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ABSTRACT

Security and privacy are growing concerns in modern em-
bedded software, given the increasing level of connectivity
as well as complexity and features in embedded devices. Use
of cryptographic techniques is often a requirement on which
the security of the device relies. However, important chal-
lenges arise when potential attackers have physical access
to the device. Side-channel analysis, including simple power
analysis (SPA), is a class of powerful non-intrusive attacks
that are suitable for adversaries with physical access to the
device. Countermeasures exist, but they typically involve a
considerable performance penalty, and some of them in turn
introduce a vulnerability to induced fault attacks.

In this work, we present several new efficient cryptographic
exponentiation algorithms that work by splitting the expo-
nent in two halves for simultaneous processing while using
special representations derived from signed-digit encoding
that improve computational efficiency. A key detail in the
design of these algorithms is that they are compatible with
the idea of buffering the operations to provide resistance
to SPA. Experimental results are presented, including im-
plementations of the proposed methods with both modular
integer exponentiation and elliptic curve (ECC) scalar mul-
tiplication. ~We also performed statistical analysis of the
traces, showing that trace segments for different exponent
bits are statistically indistinguishable. Our proposed tech-
niques also exhibit better resistance against fault attacks
and combined fault and side-channel attacks, compared to
previous SPA-resistant techniques.
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1. INTRODUCTION

Embedded developers face important challenges when de-
veloping systems with security requirements. This is in part
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due to the fact that adversaries with physical access to a
device have powerful tools at their disposal, including inva-
sive or semi-invasive reverse-engineering [28] and the non-
invasive side-channel attacks [20]. One critical aspect that
devices need to protect is the secrecy of cryptographic keys
embedded in the device and necessary to meet the security
requirements. Though the notion of physical unclonable
functions (PUF) attempts to get around this issue, they do
not always address the secrecy requirements of the necessary
cryptographic primitives [16].

Some of the cryptographic primitives that are useful for
embedded systems rely on exponentiation with large secret
exponents [21]. Algorithms exist that provide secure and
efficient ways to execute these required exponentiations [13].
However, implementations of these algorithms may be vul-
nerable to power analysis attacks [20], an efficient type of
side-channel attack suitable when attackers have physical
access to the device. Depending on the implementation,
a single power trace may suffice to recover the secret pa-
rameters of the cryptosystem; this technique is known as
simple power analysis (SPA). Multiple power traces may be
required to extract the useful information, exploiting cor-
relation between power consumption and the secret data,
through a technique known as Differential Power Analysis
(DPA) [20]. Though we mostly focus our attention on SPA,
we will discuss some aspects related to DPA and its coun-
termeasures.

SPA typically relies on data-dependent optimizations, and
most SPA countermeasures introduce a performance penalty,
since they typically remove some of these optimizations to
avoid the vulnerability. Moreover, countermeasures that in-
volve dummy operations for the purpose of SPA resistance in
general introduce a vulnerability to induced fault attacks [6],
a powerful class of attacks also suitable when potential at-
tackers have physical access to the device.

In this work, we propose several new efficient exponen-
tiation algorithms that work by splitting the exponent in
two halves for simultaneous processing. One key detail to
the algorithms’ efficiency is the encodings of the exponents
derived from signed-digit representations. Unlike general
exponentiation algorithms that focus exclusively on execu-
tion speed, all of our algorithms are designed to be easily
adapted to make them SPA-resistant. In their SPA-resistant
form, our proposed algorithms also exhibit better resistance
to fault and combined attacks [2] compared to existing SPA-
resistant techniques. The exponent encodings include the
Non-Adjacent Form (NAF) and Joint Sparse Form (JSF)



for the representation of the two exponent halves. Then we
adapt the technique to process blocks of multiple digits of
the exponent. Unlike existing multi-digit exponentiation
techniques, which focus on performance, our multi-digit ap-
proaches are also designed to provide resistance to SPA while
maintaining the improvements in computational efficiency.
Our work includes implementations of several of the pro-

posed methods, confirming their computational performance.

We also extracted and statistically analyzed power traces to
confirm the methods’ resistance to SPA.

The remaining of this paper proceeds as follows: In Sec-
tion 2, we review basic exponentiation algorithms and SPA
vulnerabilities. Section 3 presents some of the existing coun-
termeasures as well as a preliminary comparison between
our work and existing techniques. Sections 4 and 5 de-
scribe our proposed techniques. We first show the methods
in their SPA-vulnerable form, for the purpose of analyzing
their functionality and computational efficiency, and then in
Section 6, we show them in their SPA-resistant form. We
also show a comparison between the various methods pre-
sented in this work and previous approaches (Section 7),
with experimental results that confirm our analysis (Sec-
tion 8). We then close with some concluding remarks in
Section 9.

2. BINARY EXPONENTIATION AND SPA

Exponentiation algorithms—or scalar multiplication in
the context of ECC [15] —exploit the properties of the expo-
nent’s binary representation. Right-to-left (R-T-L) binary
exponentiation is one of the common methods [21], taking
advantage of the property shown in Equation (1), for an
{-bits exponent e with binary representation by_; -+ b1 bo:

1 v
e = Zbi~2i = ZT = z° = Hx(y) (1)
i=0 bim1 bi=1

A commonly used and important optimization for this algo-
rithm derives from the use of signed-digit representation of
the exponent [3], with

—1
e=> d2', di€{1,0,1}
=0

where 1 £ —1 when used to denote the value of a digit. In
particular, the NAF representation minimizes the number of
nonzero digits in the representation, with an average of one
third of nonzero digits [3]. It is straightforward for R-T-L
exponentiation to work with signed-digit exponent:

o Z Qi_z 9 o g — (Hﬁx(y))(nx(z?))il )

di=1  d;=1 di=1 ;=1

Algorithm 1 shows the R-T-L algorithm with exponent in
NAF representation.

Multiplications are executed conditionally on exponent
digits, making Algorithm 1 vulnerable to SPA: given the
multiplications’ distinguishable power consumption profile,
an attacker can recover the exponent from a single power
trace of the operation (i.e., a “plot” of the device’s power
consumption) [20]. We observe that the use of NAF slows
down the attack, since only nonzero vs. zero can be distin-
guished, but it does not entirely eliminate the vulnerability,
since two thirds of the exponent bits are revealed.

Algorithm 1: R-T-L Exponentiation with NAF Exponent

Input: z; e=(d¢_1ds—2 - dido)yap
Returns: =z°¢

begin
S +— z R« 1, R < 1;
for each digit d; (¢ from 0 up to £ — 1) do
if d; # 0 then
| Rdi — Rdi X S
end
S « S2%
end

return Ry x (Ry) ™%

end

Figure 1 shows a fragment of a power trace during an
ECC scalar multiplication running on an AVR Atmega2560
microcontroller. In the context of ECC, we have doubling as
the equivalent of squaring, and adding as the equivalent of
multiplications. Between approx. time indexes 36 000 and
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Figure 1: Fragment of Power Trace of SPA-

Vulnerable Exponentiation

37000 we observe two bumps (marked with arrows in the fig-
ure) separating the visually similar “dense” fragments about
5000 samples long. Between approx. time indexes 42 000
and 44 000 we observe three bumps. Visual inspection on
the complete trace showed that both doubling and adding
produce a trace with distinctive sequences in the number
of bumps that separate the dense fragments. In particu-
lar, only the adding exhibits three bumps. We could easily
discern this pattern and read the first several bits of the
exponent being used, starting with 1, 0, 1, 0, 0, 1, 1 (the
figure shows only a small fragment to highlight this distinc-
tive detail).

3. RELATED WORK

This section reviews existing work that relates to our pro-
posed techniques, including existing SPA countermeasures,
induced fault attacks and combined attacks, and differential
power analysis (DPA).

As briefly mentioned in Section 2, straightforward imple-
mentations of binary exponentiation or ECC scalar multipli-
cation algorithms are vulnerable to SPA. This is the case for
both left-to-right and right-to-left forms. Coron [11] pro-
posed the square-and-always-multiply (S-A-A-M) technique,
in which multiplications are executed unconditionally, with
the result discarded when the exponent bit is 0. In addition
to the important performance penalty involved, this coun-
termeasure introduces a vulnerability to induced fault at-
tacks [6], as pointed out by Yen et al. [31]. Ha and Moon [14]



proposed a method that exhibits SPA resistance; however,
the SPA-resistant component is essentially equivalent to the
S-A-A-M method, and the performance advantage is only
observed when combined with the randomization approach
used to introduce resistance to DPA. Even with this addi-
tional improvement, the performance of this method is below
that of our proposed techniques, all of which can be easily
combined with DPA countermeasures that add little or neg-
ligible computational overhead. Moreover, our techniques
allow for randomization of the order of multiplications with
negligible computational cost, potentially introducing some
level of resistance to DPA; and through a more aggressive
use of storage space, our techniques can be made fully re-
sistant to DPA. Joye [17] (later generalized in Chevallier-
Mames et al. [10]) proposed an approach where squarings
are implemented as a multiplication where the two operands
are the same value, effectively avoiding the vulnerability to
SPA. In addition to the performance penalty due to the
potential speedup in squaring operations being unused, this
technique has been shown to be ineffective due to several
reasons; [1] shows that the countermeasure can be bypassed
through a DPA-like attack, even when blinding, one of the
common DPA countermeasures, is used. The technique
also introduces a vulnerability to fault attacks; more specifi-
cally, to a combined fault and side-channel attack, as shown
by Amiel et al. [2]. The algorithms presented in [18] ex-
hibit similar inefficiencies in terms of computational perfor-
mance: all of the algorithms execute either one addition and
one squaring per exponent bit (performance equivalent to
S-A-A-M) or two additions per exponent bit (performance
equivalent to [17]).

As we will discuss in Section 6.2, all of our techniques,
which outperform the above existing techniques, introduce
resistance to SPA without introducing vulnerabilities to fault
or combined attacks. Any vulnerabilities to fault attacks
that may come from specific implementation details such as
choice of curves in ECC, initializations, etc., are indepen-
dent of the implementation details of our techniques [9, 8,
5, 4]. This means that existing countermeasures against
those specific attacks can be combined with the use of our
proposed techniques.

The Montgomery Ladder was originally proposed by Mont-
gomery [22] and later revisited by Joye and Yen [19] in the
context of fault resistance. While Joye and Yen report im-
portant speedups due to algorithmic structure that facili-
tates some optimizations in the implementation, our pro-
posed techniques outperform this technique, both from an
analytic runtime complexity comparison, and in terms of
real execution speed even when we incorporate the practi-
cal factors that lead to the speedup factors reported in [19].
Furthermore, Fouque et al. [12] presented a practical fault
attack on this technique, in spite of the arguments presented
in [19].

Moreno and Hasan [23] proposed the SABM method and
combined it with the method by Sun et al. [29]; however,
Sun’s method is fundamentally incompatible with the use of
signed-digit representation, which limits its computational
efficiency. In the case of Sun’s method in its original form,
the presence of dummy multiplications implies that it is vul-
nerable to induced fault attacks, although in this case the
attack is much less severe, since it only discloses pairs of
zero-valued digits, which discloses no more than 25% of the
exponent bits on average. All of our proposed techniques in

this paper outperform these two techniques, either in their
original form or in the combined form presented in [23].

4. SIMULTANEOUS PROCESSING OF
HALF-EXPONENTS

‘We now present our proposed techniques. In this and next
section we focus on their functionality and computational
efficiency; in Section 6 we discuss their SPA-resistant form.

4.1 Exponent in Signed-Digit Representations

The central idea of simultaneous processing of half expo-
nents is to split the set of values multiplied together into
subsets. To this end, we use one accumulator R, for each
combination xy of bits—one bit from each half-exponent in
corresponding positions — where at least one of the bits is
nonzero. For signed-digits {1,0,1}, we have accumulators
Ri1, Rig; Ri1, Ro1, Ro1, Bi1, Rio, and Rui.

With this setup, the result of the exponentiation is com-
puted as follows: Let e be the ¢-digit exponent, with signed-
digit representation e = dg—1 -+ - dido, 2|4, let £' = £/2, let
e, = dy_1---dido and ey = de—1de—2---dpy1dy.  Then,

e/
¢ = z°L-(z°n) (2 ), with z°L and z°r computed as follows:

= Roi-Rqy - Rii- (Rip- Rot - Ri1) ™' (3)
2% = Rig-Ryi-Ru-(Rit-Rig-Ri))™' (4)
o1 )
where  Rayq, = H 1:(2 )
i—0,

di=dp,dy/ | ;=dy

Algorithm Exp-HE (shown below as Algorithm 2) shows
the details, with correctness asserted by Theorem 4.1.

Algorithm 2: Exp-HE-Simult.
Exponents

Processing of Half-

Input: z; e= (dg_y -+ dido)gp, with2[¢, ¢/ 2 £
Returns: =z°¢

begin
S < w; Ri1, Rig, R11, Ro1, Ro1, Ry1, Rio, Ru1 < 1

for each digit pair dy;d; (¢ from 0 up to ¢/ — 1) do
if dg/+id7; 75 00 then
Ra, ,.d; < Ra, a4, XS5
end
S « S%
end
Ro1 < Ro1 x Ri; X R11 X (Rif X Ryi X Rﬁ)fl;
Rio  Rio X Ry1 X Ri1 x (R X Ryg X Ryp) ™

repeat ¢’ times: Rig + (Ri0)?;
return Rp1 X Rio;

end

We observe that the combination 00 does not have a cor-
responding accumulator, since it does not incur a multiplica-
tion. We also notice that the products of values correspond-
ing to positions where the digit is 1 need to be inverted.

Theorem 4.1: Given inputs x and ¢-digit exponent e,
with e in signed-digit representation (including NAF), Al-
gorithm Exp-HE correctly computes the value of z°.



Proof: Without loss of generality, we assume that 2 | £
(we can pad with a leading zero digit as needed). Let ¢ =
£ and consider the two ¢'-digit exponent halves:

2
(S5 = d(71d272 e d€’+1d€’
€, = dg/,ldg/,Q ---dzdldo
The required value z° can be obtained in terms of z°n
and z°L as follows:

’ o’
e=e, —|—eH2Z = z° = 2z ~(:ceH)(2 ) (5)

Since each of the half exponents are themselves numbers
in signed-digit representation, the values z°c and z°H are
given by:

L — < II x(?")).( 11 x(2")> (6)
ieDyf i€D
= < I1 x(zi)).( I1 x(zi)) -

. + . -
1€ Dy 1€ Dy

where Df denotes the set {i:o<i<¢’, d;=1}, Dy the set
{i:o<i<t/, a;=1}, Dy theset {i: o<i<t/, d, =1}, and Dy
the set {i : o<i<t/, d; =1}

Consider the sets Rii, Rig, Ri1; Roi, Ro1, Rii, Rio, and

Ri11, where Raya,, denotes the set {i : o<i<¢’, d;=dy, d; ,=dn }.

Clearly, R1; C Df, Ro1 C Di, and R11 C Df. Further-
more, Ri; U Ro1 U R11 = Df, since 1, 0 and 1 are the only
possible values for dj;. Similarly, Ri1 U Ro1 U R11 = D, .

In Algorithm Exp-HE, S is initialized with the value of z,

and at the end of each iteration it is squared; this means
that at the beginning of iteration ¢, the value in S is z?.

This value of S will be included in the product of values
stored in one of the variables Rqyaq,, , since all of the Rqyq;,
defined are such that dudr is not 00; this variable Rayaq;,
is precisely the one corresponding to the digit pair dudr.
Thus, the values stored in each variable Rqq, are:

RdeL = H 1(27’) (8)
i€ Ragd,
Therefore, we have
Ro1 X Ry X Ri1 = H x(21) (9)
1€ Ro1 URT UR1:
But Ro1 U Ry; U Ri1 = Dy, and thus
Ro1 X Ri; X Ri1 = H x(zq) (10)
ieDf
We also have
Ri1 X Ro1 X Ry = I () (11)
i€ R11 URp1 UR T
With Ri1 U Ro1 U R11 = Dy, and thus
Rii X Ro1 X Ri1 = H :17(21) (12)
ieDp
Combining equations (10) and (12) with Equation (6), we
see that the final value assigned to Ro1 is z°L.

By an identical argument, we have that the value assigned
to Rio by the end of the ¢’ iterations of the loop is °#. This

value is then repeatedly squared ¢ times, meaning that the
’

final value stored in Ry is (z°H )22 Since the output of
the algorithm is the product of Rp1 and Rig, Equation (5)
shows that the output is ¢, completing the proof. d

A fundamental distinction between our techniques and
Sun’s algorithm [29] is that the latter executes multiplica-
tions for all pairs of digits. This means that using signed-
digits/NAF representation for the exponents with Sun’s al-
gorithm does not reduce the number of multiplications even
when it reduces the number of nonzero digits. This aspect
also limits the computational performance in [23]. Reduc-
ing the number of multiplications through the use of signed-
digit representations is only possible if the multiplications
are conditional to the exponent’s digit pairs. These condi-
tional multiplications can then be buffered to provide SPA
resistance without sacrificing computational performance, as
we will discuss in Section 6.1. This also leads to the pos-
sibility of multi-digit encodings, representing a substantial
improvement over the results in [23] and [29].

4.2 Exponent in NAF Representation

The use of NAF for exponent representation reduces the
number of multiplications in Algorithm Exp-HE:

Proposition 4.2: Given inputs x and ¢-digit exponent e,
with e in NAF representation, Algorithm Exp-HE executes
%é multiplications on average.

Proof: TFor each i, 0 < i < £, where ¢/ = é, a multipli-
cation takes place if d;; s d; # 0. For large ¢, we can assume
P{dr =0} = 2 [3]. We can reasonably assume that dig-
its d; and d;y, are independent = P {d;;rd; =00} =
+ = P{diyedi # 00} = 2. Thus, the average number of

TR s 54 _ 5
multiplications is 5 €' = 4 ¢ d

4.3 Exponent Halves in JSF Representation

Computational performance of Algorithm Exp-HE can be
improved by observing that the two exponents halves can
be jointly encoded using JSF. With this technique, we can
obtain a joint representation for the exponent halves with
one half of the columns being 00 on average [27].

Proposition 4.3: Given inputs z and ¢-digit exponent e,
with exponent halves e, and e jointly represented in JSF,
algorithm Exp-HE executes %é multiplications on average.

Proof: The statement follows directly from the fact that
JSF represents the exponent halves with one half of the digit
pairs (columns) being 00 on average. a

S. PROCESSING MULTI-DIGIT BLOCKS

We now introduce two extensions to improve performance,
where several columns are combined for simultaneous pro-
cessing. As will become apparent, there are fundamental
differences between these and existing techniques that use
multi-digit processing for increased performance, such as
those described in [21]; in our case, the characteristics of
the algorithms are constrained to a structure that allows the
multiplications to be buffered. Also, our proposed meth-
ods have an advantage over other multi-digit or windowing
methods such as the method presented in [25] in that they
do not require precomputations, making them equally well
suited for the cases of fixed and non-fixed base.



5.1 Processing Two-digit Blocks with NAF

We first present an extension of the use of NAF for the
half exponents that allows us to obtain an even better per-
formance than that obtained through the use of JSF shown
in Section 4.3.

If we split the exponent into blocks of two digits (two
columns, since we do this for the two exponent halves), the
basic property of NAF guarantees that for each block of
each half-exponent, at least one of the two digits must be
0. Thus, the only possible values for the digit pair are 01,
00, 01, 10, and 10, corresponding to numeric values —1, 0,
1, 2, and —2. Thus, if we take two-digit blocks and think of
these blocks as digits in base-4 signed-digit representation,
we can adapt the algorithm to work with these parameters.

The exponentiation algorithm is easily modified to work
with thlS non-binary representation of f2-digit exponent
e= Z 2 M di4" with d; € {2,1,0,1,2}, as shown below:

e = Y 4 42> 4 N4l -2 4

d;=1 d;=2 d;=1 d;=3

* () (1) (1)

d;=2 d;=2

= (P1) (P2)*(Py) " (Péf2 (13)

where Py denotes the product corresponding to d; = B.

From Equation (13), it is clear that algorithm Exp-HE
can be modified by adding additional accumulators Ry, for
the additional digit values 2 and 2. That is, we need accu-
mulators Rzz, Rs1, Rao, Rz1, Raa, Ris, ete.

Equation (13) can be rearranged to group operations de-
pending on whether inversion is more expensive than squar-
ing or vice-versa:

¢ = (Pl)(Pz)2(P) ( 3)~?
= ) (P1 (P2)*) (14)
= (Pl)(Pl) 1(Pz(Pg) ) (15)

For example, in ECC, inversion is a virtually free opera-
tion, and thus the form in Equation (15) would be preferred,;
for cases where inversion is more expensive than squaring,
Equation (14) is preferred, since it groups the terms to exe-
cute a single inversion.

We observe that asymptotic performance for this method
is better than that obtained from the use of JSF as presented
in Section 4.3. To show this, we first present the following
lemma (proof shown in Appendix A), addressing adjacent
digits in NAF representations:

Lemma 5.1: Let xz be a randomly chosen ¢-bit non-
negative value (i.e., uniformly distributed in the interval
[0,2Z —1]), and let dede—1---dido be its NAF representa-
tion. For sufficiently large values of ¢, the probability of
contiguous zeros, P {dy4+1dr = 00} for k even approaches %
as k becomes large.

Proposition 5.2: Given inputs z and ¢-digit exponent
e in NAF representation, algorithm Exp-HE-Base4 executes
%6 multiplications on average, and never more than %6 mul-
tiplications.

Proof: The upper-bound of %6 follows directly from
the base-4 signed-digit representation, where we never have
more than one multiplication per two-digit block.

For the two-digit blocks that have four zeros, multiplica-
tion does not take place. From Lemma 5.1, we have that

P{diy1d; = 00} = +. Assuming independence of the digits
from the lower and upper halves of the exponent, we have
that P {diy1di = 00, dpyiy1der; = 00} = + where £ = £
The average number of multiplications is % . % =2y g

Due to space constraints, we omit any additional details
and diagrams for this algorithm (Exp-HE-Based4); it follows
the same idea as Algorithm Exp-HE, with modifications as

per Equation (13).
5.2 Processing Three-digit Blocks with JSF

The technique can be extended to a base-8 procedure that
deals with blocks of three digits. With a similar derivation
as Equation (13), and taking into account the constraints
for three-digit blocks in JSF (see below), we obtain

e = Pi(P2)*(Ps)’(Pa)"(Ps)"(Ps)°
(Pi(Pz) (P3) (P4)4(P5) (Ps) )

from which we see that the exponentiation procedure re-
mains essentially the same, albeit with a higher cost in
terms of storage and post-processing. However, the average
number of multiplications is reduced to 0.165¢ (one sixth
due to the processing of three-bit blocks, minus the frac-
tion of blocks that are all-zeros, which we experimentally
determined to be approximately %). Also, the number of
required accumulators is reduced from 255 (16 possible val-
ues for each digit, minus the combination 00) to 120 given
that some combinations of values are not possible. This is
due to the constraints in JSF representation: (1) at least
one column is zero in any three contiguous columns, and
(2) if ey, 1ey; # 0, thene , ., # 0 and e, ; = 0, and if
eiq16n; 70, then ey, #0and ey, =0 [27].

We do not include any additional details or diagrams since
they follow the same idea as Exp-HE-Base4 and Exp-HE.

1

6. RESISTANCE TO PHYSICAL ATTACKS

We now present the algorithms in their SPA-resistant form
and discuss the methods’ resistance to fault and combined
attacks, as well as the potential for resistance to DPA.

6.1 Resistance to Simple Power Analysis

The algorithms are designed under the constraint of com-
patibility with the aspect of buffering the operations. This
is the case because the result is obtained by multiplying a set
of terms together. Thus, instead of executing the multipli-
cation conditioned to the exponent bits, we buffer the term
to be multiplied, and then execute the multiplications at a
fixed rate. With a novel design of the algorithms with ex-
ponent encodings deriving from signed-digit representations,
our proposed techniques achieve substantially better perfor-
mance than the simple buffering technique in [23]. We also
reduce the required storage space with respect to the space
requirements in [23]; though we also require a buffer of size
O(v/ ), where £ is the length of the exponent, the smaller
variance due to signed-digits encodings leads to a smaller
scaling factor (the multiplicative factor hidden in the big-Oh
notation). This allows us to achieve the same probability of
buffer failure with substantially lower size of the buffer. A
detailed analysis is presented in [23]; notice that our tech-
niques have the additional advantage that the buffer’s size
depends on half the exponent size, whereas the combined
method in [23] cannot benefit from this aspect when combin-



ing their technique with Sun’s method [29], since it cannot
make use of signed-digit exponents.

Insertions in the buffer must avoid any conditional state-
ments, since the conditional itself would leak information
to the power side-channel. We observe that the actual ele-
ments (the values of S) need not be copied or moved into the
buffer. Instead, insertion of a reference (e.g., a pointer in C
or C++) to the element suffices. Given this low overhead in
insertions, we use an additional small buffer for “fake” inser-
tions, making the execution path of every iteration identical,
regardless of whether the value of S is inserted in the buffer.

A simple data structure allows us to achieve efficient and
leak-free buffer operations. The buffer storage space is rep-
resented as a linked list, as shown in Figure 2. In the dia-
gram, L; denotes the storage location for the (physical) i*"
element of the buffer, and S denotes the storage location
for S at iteration k (notice that values are dynamically as-
signed to different elements in the buffer; the diagram shows
one particular example). Contents of the buffer also use a

s e o

(a) Buffer Storage Space
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Buffer ‘

(b) Buffer Usage

Figure 2: Data Structure for SPA-resistant Buffer.

linked-list structure; in Figure 2(b), storage locations Lo,
Ln—1, and L, correspond to the three elements that have
been inserted in the buffer (to be multiplied together). In-
sertion and removal from the buffer is done by disconnecting
the element from one sequence and connecting it to the other
one (through reassignment of the appropriate pointers).

Algorithm SABM-HE (shown as Algorithm 3) shows a
sketch of the complete procedure for the case of exponent
in NAF representation. Notice that we need to pre-fill the
buffer to half its capacity on average (P {Insertion} = %)
before extracting elements from it. This is to avoid buffer
underflow. We also need to process any elements left in the
buffer after the loop completes.

The idea is almost identical and directly applicable to the
other forms discussed in the previous section. In particular,
for JSF representation of the exponent halves, the algorithm
remains the same except for a pre-processing stage to con-
vert the exponent representation to JSF.

6.2 Resistance to Fault and Combined Attacks

Our proposed methods also exhibit better resistance against
fault attacks and combined fault and side-channel attacks
compared to existing SPA countermeasures. Yen et al. [31]
noted that the S-A-A-M countermeasure creates an easy-
to-exploit vulnerability to fault attacks: since “dummy” op-
erations are executed depending on exponent bits, injected
faults allow an attacker to determine whether an operation
was a dummy, thus revealing exponent bits. = We notice

Algorithm 3: SABM-HE (NAF Exponent) — Sketch

begin
Initialize variables and accumulators;
for each digit pair dy/;d; (¢ from 0 up to ¢/ — 1) do
Insert or fake-insert element;
S « S2%
if ¢ > 9 - |Buffs]|/10 and i mod 9 is even then
(Tmp, deL> < Buffs;
RdeL — RdeL X Tmp;
end
end
Process remaining elements in the buffer;
Combine accumulators to produce result;
end

that our methods are naturally immune to this type of fault
attack, since no dummy operations are executed. Further-
more, the fact that elements in the buffer can be multiplied
in a randomized order somewhat enhances this immunity to
this type of attack.

Amiel et al. [2] show a combined attack, where by in-
jecting a single fault at the beginning of the exponentia-
tion, a single power trace reveals the exponent in an oth-
erwise SPA-resistant algorithm. Though this combined at-
tack is specific to the types of algorithms in [10], where the
use of R; introduces the vulnerability, the idea that they
present is clever and should be considered when designing
SPA-resistant techniques. Clearly, since our algorithms do
not follow the pattern where a modified value of R; creates
the SPA vulnerability, our techniques are not vulnerable to
this combined attack in [2]. More in general, their com-
bined attack is based on the following idea: the algorithms
in [10] work by hiding the multiplications from the power
trace, yet an injected fault makes the multiplications visible
in the power trace. In contrast, our techniques do not hide
the multiplications from the power trace; instead, they make
the positions of these multiplications independent of the ex-
ponent bits. Thus, even the general idea presented in [2]
is not applicable to our proposed algorithms. Furthermore,
the fact that multiplications can be performed in a random-
ized order provides additional protection against combined
attacks —even if an injected fault caused the power trace to
reveal exponent bits, with our methods the bits would be
revealed in a randomly permuted order.

As an additional aspect, our techniques have the natural
advantage over existing methods that because they combine
two exponent bits for simultaneous processing, the only in-
formation leaked is whether or not pairs of signed digits are
both zero. Thus, any attacks that exploit this leak (even yet-
to-be-discovered attacks) would be at the very least slowed
down considerably.

6.3 Resistance to DPA

Though not the main focus in our work, it is important
to highlight that our techniques exhibit the potential to be
resistant to DPA. This is due to the possibility of randomiz-
ing the order of the multiplications in the buffer. This ran-
domization removes any correlation between multiple traces,
which is an essential aspect on which DPA techniques rely.
In its space-optimized form, where the buffer size is O(v/2 ),
the scope of the randomization is limited, and thus the ef-



fectiveness of the randomization against DPA attacks is un-
known. However, the designers of a system can decide to
increase this buffer size, possibly up to the size correspond-
ing to the average number of multiplications, thus making
the operations fully resistant to DPA. This is a reason-
able possibility, since storage space has increasingly become
affordable in recent decades, and even low-cost microcon-
trollers nowadays include generous amounts of memory.

Unlike other forms of randomization proposed in the lit-
erature (for example, blinding countermeasures suggested
in [20] or exponent randomization suggested in [11]), the
form of randomization that our techniques allow involves
negligible computational overhead. For embedded devices,
savings in computational cost may be much more impor-
tant than savings in storage space, especially for battery-
powered devices, since increased computations translate into
increased power consumption.

7. PERFORMANCE COMPARISON

Our methods achieve better computational performance
than any existing SPA-resistant methods. While this im-
proved computational performance comes at the cost of ad-
ditional storage, this can be reasonable for embedded de-
vices, especially those relying on battery-supplied power.
This is the case because storage has become a less expensive
commodity in modern systems, yet increased computations
always translate into increased power consumption that re-
duces battery life.

Moreover, we observe that even though our exponenti-
ation algorithms require a larger number of accumulators
with respect to the work in [23], we actually reduce the to-
tal amount of storage, since the required size of the buffer is
smaller in our case, as discussed in Section 6.1.

Our methods also outperform the Montgomery ladder [19],
even with the optimizations suggested in that work. In par-
ticular, the most important speedup mentioned in [19] comes
from the parallelizable nature of that method (up to two
simultaneous operations); all of our methods are paralleliz-
able up to two threads of execution (the buffered multipli-
cations can be done in parallel), maintaining the advantage
in the algorithmic run time.

Table 1 summarizes the differences in performance of the
various proposed techniques and compares against existing
solutions. We show the fully optimized (and thus SPA-
vulnerable) R-T-L exponentiation performance as a base-
line. Values shown are average number of multiplications
required to execute an exponentiation with an ¢-bit expo-
nent (we recall that all the methods listed, except for Joye’s
method, require exactly ¢ squarings in addition to the num-
ber of multiplications shown), and average amount of units
of time to execute, where our convention is that squaring
routines execute in 1 unit of time and multiplication rou-
tines execute in 1.5 units of time (a typical ratio for prac-
tical implementations). We omit the Montgomery ladder in
this analytic comparison since the algorithmic performance
is not its strength, and it is rather the practical aspects de-
rived from its structure that makes it attractive. Even with
the speedups reported in [19], our methods outperform it.

8. EXPERIMENTAL RESULTS

We implemented several of the methods for the purpose
of experimentally verifying their efficiency and also to better

Multiplications Execution Time

Binary | NAF/SD. [ Binary | NAF/SD.
R-T-L 0.50 0.33¢ 1.75¢ 1.5¢
S-A-A-M ‘ ¢ 2.5¢ 2.5¢
Joye - - 2.25¢ 20
Sun et al. 0.5¢+0(1) —— 1.75¢+0(1) —_—
SABM 0.5¢ 0.33¢ 1.75¢ 1.50
SABM-HE *) 0.3750+0(1) | 0.275+0(1) | 1.56¢+0(1) | 1.416¢+0(1)
SABM-HE-JSF ) — 0.25¢ +0(1) — 1.3750 4+ 0(1)
SABM-HE-Base4 *) - 0.220+0(1) - 1.330+0(1)
SABM-HE-Base8 *) 0.165£+ O(1) 1.247¢+ O(1)

(*) This work

Table 1: Analytic performance comparison.

illustrate the effectiveness of the countermeasure.

8.1 Performance

In addition to the fully optimized SPA-vulnerable R-T-L
exponentiation with NAF exponent, used as a baseline for
comparison, we implemented the methods Exp-HE (using
NAF exponent), Exp-HE-JSF, and Exp-HE-Base4. The
implementations include ECC over binary fields using the
MIRACL library [26] and integer arithmetic using the GMP
library [30]. For ECC, we used NIST curves [24] at 163, 283,
and 571 bits sizes to cover the standard range. For integer
arithmetic we included 1024 and 2048 bits, which are in the
typical range of RSA applications [7], assuming a CRT-based
implementation. We also included 4096-bit since it confirms
the asymptotic behavior expected for larger exponents.

Table 2 shows the results; measurements are actual execu-
tion time of the exponentiation routines (excluding startup
and initialization time for the library facilities).  Multi-
ple measurements (10 000) with randomly chosen exponents
were performed, and Table 2 shows the average values along
with 99.9% confidence intervals. The implementations were
compiled and executed on a Raspberry Pi with a T00MHz
ARMv6 processor, using the gcc 4.6.3 compiler present in
the system.

ECC-GF(2™) | 163 bits | 283 bits | 571 bits

R-T-L (vulnerable) | 8.50 + 0.009 | 26.26 + 0.07 | 148.5 + 0.08
Exp-HE (NAF) 7.99 4 0.008 | 25.54 & 0.07 | 136.6 & 0.08
Exp-HE-JSF 7.72 £ 0.006 | 23.45 + 0.05 | 130.7 % 0.06
Exp-HE-Based 7.99 £ 0.008 | 23.91 + 0.05 | 120.8 + 0.05

Integer Arithmetic | 1024 bits 2048 bits 4096 bits

R-T-L (vulnerable) 15.61 £ 0.005 | 97.27 £ 0.02 | 584.99 & 0.075
Exp-HE (NAF) 15.10 & 0.005 | 93.13 £ 0.02 | 558.90 % 0.077
Exp-HE-JSF 14.68 4+ 0.004 | 90.72 £ 0.01 | 545.92 + 0.05
Exp-HE-Base4 14.60 & 0.004 | 89.07 £ 0.01 | 532.76 + 0.04

All values in milliseconds. Values after the =+ sign indicate 99.9% confidence interval.
Table 2: Execution time of exponentiation.

The results are consistent with the expected execution
times of the various methods; the measurements confirm
that the Base-4 method is actually at disadvantage for short
keys, but it is asymptotically more efficient, as shown by the
results for larger exponent sizes.

8.2 SPA Resistance

Our experiments also include capture and analysis of power
traces to show that the implementation, including the con-
ditional buffering aspect, is resistant to SPA. To this end,
we implemented a scalar multiplication over GF (2163) on



an AVR Atmega2560 8-bit microcontroller at 1 MHz. We
chose a different platform for this experiment since power
analysis can be done with higher precision and less difficulty
on a system running in the order of megahertz, compared to
hundreds of megahertz. This way, we show that even with
this advantage leading to a more powerful attack, we confirm
that the countermeasure is effective against the attack.
Figure 3 shows a comparison of averaged traces for one
iteration of the algorithm (one bit of the exponent/scalar),
comparing traces where the bit is zero vs. those where the
bit is nonzero (units are not indicated since these are the
digitized values with a somewhat arbitrary scaling factor).
The differences fall well below the noise level (notice that the
blue traces, for bit=1, are plotted on top of the red ones, hid-
ing them almost completely). With the buffering technique,
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Figure 3: Averaged Power Traces.

we have iterations where there is just one doubling and iter-
ations with a doubling and an addition — “short” and “long”
traces, respectively. The fragment shown in Figure 3(b)
corresponds to the end of the squaring portion (approx. up
to sample 27000), followed by the addition. Only a frag-
ment of the trace is shown since it is too long to properly
display in these figures.

We would like to highlight the aspect that our technique
proved effective even against an unrealistically powerful at-
tack. The trace captures and stacking benefit from an ar-
tificial advantage given by an instrumented version of the
scalar multiplication: an auxiliary signal is output to mark
the beginning of each iteration. The two signals (power con-
sumption and markers) are captured and the markers are
used to segment the trace into the fragments corresponding
to each exponent bit. Additionally, we used knowledge of
the exponent to partition the traces based on the exponent
bit being zero vs. exponent bit being nonzero. Clearly, this
represents an unrealistic advantage (compared to a practical
SPA attack) in terms of being able to align and combine the
traces for different exponent bits and reduce the effect of the
noise. The plots show that even with this advantage, the
traces where the secret bit is zero are indistinguishable (to
an SPA attacker) from those where the bit is nonzero.

In addition to comparing the traces as shown in Figure 3,
we also performed statistical analysis on the power consump-
tion. This analysis revealed no statistically significant dif-
ference between the different inputs. We collected about
300 samples for each of the 110476 points (equally spaced,
corresponding to all samples of the digitized signal) in the
power trace. Since the points exhibited not normally dis-
tributed data (visual inspection on a g-q plot), we decided
to use the non-parametric Mann-Whitney test with a Bon-
ferroni correction (p = 0.01/3). None of the points show a
statistically significant difference between the two inputs.

9. CONCLUSIONS

In this work, we have presented several new methods that
efficiently perform binary exponentiation while exhibiting
resistance to SPA. The methods provide substantial im-
provements in computational efficiency with respect to ex-
isting SPA-resistant methods. They also exhibit better resis-
tance to fault attacks, and combined fault and side-channel
attacks. Resistance to DPA can be added as well, through
adjustments in the implementation parameters.

Experimental results were also presented, including power
trace captures and analysis that provides solid evidence to
our methods’ resistance to SPA.

From the various methods proposed, the method using
JSF representation for the exponent halves is perhaps the
better suited for typical cryptosystems based on ECC, since
the exponent lengths are relatively small (in the hundreds
of bits), and the lower post-processing cost of this method
means that the total amount of operations is lower than for
the other methods, even if some of these other methods are
superior in terms of asymptotic performance. For applica-
tions requiring large exponent sizes, such as RSA with the
currently NIST-recommended key sizes, these multi-digit
methods can offer a considerable advantage in performance.
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APPENDIX
A. PROOF FOR LEMMA 5.1

We will prove the statement based on a procedure to con-
struct the NAF representation from the standard binary rep-
resentation by processing individual bits from right to left
(LSB to MSB) to generate the digits d;. Since the procedure
is different from the standard, commonly known algorithm
(shown for example as Algorithm 3.30 in [21]), we include a
description in Appendix B.

The procedure works in an “online” manner, processing
each input bit to generate new output digits, with the key
detail that each bit in the standard binary representation is
independent of every other bit (even for adjacent bits) and
can take values 0 and 1 with equal probability.

This allows us to obtain the following recurrence relations
for the possible outputs of the algorithm at each step (i.e.,
upon processing each input bit), taking into account that
P{b, =0} = P{b, =1} = L1; Py(k) denotes the probabil-
ity of producing a digit 0 with no carry at iteration k (that is,
P{dr, =0,C =0}), Pi(k) = P{dr =1}, and Pc(k) denotes
the probability of producing a carry at iteration k:

Po(n) = P{bn = 0} Po(n— 1) +P{bn = 0} Pl(n— 1)
= tPn-1)++P(n-1) (16)

Pc(n) = P{bn=1}Pi(n—1)+P{b, =1} Pc(n—1)
= IP(n—1)++Pc(n—1) (17)

Pi(n) = 1—Py(n)— Pc(n) (18)

Equation (18) corresponds to the fact that these are the only
three possibilities at each iteration, so the corresponding
probabilities must add to 1.

Since we are interested in the probability of adjacent ze-



ros, we only need to solve for Py(n) and Pc(n), so we rewrite
Equation (18) at n— 1 and substitute in the other two equa-
tions, obtaining

Po(n) = (1 Po(n—1))

Po(n) = L(1-Pyn—1))
Rewriting again for the left-hand sides at n—1 and substitut-

ing in each other, we finally obtain the following recurrence
relations:

Po(n) 1 +1iP(n-2)
Pc(n) = i +%Pc(n—2)
With initial conditions being Py(0) = Po(1) = +, Pc(0) =

0, and Pc(1) = + (these are trivially obtained by counting
occurrences in the four possible two-bit combinations).
The above recurrence relations are easily solved by re-
peated substitution, obtaining identical solutions for both
(the difference given by the different initial conditions):

P(n) =3+ (3)"(P(0) - 3)

Since we are interested in processing pairs of bits, we want
the probability of digits dard2r+1 being 00, and thus, we
only need to obtain the above solution for n even.

R(n) = F+%(3)"
Po(n) = 5(1-(3)")
From this, we obtain, for n even:
P{dn+1 =0,d, =0} P {bn+1 =0,d, = 0}
+P{bn+1 =1,C =0}
= P{bpt1 =0} Po(n)
+P {bpt1 =1} - Pc(n)
= 3 (Po(n) + Pc(n))

= (-

From Equation (19), we clearly observe exponential conver-
gence towards %

To complete the proof, we should mention the fact that
these probabilities correspond to the probabilities of 0 at the
given positions for the NAF representations of large num-
bers. Indeed, the construction procedure (see Appendix B)
is such that once the most-significant-digit at some iteration
is 0, the next iteration can not make this change (and as a
consequence, the same holds for the two most recent digits
being 00), and this regardless of whether there is a carry or
not at that iteration. Conversely, if we have a 1 at some
iteration (the only possible nonzero as the most-significant
digit), the next iteration can only make it change to 1, and
not to 0. |

(for n even)

B. ONLINE COMPUTATION OF THE NAF

We describe a simple online procedure to obtain the NAF
representation of a non-negative integer with ¢-bit binary
representation, processing each input bit independently, up-
dating the output accordingly. Thus, we treat the con-
version from standard binary to NAF as a transformation
applied to the output of a random source of independent
and uniformly distributed bits.

After processing bit b,—1, we have output dp,—1dn—2 - - - dido
with the possibility of a carry (at the very end, after pro-
cessing bit be_1, this carry would correspond to digit dg).
We observe that this output after processing bit b,—1 is
the NAF representation of the n-bit non-negative integer
bn—1bp—2---b1bg that has been processed so far.

Since the values considered are always non-negative, the
most-significant digit at the end of each iteration can not be
1—if it was, then there would be no carry, since the output
is a valid NAF representation, and NAF does not allow ad-
jacent non-zero digits, and thus the represented value would
be negative. Also, for the same reason, a carry can only
occur if dn—1 = 0.

Thus, after processing bit b,—1, the output digit d,—1 and
carry c¢n,—1 can only be

(0,0)
(dnflycnfl) = (07 1)
(1,0)

We now consider the effect of processing bit b,,. If b, =0,
then clearly d,, = cp—1 (the carry from the previous itera-
tion), and no carry can result from processing bit b,. If
bn = 1, then, if d,—1 = 0 with no carry, we would have
dn = 1 with no carry produced. If there is a carry from the
previous iteration, then we add b, and the carry, obtaining
a value 102 aligned at position n—that is, d,, = 0 with a
carry produced at this iteration. Finally, if d,,—1 = 1, then
we have to substitute the resulting 112, since NAF precludes
it. This is fixed by substituting 112 by its NAF equivalent,
101 aligned at the same position; that is, we would replace
the value of d,,_1 with 1, d,, =0 and a carry is produced at
this iteration.

The procedure is necessarily correct given that: (1) it does
output a valid signed-digit representation of the value rep-
resented by be_1bg—2---bi1by in standard binary —indeed,
every operation that modifies the output replaces blocks of
digits with a different block representing the same value and
aligned at the same position; and (2) by construction, this
output does not have adjacent non-zero digits. Since we
know that NAF representation is unique [3], then the out-
put of this procedure must be the NAF representation of the
input value.



