR =
Total Positives

@

Negatives incorrectly classified )
Total Negatives

To obtain all points for the ROC curve when using Markov
Model, the algorithm varies the threshold over a range of all input
probabilities to obtain the corresponding points (FPR, TPR) plotted
in the figure. In SiPTA, this corresponds to varying the value 7.

In addition to the area under the ROC curve, some important
characteristics of the curve help with the analysis of the classifier
performance. For example, point (0, 1) indicates perfect classifica-
tion while the region under the dotted line TPR = FPR indicates
that the classification is worse than making a random guess.

FPR =

4.3 Comparison to Alternative Approaches

To evaluate SiPTA, we compare it to other approaches imple-
menting alternative concepts. For example, one alternative uses
a stochastic approach, which assumes that anomalies change the
probabilistic characteristics of event transitions in a sequence of
system events. The most popular technique for this approach is the
first-order Markov Model technique [11]. Another alternative that
we use for comparison is Neural Networks [9]. The two techniques
were chosen due to their popularity in the domain and thus a wider
applicability for existing work. The disadvantage of using Neural
Networks however is the inability to use the ROC analysis to com-
pare its performance to the other techniques, as discussed later in
this section.

4.3.1 Markov Model Technique

Markov Model is a discrete-time stochastic process used to study
the probability of the change of a random variable value. First-
order Markov Models are commonly used to study the probabilistic
characteristics of a single transition between two events within the
trace sequence [16, 27-29].

To compare to the performance of SiPTA, we implemented
the anomaly detection engine shown in Figure 1 using first-order
Markov Model. For an input trace sequence, an event represents a
Markov Model state so that the Markov Model will describe the
probability of occurrence of a transition between an event and its
first successor. Following the work-flow in Figure 1, the preproces-
sor splits the trace into sub-traces based on the process name and
extracts only the event name and event class attributes. For each
sub-trace, the Markov Model calculates a transition probability ma-
trix [27], which indicates the probability of transition between any
trace entries. The averaged transition probability matrices calcu-
lated for the training set describe the normal behavior of the sys-
tem.

In the testing phase, the classifier compares the transition proba-
bility matrix of the test trace and the normal behavior matrix to de-
cide if the test trace is normal or anomalous. We assign an anomaly
flag for each transition in the test trace that occurs with a probabil-
ity value that lies outside a defined region around the mean value
of probabilities that describe the normal behavior of the system.
For each experiment, we performed several experiment runs using
different sizes for that region to select the region size that yields



the best ROC curve. For the final binary classification, the percent-
age of anomalous transitions within the trace indicates, whether the
trace is anomalous or not. Varying a threshold over the range of the
percentages, ranging from 0% to 100%, yields points of ROC curve
as described earlier.

For the sake of simplicity of the implementation, transition
probability matrices consider only the transitions in a randomly se-
lected normal trace during the training phase instead of considering
all possible transitions combinations. This consideration reduces
the calculations by excluding the transitions that rarely occur and
have no effect on the final classification result.

4.3.2 Neural Networks Technique

Artificial Neural Networks (NN) are massively connected networks
of computational nodes or neurons. The nodes are usually orga-
nized into layers (input, output, and hidden layers) with weighted
connections between them [17]. As the network learns, it updates
the weights on the connections to improve classification.

For the purpose of comparison, the Kohonen self-organizing
network (KSON) was used. The network uses unsupervised learn-
ing algorithms to cluster inputs into groups with similar character-
istics. The learning is called unsupervised because the output char-
acteristics of the network are determined internally and locally by
the network itself, without any data on desired outputs. The nodes
distribute themselves across the input space to recognize groups
of similar input vectors, while the output nodes compete among
themselves to be fired one at a time in response to a particular input
vector [17]. Thus, due to this competitive learning, similar input
vectors activate physically close output nodes. We want to take ad-
vantage of this characteristic of KSON to classify the traces.

The input vectors for the network are an encoded representation
of the events in a trace. To generate the encoding we extract event
names from the trace and then count the number of occurrences of
each event. The count for each event is then scaled by dividing it
by the total number of logged events in the trace. The input vector
is thus a collection of event to count mappings for the trace.

The training sets for the network need to contain both clean
and anomalous traces. When the network is trained with only clean
traces, it is not able to classify anomalous traces as part of a dif-
ferent cluster during testing. Thus, unlike other approaches, Neural
Networks imposes constraints on the training set. During the testing
phase, the network determines the cluster that the trace belongs to
and thus classifies the trace. The classification is typically discrete,
with the output being either O (clean) or 1 (anomalous), however
the value can be within that interval in case of more uncertainty.

The difficulty with using Neural Networks technique for com-
parison with the other approaches is the lack of a classifier thresh-
old. The classification takes place within the internal structure of
the network using specialized learning algorithms. We can thus
alter the structure of the network, but cannot alter any thresholds
that influence the cluster that the network will choose. As a conse-
quence, we can only report the detection rate for this technique but
cannot perform an ROC analysis.

5. Results

Table 1 shows the detection rates (TPR) and false-alarm rates (FPR)
for each of the three approaches, namely SiPTA, Markov Model
and Neural Networks. Contrary to Neural Networks, SiPTA and
Markov Model implement a binary classifier. This allows us to use
ROC curves to compare their performance, but a similar compari-
son cannot be done with Neural Networks.

As mentioned in Section 4.2, the points (FPR, TPR) asymptot-
ically represent the ROC curve for each approach. Figures 5, 6,
and 7 show the ROC curves for the hexacopter, QNX-Car run fop
command, and variable ping speed experiments, respectively. The

remaining experiments yielded ROC curves similar to Figure 5
which show near perfect classification for both SiPTA and Markov
Model.

ROC curves clearly demonstrate the trade-off between the de-
tection rate and the false-alarm rate for a binary classifier. ROC
curve points closer to (0, 1) indicate better results with 100% de-
tection rate and 0% false alarm rate. Although such points are most
desirable, for our comparisons in Table 1, we favor the detection
rate over false-alarm rate. The reason behind this preference is that
for most cases the penalty of false negatives outweighs false posi-
tives.

ROC Curve — Hexacopter

100 ® ® ® ® ® &
90~ i
80 ® -7
70 P
—~ 60 ® Y
x SoF 7
B =
0 Q@ o
p
.
30 2
P
p
20F ® e
.
p
10 4 N
e X SiPTA
of X O Markov Model
| | | | | | | : : :
0 10 20 30 40 50 60 70 80 9 100
FPR (%)

Figure 5: ROC curve for hexacopter
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Figure 6: ROC curve for QNX car-run top command

6. Discussion

SiPTA outperforms all other approaches. In every studied case,
our approach yields better results than other studied approaches.
For instance, as Figure 7 indicates, SiPTA yields perfect classifica-
tion results for the variable speed ping scenario while other tech-
niques do not. One conjecture for why SiPTA worked is that a



SiPTA Markov Model Neural Networks
Detection  False-Alarm Detection  False-Alarm Detection  False-Alarm
Case studies Rate Rate Rate Rate Rate Rate
Hexacopter 100% 0% 100% 0% 91% 0%
QNX-Car Idle 100% 0% 100% 0% 91% 0%
QNX-Car Play MP3 100% 0% 100% 0% 45% 0%
QNX-Car Play Video 100% 0% 100% 0% 83% 0%
QNX-Car Run fop command 100% 20% 80% 20% 26% 0%
Variable speed ping 100% 0% 80% 0% 75% 0%
Table 1: Results summary
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Figure 7: ROC curve for QNX car-variable speed ping

change in the ping frequency introduces more irregular behavior
in the trace (or less depending on the direction of the rate change).
With this irregularity, more noise will appear on the spectra of the
channels. As these spectra are normalized, this noise grows in sig-
nificance as the peaks show less magnitude. Because for this case,
we consider higher ping speed as anomaly, the peak-frequency
and DC-significance metric to have lower values in anomalous
case. For example, Figure 8 shows two spectra for the parameter
THREAD-THREADY-2367525; one plot for a normal and the other
for an anomalous case. Figure 9 also shows two spectra, in this case
for the parameter THREAD-THREADY-1. The distinction between
the peak-frequency values for the normal and anomalous cases is
visible and obvious.

Markov Models fail on certain scenarios. The Markov Model
results indicate that the technique does not work for all exper-
iments as SiPTA does. The Markov Model technique calculates
the probabilities of transitions between events where the classifier
aims to find any irregularities among those probabilities. Although
the technique seems to work reasonably well and is currently the
dominantly used one [10], it failed to handle certain scenarios. We
conjecture that Markov Model fails for these scenarios, because
the anomaly has an insignificant effect on the transition probabili-
ties. This is due to events changing their inter-arrival time without
affecting their transitions probabilities, which represents a whole
class of anomalies that SiPTA can detect, however, Markov Model
cannot.

Neural Networks are ill-suited for trace-based anomaly detection.
Neural Networks is an established technique that is used for detect-
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Figure 9: Spectra of parameter THREAD-THREADY-1

ing anomalies, however, due to its limitations, it is less suitable for
this given problem. The results for Neural Networks indicate that
the technique classifies anomalous traces only for some of the sce-
narios. Neural Networks are only able to classify anomalous traces
unless trained with at least one anomaly similar to the one occur-
ring. Table 1 shows that Neural Networks have a 0% false alarm
rate throughout the experiments, because when the network is not
trained with anomalous traces, then it will tend to default to clas-



sifying traces as normal. So, if the occurring anomalous trace is
not similar enough to any anomalous trace used in training, then
the network will classify the trace as normal. Unlike SiPTA and
Markov Model, Neural Networks require a different training set
comprising both normal and anomalous traces.

The concepts are widely applicable. 1t can be observed that
SiPTA has an inherently modular structure. Each component,
namely trace-to-signal modeling, signal processing algorithm, met-
rics, and classification technique can be modified to suit application
specific scenarios as long as the modules complement each other.
For example, one can use some alternative method to model trace-
to-signal mappings other than assigning channels to each parame-
ter. Similarly, one can plug-in another signal processing algorithm
that exploits some other domain knowledge.

Threats to validity. Our framework and SiPTA base on the as-
sumption that anomalies show changes in the periodicity of events
in the trace; otherwise such anomalies will pass undetected. Fur-
thermore, similar to all other approach, SiPTA assumes that the
trace contains evidence of the anomaly. Our approach still needs
supervised learning from a labeled trace set, similar to Markov
Models. While SiPTA was able to outperform all other studied
approaches and we created a comprehensive set of scenarios and
traces, naturally more evidence is necessary to gain confidence that
the system will consistently outperform other approaches also in
other settings.

7. Conclusion

Identifying an incorrect behavior is crucial for safety-critical em-
bedded systems. In this work we demonstrated that, with an ap-
propriate application of signal processing algorithms on execution
traces, one can identify an incorrect system behavior. We demon-
strated the feasibility of such an approach by implementing these
algorithms into SiPTA. In our experiments, we performed a holistic
evaluation of SiPTA by running it on execution traces from varied
execution scenarios. To demonstrate the effectiveness of SiPTA, we
compared it with state of art techniques of Markov Model and Neu-
ral Networks. The results indicate that SiPTA outperforms all the
studied contemporary approaches.
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