
Lessons Learned on Assumptions and Scalability with
Time-Aware Instrumentation

Guy Martin Tchamgoue
Department of Electrical and Computer

Engineering
University of Waterloo

gmtchamg@uwaterloo.ca

Sebastian Fischmeister
Department of Electrical and Computer

Engineering
University of Waterloo

sfischme@uwaterloo.ca

ABSTRACT
Software instrumentation is a key technique in many stages
of the development process. Instrumentation is particu-
larly important for profiling, debugging, performance evalu-
ation, and security analysis of real-time and embedded sys-
tems. Unfortunately, typical software-based instrumenta-
tion methods, while useful to extract high-level information
from programs, concentrate on preserving only logical cor-
rectness and are thus inadequate for time-sensitive applica-
tions for which timing must also be preserved.

Time-aware instrumentation is a new view on code in-
strumentation, one that considers extra-functional proper-
ties and specifically timing constraints of instrumented pro-
grams. Time-aware instrumentation enables instrumenting
software systems while still guaranteeing their timing re-
quirements. This paper summarizes the work on time-aware
instrumentation and highlights the lessons learned on as-
sumptions and scalability. Specifically, it shows how strict
assumptions enable a strong formal model at the expense of
applicability. Subsequent relaxing of assumptions then per-
mits scaling the concept and applying it to large real-word
applications with millions lines of code. We believe that
these lessons may help steer other research projects in the
systems area.

CCS Concepts
•Software and its engineering → Software testing
and debugging; Traceability; •General and reference
→ Metrics; Performance;

Keywords
Instrumentation, Tracing, Debugging

1. INTRODUCTION
Modern software systems including embedded systems are

getting more and more complex, growing far beyond millions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EMSOFT’16, October 01-07 2016, Pittsburgh, PA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4485-2/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2968478.2975584

of lines of code. Consequently, debugging programs with-
out observing the system behaviour at run time has become
virtually impossible. Program instrumentation is the key
technique for observing programs at run time. Instrumen-
tation is used in many stages of the development process as
it generates execution traces used by analysis tools such as
profilers [5, 18], debuggers [14, 16, 3], and malware detec-
tors [7]. Instrumentation statically or dynamically injects
user-defined analysis code into programs to generate execu-
tion traces at run time. Program analysis tools are critical
for understanding the run-time behavior of software. Unfor-
tunately, typical program instrumentation methods, while
useful to extract high-level information from programs, con-
centrate on preserving only logical correctness and are thus
inadequate for time-sensitive applications such as real-time
embedded systems. Such systems require instrumentation
that preserves both logical correctness and temporal cor-
rectness. Standard program instrumentation often incurs
extra delays that may change the temporal behavior of the
monitored system, leading to misleading execution traces.

Time-aware instrumentation is a new view on code in-
strumentation, one that considers extra-functional proper-
ties and specifically timing constraints. Thus, time-aware
instrumentation allows to instrument software systems while
still guaranteeing their timing requirements. In recent years,
several tools and techniques [1, 6, 8, 10, 11, 12] have emerged
to support the instrumentation of time-sensitive systems.
Static time-aware instrumentation methods [6, 8, 10, 11, 12]
inject analysis code into a program prior to execution; poten-
tially extending the execution on all paths, but also ensur-
ing that no path exceeds a specified time budget. Comple-
mentary, a dynamic time-aware instrumentation [1] method
dynamically inserts analysis functions into the program’s bi-
nary at run time to generate execution time traces.

This paper summarizes the propositions on time-aware in-
strumentation, that range from formal models to a scalable
dynamic implementation applicable to deployed systems, to
highlight the lessons learned on assumptions and scalability.
Basically, we show that setting strict assumptions on both
the monitored program and the environment allowed us to
build a formal model of instrumentation that comes with
predictive metrics, but also with reduced applicability and
scalability. On the other hand, subsequent relaxation of spe-
cific assumptions allowed us to design a flexible and scalable
dynamic time-aware instrumentation framework, which is
directly applicable to deployed real-world applications with
millions lines of code.

The remainder of the paper is organized as follows. Sec-

tion 2 describes the challenges faced by instrumentation
tools. Section 3 presents a general overview of time-aware
instrumentation of software systems. Section 4 summarizes
the state-of-the-art on static time-aware instrumentation and
shows how strict assumptions lead to predictable but less
scalable formal model. Section 5 summarizes the work on
dynamic time-aware instrumentation and shows how relax-
ing the assumptions on the formal model allowed to build
a scalable tool. Section 6 presents the lessons learned in
building time-aware instrumentation frameworks. Section 7
concludes the paper.

2. INSTRUMENTATION CHALLENGES
Program analysis tools are critical for understanding the

run-time behavior of software. Instrumentation of a pro-
gram can be achieved either statically (i.e., by analyzing the
source code and inserting instrumentation) or dynamically
(i.e., by manipulating the program during execution to insert
instrumentation). Instrumentation and tracing in general
incur overhead at execution time. The overhead depends on
the concrete application and the goal of the instrumenta-
tion. Consequently, the overhead may range from negligible
to devastating [8]. For instance, depending on the tool, Val-
grind, a dynamic binary instrumentation tool, can impose
a slowdown of up to a factor of 22.2 or worse [17]. However,
while some systems may tolerate such a slowdown, time-
sensitive applications with physical interaction (e.g., control-
ling a plant) usually do not tolerate overhead of more than a
few percent. Moreover, the added overhead may change the
behavior of the monitored program, leading to misleading
execution traces and even Heisenbugs [16]. Consequently,
an instrumentation tool for time-sensitive applications must
maintain the logical and temporal correctness of the moni-
tored application.

As real-time and embedded systems grow in size and com-
plexity, debugging them becomes challenging for developers.
The traditional breakpoint and step-through method as well
as the manually inserted print() instructions become not
only time consuming but also ineffective for real analysis. It
is therefore essential to provide robust and powerful tech-
niques to facilitate the tracing and analysis of such systems.
Time-aware instrumentation aims to preserve the timing re-
quirements of the system while generating useful execution
traces. Time-aware instrumentation can be achieved both
through static and dynamic instrumentation.

3. OVERVIEW OF TIME-AWARE INSTRU-
MENTATION

Time-aware instrumentation extends the basic concept of
instrumentation in the temporal domain. It thus uses new
concepts, a new model, and a workflow different from that
of traditional static and dynamic instrumentation.

3.1 Concept
Fischmeister and Lam [8] introduced the concept of time-

aware instrumentation to support the instrumentation of
time-sensitive applications. The key idea behind the time-
aware instrumentation of a system is to transform the ex-
ecution time distribution, maximizing the coverage of the
execution trace while always staying within the time bud-
get of the system. By coverage, we mean the amount of
data extracted during instrumentation versus the amount of

P
ro

b
a
b
il
it

y

Right Shift

Time

Deadline0

Original

code

Instrumented

code

Figure 1: Execution time distribution for a code
block before and after time-aware instrumentation
showing the shift in the expected execution time [9].

data that should have been extracted. Time-aware instru-
mentation injects analysis code, potentially extending the
execution time on all paths, and ensures that no path takes
longer than the specified time budget.

Sometimes, instrumenting on all execution paths while
respecting the timing requirements of the program is im-
possible. There are two possible solutions to this problem:
increasing the time budget for the instrumentation or resort-
ing to instrumenting only a subset of all paths (i.e., partial
instrumentation). Increasing the time budget on some exe-
cution paths may cause deadline misses. This is acceptable
for soft real-time systems for instance, where a few dead-
line misses may still be tolerated. A partial instrumentation
of a program inserts instrumentation code only at selective
instrumentation points and thus, produces only a partial
execution trace. Often, this means instrumenting only on
non-worst-case execution paths to preserve the timing re-
quirements of the program. However, the instrumentation
points are always selected to maximize the coverage of the
instrumentation process. Partial instrumentation and sub-
sequently partial traces are useful for building an inductive
analysis mechanism for deployed resource and space con-
strained systems. Many existing analysis tools [3, 14, 18]
support partial traces. In some cases, tracing a program for
longer time periods or repeatedly may enhance the quality
of the final coverage of a partial instrumentation process.

Time-aware instrumentation attempts to honor the tim-
ing constraint and shifts the execution time profile closer to
the program’s deadline as seen in Figure 1. The x-axis of
Figure 1 specifies the execution time, while the y-axis indi-
cates the frequency of observing a particular execution time.
The right shift of the execution time observed in Figure 1 oc-
curs, because time-aware instrumentation adds tracing code
to execution paths, increasing their running times, but en-
suring that execution times never exceed the deadline.

Figure 1 also suggests that the workflow for time-aware in-
strumentation differs from that of standard instrumentation
as it needs an extra step to take care of the timing properties
of the system. Figure 2 shows the workflow of a time-aware
instrumentation tool operating at the source-code level. Ini-
tially, a function of interest is selected for instrumentation.
At the next stage, the source code analyzer is invoked to
extract the control flow graph and break the function into
execution paths. In a first try, naive instrumentation is per-

Source Code

Analysis

Naive

Instrumentation

Tweak Coverage

Try to Extend

Time Budget

Cannot Satisfy

Constraints

Function

Selection

Minimizing

Code Size

Collect

Data

Timing

Satisfied

Timing Violation

Insufficient Coverage

No More slack

Extended

Sufficient

Coverage

Figure 2: Workflow for time-aware instrumentation
of hard real-time systems [8, 9].

formed on all variables of interest. Next, the instrumenta-
tion process uses the difference of time between execution
paths and different basic blocks to ensure that the instru-
mented program stays within the time limits of the original
program on the worst-case paths. If the timing constraint
is violated, the process can employ integer linear program-
ming to lower the coverage of the instrumentation so that it
meets the timing requirements.

If the instrumentation coverage is insufficient, then the
process will either have to give up (e.g., if it cannot extend
the time budget available for the function and the instru-
mentation), or try to extend the time budget and thereby in-
creases the coverage. If the optimized instrumentation meets
the required coverage or if the initial naive instrumentation
does not extend the worst-case path, then the whole process
will continue and use the execution paths to minimize the
required code size. Afterwards the developer can recompile
the program to collect traces from the instrumentation.

To perform instrumentation based on the above workflow,
it is important to build a model that, for instance, allows
estimating the impact and effectiveness of different instru-
mentations on the worst-case execution path.

3.2 Model Definition
For time-aware instrumentation of hard real-time embed-

ded systems, Fischmeister and Lam [8] propose an abstract
model that captures relevant properties from the source code.
This model comprises temporal behavior and control flow of
the program, and also specifies the data to be traced. The
model enables, for instance, calculating how the execution
time changes on each control-flow path using worst-case ex-

ecution time (WCET) analysis. However, the main use of
the model is to determine the optimal instrumentation for
execution time traces. Optimal means that, given a time
budget for the instrumentation overhead, the model pro-
vides the best instrumentation possible in terms of trace
coverage while guaranteeing the timing requirements of the
instrumented application.

The model abstracts a program source code as a directed
graph G = 〈V,E〉, representing the interprocedural control
flow of the program, and uses the functions c : V → R and
p : E → [0, 1] to capture the program’s behavior. Thus, each
vertex v ∈ V in the control-flow graph (CFG) represents a
basic block in the program, i.e., a unit of execution in the
program that has a single entry and exit points. E ⊆ V ×V
is the set of edges that represent the flow of control in the
CFG of the program.

Each vertex v ∈ V is further abstracted by 〈A,L〉, where
A is the set of assignments and L, the logged variables. The
function c : V → R specifies the required computation time
c, or cost, for a vertex v. For instance, c(v0) = 12.2t means
that the basic block at vertex v0 requires 12.2 time units for
its execution. Edges e := 〈vs, vd〉 specify transitions from a
source vertex vs to a destination vertex vd. The function p :
E → [0, 1] computes the probability p(e) that the execution
will use edge e to leave vertex vs. So, p(〈v0, v1〉) = 0.5 means
that on average every other execution will continue at vertex
v1 after executing v0.

3.3 Characteristics
The abstract model is useful as it allows for complete for-

malization of time-aware instrumentation of real-time em-
bedded systems. For instance, to accommodate interrupts,
the model can use an adjusted computation time c of any
vertex v using response time analysis (see [9] for details).
Handling interrupts is critical for the model to capture the
behavior of a real system. The adjusted model assumes that
interrupts occur as sporadic events with a known minimal
inter-arrival time, and that interrupt service routines are
bounded and always eventually terminate.

Furthermore, the model enables formulating an optimiza-
tion problem to determine the instrumentation points that
maximize the information gain without violating the time
budget of safety-critical systems. The instrumentation frame-
work, INSTEP [10], supports up to four extra-functional
properties including instrumentation intent values, code size,
execution time, and detection latency, that developers can
use as objectives and constraints to the optimization prob-
lem. The complete formalization of the instrumentation
problem permits full control over the instrumentation pro-
cess. It enables, for example, to precisely compute ahead of
time the minimal trace buffer size, i.e., the maximal buffer
size required at execution time to store traces. This is im-
portant for embedded systems that use memory-constrained
devices.

4. STATIC TIME-AWARE INSTRUMENTA-
TION

This section summarizes the state-of-the-art on static time-
aware instrumentation to show how strict assumptions sup-
ports creating a formal model and formulating predictions,
but at the expense of applicability.

4.1 Overview

The abstract model presented in Section 3.2 has been used
in the implementation of static time-aware instrumentation
frameworks for hard real-time and embedded systems [8,
10, 11, 12], but also for instrumenting model-based appli-
cations [6]. The instrumentation process, as described in
Figure 2, follows four main steps: (1) extract the control
flow paths with variable assignments for a function; then,
(2) check whether the instrumentation stays within the time
budget. If it does not, (3) compute the maximum instru-
mentation coverage which respects the time budget and (4)
optimize this instrumentation for code size. Basically, the
instrumentation frameworks differ on how they handle steps
2 and 3.

Thus, while Fischmeister and Lam [8, 9] only instrument
on non-worst-case execution paths, Kashif et al. [12] use run-
time slack-based conditional instrumentation to execute the
instrumentation code only when the execution is guaran-
teed not to increase the WCET beyond the program’s dead-
line. Kashif and Fischmeister [11] relied on code transfor-
mations including branch block creation and CFG cloning
to increase the instrumentability of a program on and thus,
maximize the instrumentation coverage. The instrumenta-
tion framework, INSTEP [10], accepts multiple competing
extra-functional properties, and uses trees to represent in-
strumentation intents and automata for cost models. IN-
STEP further uses local searching to prune to search space
of its optimization problem that identifies the optimal in-
strumentation points. Denil et al. [6] propose to instrument
model-based applications directly at model level and use a
set of rule-based model transformation techniques to opti-
mize the placement of instrumentation blocks, while satis-
fying the extra-functional constraints of the applications.

Using a model allows to gain insights about the instru-
mented program, e.g., the right shift as depicted in Figure 1
highlights the pressure made by the instrumentation process
on the worst-case execution paths of the instrumented pro-
gram. Furthermore, it becomes possible to define metrics
that help predict for example the coverage and the behavior
of the instrumented program. One such metrics, the execu-
tion time profile shift effectiveness [11], measures the effec-
tiveness of a time-aware instrumentation approach, so that
different approaches may be compared against each other.

Finally, the static instrumentation frameworks allowed
to formulate experiments to test and evaluate the abstract
model. Testing the model provides insight about the bench-
mark applications and also validate the model itself. A
validated model provides assurance and quality guarantees
about its results on real use-case scenarios. For instance, the
model was successfully used for the time-aware instrumenta-
tion of a micro-controller code [8], an automotive controller
module [10], and the SNU real-time benchmark suite [11].

4.2 Assumptions
The construction of the abstract model of instrumentation

relies on a set of strict assumptions. First of all, the instru-
mentation process is offline, assuming a system with hard
real-time requirements. The offline process implies that the
complete source code of the program is available. This in-
cludes not only the source code of the program, but also the
source code of all libraries referenced by the program. Since
some of these libraries may be large in size, statically analyz-
ing them may be cumbersome and impractical. Moreover,

Benchmark Description

OpenEC [8, 9] Instrumentation of the handle_power func-
tion of the OpenEC firmware, 20 variables,
42 basic blocks with 20 different control-
flow paths.

Flash Filesys-
tem [9]

Instrumentation of a set of 30 functions
from a FAT-like filesystem for flash devices
containing a total 3000 lines of C code.

SNU Bench-
mark [10, 11,
12]

The SNU real-time benchmark suite con-
tains 17 C programs with 120 lines of code
and 34 basic blocks on average.

EasyWEB [10] A dynamic web server for NXP LPC17xx
ARM-based micro-controllers with a total
of 1,846 lines of C code.

Automotive
Controller [10]

An automotive control module with
177,298 lines of C code and 6,297 basic
blocks.

Adaptive Con-
troller [6]

An adaptive controller that consists of
three Simulink models.

Table 1: Case studies of time-aware instrumentation

the source code of libraries may be not always accessible or
available.

Further, the model assumes the input source program to
be analyzable. For instance, the program should be MISRA-
C compliant [15]. MISRA-C provides a standard for im-
plementing safety-critical real-time systems. For example,
MISRA-C requires bounded loops, limits recursion, and re-
stricts the usage of pointers, unions, and dynamic mem-
ory allocation. This also facilitates the computation of the
WCET even at the level of basic blocks, because the model
needs to easily determine the critical paths of the program
to decide whether to inject its instrumentation code.

4.3 Consequences
Setting strict assumptions facilitates the construction of

an interesting formal model with good predictive metrics,
however, it does so at the expense of applicability and scal-
ability. Thus, using the model and systems building on the
model for case studies is time consuming as experiments are
specifically made for each application. Solving optimization
problems, selecting the right parameters, and performing
WCET analysis, make each experiment unique and expen-
sive to realize. Table 1 presents the different case studies
where static time-aware instrumentation has been applied.
For example, the OpenEC experimental setup cannot be di-
rectly used for the Flash Filesystem case. Parameters such
as the number of basic blocks, the code size, the number
of control-flow paths, the number of functions and variables
influence the configuration and the complexity of the op-
timization problem solved by the instrumentation model,
making it difficult to generalize experiments. Already for
small systems like the SNU real-time benchmark, Kashif et
al. [10] showed that the number of equations and expressions
in the optimization problem could exceed 1,500 and 33,000,
respectively.

Finally, having a model with limited applicability favors
shoehorning. For instance, experiments revealed that the
instrumentation coverage remained low, because large por-

Assumptions Consequences

Offline Source code availability, which is not always
the case especially for legacy software and
proprietary libraries.

Attainable
WCET

Restricted applicability which favors shoe-
horning, no support for concurrent applica-
tion.

MISRA-C
Compliance

Restricted code: No pointers, no dynamic
allocation.

Hard real-
time systems

Specifically designed and time consuming
experiments and case studies.

Table 2: Summary of assumptions and consequences
for a static time-aware instrumentation model

tions of the programs were still unavailable for instrumenta-
tion. Instrumenting these code areas could affect the WCET
and thus violate existing timing constraints. Code transfor-
mations [11] and optimizations are introduced to increase
the coverage, and thus the usability of the instrumentation
technique. However, this also increases the complexity of
the model. Another example is the use of hardware support
to increase the coverage [12]. While the hardware solution
may provide up to 80% coverage, it also requires to extend
the underlying processor with specialized instructions, which
however further limits the applicability and portability of
the framework.

Furthermore, applying WCET analysis forces the model
to consider only foreground/background and multiprogram-
ming systems with run-to-completion semantics. While the
static model of instrumentation is sound and effective, the
need for running WCET analysis before and after the instru-
mentation reduces the applicability to only hard real-time
systems where WCET analysis is common. Concurrency, for
example, is not supported as it complicates the evaluation
of the cost function, and therefore that of the WCET anal-
ysis. Table 2 summarizes the design assumptions and their
consequences on the final model and deriving framework.

5. DYNAMIC TIME-AWARE INSTRUMEN-
TATION

This section describes the time-aware dynamic binary in-
strumentation of soft real-time systems and shows how re-
laxing assumptions may help build a widely applicable and
scalable framework.

5.1 Overview
Using an abstract model produces strong academic re-

sults, which may however be difficult to scale to real-world
applications. Relaxing assumptions may help simplify the
model and build a more scalable system. Thus, loosing the
assumptions of Table 2 facilitated the design of a time-aware
dynamic binary instrumentation [1].

Dynamic time-aware instrumentation adds an adjustable
bound on the timing overhead of the program under analysis,
contrarily to general-purpose dynamic binary instrumenta-
tion (DBI) frameworks such as Dyninst [2], DynamoRio [4],
Pin [13], Valgrind [17], and Pemu [19]. DBI frameworks
allow to inspect a running program at different levels of gran-
ularity (e.g. image, trace, routine, and instruction levels)

P

P

P

Figure 3: State machine for dynamic time-aware in-
strumentation with Dime [1].

0

B

P 2P 3P

−

−

Budget Reset,

DBI Re-enabled

DBI

Enabled

DBI

Disabled
R

e
m

a
in

in
g
 B

u
d
g
e
t

(B
 -

 t
in

s
)

Program Execution Time (tprog)

Figure 4: Budget supply for time-aware instrumen-
tation with Dime [1].

by dynamically injecting user-defined analysis code into the
program’s binary. Dime [1] is a time-aware dynamic binary
instrumentation (TDBI) framework that conserves all the
properties of a DBI.

To reduce the instrumentation overhead while maximiz-
ing its coverage, Dime maintains and periodically switches
between two versions of the monitored program: (1) an in-
strumented version that contains the user-defined analysis
functions and (2) an uninstrumented version that contains
no user-defined analysis code. Figure 3 shows the state di-
agram of Dime, where tins represents the instrumentation
time per period, and tprog the execution time of the program.
Dime allows the user to define an instrumentation period P
and an instrumentation budget 0 ≤ B ≤ P . Thus, during
each period P , Dime instruments the program only for B
time units, i.e., as long as tins < B, the instrumentation is
enabled as in Figure 3. Once, the budget is consumed, i.e.,
tins ≥ B, Dime disables instrumentation and switches to the
uninstrumented version of the program. This state switching
reduces the overhead and limits deadline misses as the unin-
strumented version surely runs faster than the instrumented
version. At the end of each instrumentation period as shown
in Figure 4, the budget is reset and Dime switches back to
the instrumented version of the program. Figure 4 depicts
how the budget is replenished and consumed for instrumen-
tation. Sometimes, the instrumentation process may over-
shoot, violating the defined instrumentation budget as seen
Figure 4 around 2P time units.

5.2 Assumptions
The dynamic time-aware instrumentation of programs as-

sumes only the availability of executable binaries. This in-

creases the applicability of such a technique to legacy soft-
ware where the source code may be unavailable. Contrary to
the approach using static instrumentation, focusing on bina-
ries removes any restrictions on the structure of the program.

The instrumentation happens online and often relies on a
just-in-time compiler to dynamically disassemble, inject the
analysis code, and recompile the binary at execution time.
This process is however well-known to incur a high runtime
overhead and therefore, cannot be applied to programs with
hard real-time requirements. Thus, TDBI considers only
soft real-time systems such as media players where a few
deadline misses may be tolerated.

5.3 Consequences
The limited assumptions of time-aware dynamic instru-

mentation increases not only the technique’s applicability,
but also its scalability compared to the static approach. For
example, Dime was used to instrument the whole SPEC2006
C benchmark suite and the complete VLC Media Player ap-
plication. The VLC Media Player counts approximately 600
000 lines of code and uses libraries with more than three mil-
lion lines of code. Instrumenting the binary removes the re-
striction on the structure of the application, reduces the cost
of experiments, and increases the possibility of case studies.
DBI can handle dynamically generated code as it maintains
a global view of the program at run time. Finally, DBI offers
the possibility to write rich and complex analysis tools, mak-
ing the technology easy to adopt widely for software analysis
and security applications.

While being more scalable and more applicable, TDBI also
loosens the formal model of the static instrumentation. The
formal model for the static analysis approach uses WCET
analysis to ensures that the timing requirements of the in-
strumented program are not violated. TDBI modifies the
executable at run time and thus, it becomes impossible to
predict the overhead and the runtime requirements (e.g.,
memory space and execution time) of the instrumentation
process. Consequently, TDBI cannot guarantee to always
meet the deadlines of the application. Therefore, the user-
defined analysis function may sometimes overshoots the pre-
defined instrumentation budget as shown in Figure 4. Arafa
et al. [1] show that overshoots may impact the overhead
imposed by the instrumentation tool. Therefore, TDBI is
unsuitable for instrumenting systems with hard real-time
requirements, however, it is suitable for instrumenting soft
real-time systems.

On the other hand, TDBI also allows to build probabilis-
tic models of instrumentation as statistical data can be col-
lected and analyzed to provide an insight on the program at
run time. This statistical data may include, for instance, the
quality of service of the monitored program. In the case of
the VLC Media Player, this may, for example, be the num-
ber of frames decoded per second. The analysis of this data
opens new interesting problems such as feedback-based dy-
namic instrumentation where the statistical data collected
from the monitored program may help steer the instrumen-
tation process itself. Another direction is to perform run-
time verification on partial execution traces produced by
time-aware instrumentation. Finally, mining partial traces
may, for instance, allow to extract bug patterns and mod-
els that may help developers analyze programs with reduced
overhead.

6. DISCUSSION
Working on time-aware instrumentation allowed us not

only to gain insights into timing and real-time systems, but
also into the relationship between assumptions, applicability,
and scalability for systems research. Clearly, setting strict
assumptions such as requiring the availability of source, im-
posing a certain structure, mandating the type of program,
and requiring a complete WCET analysis, allowed us to
construct a formal model with strong predictive metrics.
The model facilitated the implementation of a static time-
aware instrumentation framework that provides useful in-
sights such as the right shift about the instrumented time-
sensitive program. However, the static instrumentation frame-
work is also impacted by the many assumptions of the un-
derlying abstract model resulting in a brittle approach with
limited applicability and scalability. Our experiments also
showed that a restrictive formal model makes case studies
expensive and difficult to realize. This prevents the gener-
alization of results and limits the applicability of the model
to real-world programs.

Relaxing assumptions brings big rewards. Relaxing most
of the assumptions on the formal model facilitated the de-
sign and implementation of a flexible and scalable dynamic
time-aware instrumentation framework. Unfortunately, the
strong predictions enabled by the formal model were lost in
the process, however, the concepts (e.g., right shift and infor-
mation gain through subsequent runs) survived. In addition,
the new framework with the relaxed assumptions opened up
a number of new challenges and perspectives.

7. CONCLUSIONS
This paper summarizes the current research work on time-

aware instrumentation and highlights the lessons learned
with respect to assumptions and scalability. Setting initial
strict assumptions allowed us to build a formal model, obtain
clear insights, and predict the behavior of the instrumented
program. The model helped formulate the problem and ex-
plore tradeoffs for the implementation. However, the initial
model has only reduced applicability and scalability in real-
word systems as the set of assumptions and the complexity
of the model are cost prohibitive to realize in large applica-
tions. Subsequent relaxation of assumptions allowed us to
build a flexible and more scalable dynamic time-aware in-
strumentation tool that still incorporates the core concepts
of the initial model. We believe that this process of starting
off with strict assumptions to define models and get strong
results, and then subsequent relaxation of assumptions to
achieve scalability and applicability is a worthwhile process
and a good lesson learned for systems research in real-time
embedded systems.

8. ACKNOWLEDGMENTS
We would like to thank Hany Kashif and Pansy Arafa

for their work on time-aware instrumentation that greatly
contributed to the writing of this paper.

9. REFERENCES
[1] P. Arafa, H. Kashif, and S. Fischmeister. DIME:

Time-aware Dynamic Binary Instrumentation Using
Rate-based Resource Allocation. In Proceedings of the
Eleventh ACM International Conference on Embedded
Software, EMSOFT’13, pages 25:1–25:10. ACM, 2013.

[2] A. R. Bernat and B. P. Miller. Anywhere, Any-time
Binary Instrumentation. In Proceedings of the 10th
Workshop on Program Analysis for Software Tools,
PASTE’11, pages 9–16. ACM, 2011.

[3] M. D. Bond, K. E. Coons, and K. S. McKinley.
PACER: Proportional Detection of Data Races.
SIGPLAN Not., 45(6):255–268, June 2010.

[4] D. Bruening. Efficient, Transparent, and
Comprehensive Runtime Code Manipulation. PhD
thesis, MIT, Sept. 2004.

[5] H. K. Cho, T. Moseley, R. Hank, D. Bruening, and
S. Mahlke. Instant Profiling: Instrumentation
Sampling for Profiling Datacenter Applications. In
Proceedings of the IEEE/ACM International
Symposium on Code Generation and Optimization,
CGO’13, pages 1–10. IEEE, 2013.

[6] J. Denil, H. Kashif, P. Arafa, H. Vangheluwe, and
S. Fischmeister. Instrumentation and Preservation of
Extra-functional Properties of Simulink Models. In
Proceedings of the Symposium on Theory of Modeling
& Simulation: DEVS Integrative M&S Symposium,
DEVS’15, pages 47–54. SCSI, 2015.

[7] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song.
Dynamic Spyware Analysis. In 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX
Annual Technical Conference, ATC’07, pages
18:1–18:14. USENIX Association, 2007.

[8] S. Fischmeister and P. Lam. On Time-Aware
Instrumentation of Programs. In Proceedings of the
2009 15th IEEE Symposium on Real-Time and
Embedded Technology and Applications, RTAS’09,
pages 305–314. IEEE, 2009.

[9] S. Fischmeister and P. Lam. Time-Aware
Instrumentation of Embedded Software. IEEE
Transactions on Industrial Informatics, 6(4):652–663,
Nov 2010.

[10] H. Kashif, P. Arafa, and S. Fischmeister. INSTEP: A
Static Instrumentation Framework for Preserving
Extra-Functional Properties. In IEEE 19th
International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA’13,
pages 257–266, Aug 2013.

[11] H. Kashif and S. Fischmeister. Program
Transformation for Time-aware Instrumentation. In
Proceedings of 2012 IEEE 17th International
Conference on Emerging Technologies Factory
Automation, ETFA’12, pages 1–8. IEEE, Sept 2012.

[12] H. Kashif, J. Thomas, H. Patel, and S. Fischmeister.
Static Slack-Based Instrumentation of Programs. In
Proceedings of the 20th IEEE Conference on Emerging
Technologies Factory & Automation, ETFA’15, pages
1–8. IEEE, Sept 2015.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation.
SIGPLAN Not., 40(6):190–200, June 2005.

[14] D. Marino, M. Musuvathi, and S. Narayanasamy.
LiteRace: Effective Sampling for Lightweight
Data-race Detection. SIGPLAN Not., 44(6):134–143,
June 2009.

[15] MIRA Limited. MISRA-C:2004 guidelines for the use

of the C language in critical systems, oct 2004.

[16] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and Reproducing
Heisenbugs in Concurrent Programs. In Proceedings of
the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 267–280.
USENIX Association, 2008.

[17] N. Nethercote and J. Seward. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation.
SIGPLAN Not., 42(6):89–100, June 2007.

[18] M. Serrano and X. Zhuang. Building Approximate
Calling Context from Partial Call Traces. In
Proceedings of the 7th Annual IEEE/ACM
International Symposium on Code Generation and
Optimization, CGO’09, pages 221–230. IEEE, 2009.

[19] J. Zeng, Y. Fu, and Z. Lin. PEMU: A Pin Highly
Compatible Out-of-VM Dynamic Binary
Instrumentation Framework. In Proceedings of the
11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments,
VEE’15, pages 147–160. ACM, 2015.

